Latency Insensitive Protocols

Luca P. Carloni!, Kenneth L. McMillan?, and
Alberto L. Sangiovanni-Vincentellil

1 University of California at Berkeley, Berkeley, CA 94720-1772
{lcarloni,alberto}@ic.eecs.berkeley.edu
2 Cadence Berkeley Laboratories, Berkeley, CA 94704-1103
mcnillan@cadence.com

Abstract. The theory of latency insensitive design is presented as the foundation of
a new correct by construction methodology to design very large digital systems by as-
sembling blocks of Intellectual Properties. Latency insensitive designs are synchronous
distributed systems and are realized by assembling functional modules exchanging data
on communication channels according to an appropriate protocol. The goal of the pro-
tocol is to guarantee that latency insensitive designs composed of functionally correct
modules, behave correctly independently of the wire delays. A latency-insensitive pro-
tocol is presented that makes use of relay stations buffering signals propagating along
long wires. To guarantee correct behavior of the overall system, modules must satisfy
weak conditions. The weakness of the conditions makes our method widely applicable.

1 Introduction

The level of integration available today with Deep Sub-Micron (DSM) technologies (0.1um
and below) is so high that entire systems can now be implemented on a single chip. Designs
of this kind expose problems that were barely visible at previous levels of integration: the
dominance of wire delays on the chip and the strong effects created by the clock skew [2]. Tt
is predicted that a signal will need more than five (and up to more than ten!) clock ticks to
traverse the entire chip area. Thus it will be very important to limit the distance traveled by
critical signals to guarantee the performance of the design. However, precise data on wire-
lengths are available late in the design process and several costly re-designs may be needed
to change the placement or the speed of the components of the design to satisfy performance
and functionality constraints. We believe that, for deep sub-micron designs where millions of
gates are customary, a design method that guarantees by construction that certain properties
are satisfied is the only hope to achieve correct designs in short time. In particular, we focus
on methods that allow a designer to compose pre-designed and verified components so that
the composition formally satisfies certain properties.

In this paper, we present a theory for the design of digital systems that maintains the
inherent simplicity of synchronous designs and yet does not suffer of the ”long-wire” problem.
According to our methodology, the system can be thought as completely synchronous, i.e. just
as a collection of modules that communicate by means of channels having a latency of one
clock cycle. Unfortunately, the final layout may require more than one clock cycle to transmit
the appropriate signals. Our methodology does not require costly re-design cycles or to slow
down the clock. The key idea is borrowed from pipelining: partition the long wires into

segments whose lengths satisfy the timing requirements imposed by the clock by inserting
logic blocks called relay stations, which have a function similar to the one of latches on a
pipelined data-path. The timing requirements imposed by the real clock are now met by
construction. However, the latency of a channel connecting two modules is generally equal to
more than one real clock cycle. If the functionality of the design is based on the sequencing of
the output signals and not on their exact timing, then this modification of the design does not
change functionality provided that the components of the design are latency insensitive, 1.e.,
the behavior of each module does not depend on the latency of the communication channels.
We have essentially traded off latency for throughput by not slowing down the clock and by
inserting relay stations. In this paper, we introduce these concepts formally and prove the
properties outlined above. Classical works on trace theory [3,7] and delay insensitive circuits
could be used to address our problem, but these approaches imply that the delay between
two events on a communication channel is completely arbitrary, while in our case we obtain
stronger results by assuming that this arbitrary delay is a multiple of the clock period.

The paper is organized as follows: in Section 2 we give the foundation of latency insensitive
design by presenting the notion of patient processes. In Section 3 we discuss how in a system
of patient processes communication channels can be segmented by introducing relay stations.
Section 4 illustrates the overall design methodology and discusses under which assumption a
generic system can be transformed in a patient one.

2 Latency Insensitivity

To cast our methodology in a formal framework, we use the approach of Lee and Sangiovanni-
Vincentelli to represent signals and processes [5].

2.1 The Tagged-Signal Model

Given a set of values V and a set of tags 7, an event is a member of V x 7. Two events
are synchronous if they have the same tag. A signal s is a set of events. Two signals are
synchronous if each event in one signal is synchronous with an event in the other signal and
vice versa. Synchronous signals must have the same set of tags.

The set of all N-tuples of signals is denoted SV. A process P is a subset of S¥. A particular
N-tuple s € SV satisfies the process if s € P. A N-tuple s that satisfies a process is called
a behavior of the process. Thus a process is a set of possible behaviors '. A composition of
processes (also called a system) {Py, ..., Py}, is a process defined as the intersection of their
behaviors P = ﬂnﬂle P,,. Since processes can be defined over different signal sets, to form
the composition we need to extend the set of signals over which each process is defined to
contain all the signals of all processes. Note that the extension changes the behavior of the
processes only formally.

Let J = (j1,...,Jn) be an ordered set of integers in the range [1, N], the projection of
a behavior b = (s1,...,sy) € SV onto 8" is projs(b) = (sj,,...,5j,). The projection of a
process P C SV onto 8" is projs(P) = (s' | 3s € P A projs(s) = s'). A connection C is a
particularly simple process where two (or more) of the signals in the N-tuple are constrained

! For N > 2, processes may also be viewed as a relation between the N signals in s.

to be identical: for instance, C(i, j, k) C SN : (s1,...,sn) € C(i,j, k) & s; = s; = sp, with
i,j,k €[1,N].

In a synchronous system every signal in the system is synchronous with every other signal.
In a timed system the set T of tags, also called fzmestamps, is a totally ordered set. The
ordering among the timestamps of a signal s induces a natural order on the set of events of s.

2.2 Informative Events and Stalling Events

A latency insensitive system is a synchronous timed system whose set of values V is equal
to X U {7}, where X is the set of informative symbols which are exchanged among modules
and 7 € X is a special symbol, representing the absence of an informative symbol. From now
on, all signals are assumed to be synchronous. The set of timestamps is assumed to be in
one-to-one correspondence with the set IN of natural numbers. An event is called informative
if it has an informative symbol ¢; as value 2. An event whose value is a 7 symbol is said a
stalling event (or T event).

Definition 1. &£(s) denotes the set of evenis of signal s while £,(s) and £:(s) are respectively
the set of informative events and the set of stalling events of s. The k-th event (vy,11) of a
signal s is denoted ep(s). T(s) denotes the set of timestamps in signal s, while T,(s) is the
set of timestamps corresponding to informative events.

Processes exchange “useful” data by sending and receiving informative events. Ideally only
informative events should be communicated among processes. However, in a latency insensi-
tive system, a process may not have data to output at a given timestamp thus requiring the
output of a stalling event at that timestamp.

Definition 2. The set of all sequences of elements in ¥ U {7} is denoted by Xi4;. The length
of a sequence o is |o| if it is finite, otherwise is infinity. The emply sequence is denoted as ¢
and, by definition, |¢| = 0. The i-th term of a sequence o is denoted o;.

Definition 3. Function o : 8§ x T? — X4 takes a signal s = {(vo,t0), (v1,t1),..} and an
ordered pair of timestamps (;,t;), i < j, and returns a sequence o[y, +;] € ar 5.1. 0, ¢;(5) =
Vi, Vig1,...,0j. The sequence of values of a signal is denoted o(s). The infinite subsequence of
values corresponding to an infinite sequence of events, starting from t; is denoted o[y, o01(5).

For example, considering signal s = {(¢1,%1), (t2,22), (7, t3), (t2,14), (21,15), (7, t6)} we have 3

o(s)=1t1 t2 T 13 t1 T, Opy4,)(S) =t2 T ta, 0, 4,(5) = t1, and respectively, |o(s)| = 6,
|0454.(8)] = 3, |o4,4,(s)] = 1. To manipulate sequences of values we define the following
filtering operators.

Definition 4. F, : Y,y — X* returns a sequence o’ = F,[o] s.1.

ol = {"[tz,n](s) if ope(s) € X

€ otherwise

2 We use subscripts to distinguish among the different informative symbols of X : 11,12, 2, ...
? In this paper we assume that for all timestamps t;,t; € T(s), ti <tj 1<y,

Definition 5. F; : X5 — {7} returns a sequence ¢’ = F.[o] s.1.

= {f’[tutz](s) if Op,,00(s) = 7

7 € otherwise

For instance, if o(s) = 41 t2 7 42 ¢1 7, then Fo(s)] = ¢1 t2 t2 ¢1 and Frlo(s)] = 7 7.
Obviously, |o(s)| = |F.[o(s)]| + | F-[o(s)]]. Latency insensitive systems are assumed to have a
finite horizon over which informative events appear, i.e., for each signal s there is a greatest
timestamp 7' € 7,(s) which corresponds to the ”last” informative event. However, to build
our theory we need to extend the set of signals of a latency insensitive system over an infinite
horizon by adding a set of timestamps such that all events with timestamp greater than T
have 7 values.

Definition 6. A signal s is strict if and only if (iff) all informative events precede all stalling
events, t.e., iff there exists a k € IN s.t. |Fr[04,,4,1(5)]| = 0 and |F,[op, +.1(s)]| = 0. A signal
which is not strict is said to be delayed (or stalled).

2.3 Latency Equivalence

Two signals are latency equivalent if they present the same sequence of informative events,
i.e., they are identical except for different delays between two successive informative events.
Formally:

Definition 7. Two signals s1, sa are latency equivalent sy =; sy iff F,[o(s1)] = F.[o(s2)].

The reference signal s,.; of a class of latency equivalent signals is a strict signal obtained by
assigning the sequence of informative values that characterizes the equivalence class to the
first |F,[o(s1)]| timestamps. For instance, signals s; and sy presenting the following sequences
of values

o(s1)=1t1 ta T 41 ta 13 T 41 b2 T T T

0(S2) =1 tg T T 41 T tg 43 T 41 T 4y T...

are latency equivalent. Their reference signal s,.; is characterized by the sequence of values
O(Sref) =41 Lo 41 L2 43 41 Lo T T T...

Latency equivalent signals contain the same sequences of informative values, but with
different timestamps. Hence, it is useful to identify their informative events with respect to
the common reference signal: the ordinal of an informative event coincides with its position
in the reference signal.

Definition 8. The ordinal of an informative event e, = (v, t5) € £,(s) is defined as ord(ey) =
| Fuloio,0](s)] — 1. Let sy and q be two latency equivalent signals: two informative events

er(s1) € E,(s1) and e;(q1) € E,(q1) are said corresponding events iff ord(er(s1)) = ord(e;(q1)).

The slack between two corresponding events is defined as slack(er(s1),ei(q1)) = |k —1].

We extend the notion of latency equivalence to behaviors, in a component-wise manner:

Definition 9. Two behaviors (s1,...,sn) and (s}, ...,sh) are equivalent iff Vi (s; =, s}).
A behavior b = (s1,...,sn) is strict iff every signal s; € b is strict. Every class of latency
equivalent behaviors contains only one strict behavior: this is called the reference behavior.

Definition 10. Two processes P, and P, are latency equivalent, Py =, P, if every behavior
of one 1is latency equivalent to some behavior of the other. A process P is strict iff every
behavior b € P 1s strict. Fvery class of latency equivalent processes contains only one strict
process: the reference process.

Definition 11. A signal sq is latency dominated by so, 51 <; s9 Mff 57 =; 59 and T7 < T5,
with Ty, = max{t |t € T,(sx)}, k= 1,2.

Hence, referring to the previous example, signal s; is dominated by signal sy since 73 = 9
while 75 = 12. Notice that a reference signal is latency dominated by every signal belonging to
its equivalence class. Latency dominance is extended to behaviors and processes as in the case
of latency equivalence. A total order among events of a behavior is necessary to develop our
theory. In particular, we introduce an ordering among events that is motivated by causality:
events that have smaller ordinal are ordered before the ones with larger ordinal (think of a
strict process where the ordinal 1s related to the timestamp; the order implies that past events
do not depend on future events). In addition, to avoid cyclic behaviors created by processing
events with the same ordinal, we assume that there is an order among signals. This order in
real-life designs corresponds to input-output dependencies. We cast this consideration in the
most general form possible to extend maximally the applicability of our method.

Definition 12. Given a behavior b = (s1,...,sn), <. denotes a well-founded order on its sel
of signals. The well-founded order induces a lexicographic order <;, over the set of informative
events of b, s.t. for all pairs of events (e1,e2) with e1 € &,(s;) and es € &,(s5)

e1 <1o €2 & [(ord(e1) < ord(es)) V ((ord(er) = ord(es)) A(si <.s;))]

The following function returns the first informative event (in signal s; of behavior b)
following an event e € b with respect to the lexicographic order <y,.

Definition 13. Given a behavior b = (s1,...,sy) and an informative event e(s;) € E,(s;),
the function nextEvent is defined as: next Event(sj, e(s;)) = ming,(s,) ¢ £,(s)1e(5i) <io €x(s;)}

A stall move postpones an informative event of a signal of a given behavior by one times-
tamp. The stall move is used to account for long delays along wires and to add delays where
needed to guarantee functional correctness of the design.

Definition 14. Given a behavior b= (s1,...,sj,...,sn) and an informative event ey (s;) =
(ve,tr), a stall move returns a behavior b’ = stall(ex(s;)) = (s1, ... ,5}, ... ySN), s.t. for all

leN: O-[fu,fk—ﬂ(sé') = U[fu,fk—l](sj)7 U[tk,tk](é’;’) =T U[fk+l+1ytk+l+1](8}) = U[fk+l,tk+l](5j)'

A procrastination effect represents the “effect” of a stall move stall(ey(s;)) on other signals
of behavior b in correspondence of events following ey (s;) in the lexicographic order. The
processes will “respond” to the insertion of stalls in some of their signals “delaying” other
signals that are causally related to the stalled signals.

Definition 15. A procrastination effect is a point-to-set map which takes a behavior V' =
(sh,...,s%) = stall(ey(s;)) resulting from the application of a stall move on event ey(s;)
of behavior b = (s1,...,sn) and returns a set of behaviors P&[stall(ey(s;))] s.t. b =
(sY,..., s%) e PE[Y] iff

_ gl = 4l :

- V]i € [I,N],i#j, s{ =r s and opyy4,_,1(5]) = 0[1o,1,_,1(5}), where t; is the timestamp of

event ei(s;) = nextEvent(s;,ex(s;));

— 3K finite s.t. Vi € [I, N],i # j,3k; < K, a[tl%lyoo](s;’) = 01,001 (5%)-
Each behavior in PE[b’] is obtained from b’ by possibly inserting other stalling events in
any signal of #’, but only at ”later” timestamps, i.e. to postpone informative event which
follow ey (s;) with respect to the lexicographic order <;,. Observe that a procrastination
effect returns a behavior that latency dominates the original behavior.

2.4 Patient Processes

We are now ready to define the notion of patient process: a patient process can take stall
moves on any signal of its behaviors by reacting with the appropriate procrastination effects.
Patience is the key condition for the IP blocks to be combinable according to our method. The
following theorems * guarantee that, for patient processes, the notion of latency equivalence
of processes 1s compositional.

Definition 16. A process P is patient iff
Vb= (s1,...,sn) € P, Vj €[l N], VYer(s;) € E(s5), (PE[stall(ex(s;))] NP #0)

Hence, the result of a stall move on one of the events of a patient process may not satisfy the
process, but one of the behaviors of the procrastination effect corresponding to the stall move
does satisfy the process, i.e., if we stall a signal on an input to a functional block, the block
will be forced to delay some of its outputs or if we request an output signal to be delayed
then an appropriate delay has to be added to the inputs.

Lemma 1. Let P; and Ps be two patient processes. Let by € P1, by € Py be two behaviors
with the same lexicographic order s.i. by =; by. Then, there exists a behavior b’ € (P N Py),
b1 = b =r bg‘

Theorem 1. If P, and Py are patient processes then (Py N Py) is a patient process.

Theorem 2. For all patient processes Py, Py, P/, Py, if Py =, P{ and Py =, P} then
(P1NPy) =, (P{NP))

Therefore, we can replace any process in a system of patient processes by a latency equiv-
alent process, and the resulting system will be latency equivalent. A similar theorem holds
for replacing strict processes with patient processes.

Theorem 3. For all strict processes Py, Py and patient processes P{, Py, if Py =, P{ and
PQET P2l then (PlﬂPQ)ET (Pl’ﬁPé)

This means that we can replace all processes in a system of strict processes by correspond-
ing patient processes, and the resulting system will be latency equivalent. This is the core of
our idea: take a design based on the assumption that computation in one functional block and

* The proofs of the lemmas and the theorems presented in this paper can be found in [1].

communication among blocks “take no time” (synchronous hypothesis) 5, i.e., the processes
corresponding to the functional blocks and their composition are strict, and replace it with
a design where communication does take time (more than one clock cycle) and, as a result,
signals are delayed, but without changing the sequence of informative events observed at the
system level, 1.e., with a set of patient processes.

3 Latency Insensitive Design

As explained in Section 1, one of the goal of the latency insensitive design methodology
is to be able to “pipeline” a communication channel by inserting an arbitrary amount of
memory elements. In the framework of our theory, this operation corresponds to adding some
particular processes, called relay stations, to the given system. In this section, we first show
how patient systems (i.e. systems of patient processes) are insensitive to the insertion of relay
stations and, then, we discuss under which assumption a generic system can be transformed
into a patient system.

3.1 Channels and Buffers

6

A channel is a connection ° constraining two signals to be identical.

Definition 17. A channel C(i,j) C SV,i,j € [1,N] is a process s.t. b = (s1,...,sn) €
C(Z,j) & 5 = S5

Lemma 2. A channel C(i,j) C SV is not a patient process.

Definition 18. A buffer Bffy,b(i,j) with capacity ¢ > 0, minimum forward latencyl; > 0 and
minimum backward latency ly > 0 is a process s.t. ¥i,j € [l, N]:b = (s1,...,8N) € By, 1, (257)
iff (s; =5 s;) and Vk € N

0 <|Fu o020,y (5) 11— | Fulop0,u) (si)]| (1)
¢ 2 | Fuloton (511 = [F0 [0ft0,000,0] (55)]| (2)

By definition, given a pair of indexes ¢, j € [1, N], for all l;,l¢, ¢ > 0, all buffers Bffy,b(i, J)
are latency equivalent. Observe also that buffer Bgyo(i,j) coincides with channel C(1,). In
particular, we are interested in buffers having unitary latencies and we want to establish under
which conditions such buffers are patient processes.

Theorem 4. Letly =y = 1. For all c > 1, Bf 1(i, j) is patient iff s; <, s;.

Consider a strict system Pyypier = ﬂ%:l P, with N strict signals s, ..., sy. As explained
in section 2.1, processes can be defined over different signal sets and to compose them we
may need to formally extend the set of signals of each process to contain all the signals of
all processes. However, without loss of generality, consider the particular case of composing

® In other words, communication and computation are completed in one clock cycle.
6 See section 2.1 for the definition of connection.

B111 81 = W11 T 2T 13T taT T T 5T legT 7T 18T 9T T T 10T ...
’ S2 = T 1T 2T 3T 4T T T I5T lgT 7T 8T T T 9T L10T ...
B%l 81 = 112183 T T lalsle T T T L7 T 18 tg L10
’ 82 = T W1l2l3T T taT T T lplg lty T 18 lg l10

Fig. 1. Comparing two possible behaviors of finite buffers Bllyl and Bil.

M processes which are already defined on the same N signals. Hence, any generic behavior
bm = (Smy,---s8my) Of Pn is also a behavior of Pypier iff for all I € [1, M],1 # m process
Py contains a behavior by = (s1,,...,s1y) s.t. Vo € [1,N] (s1, = $m,). In fact, we may
assume to derive system Psypier by connecting the M processes with (M — 1) - N channel
processes C(l,,,(I4+1),), where [€ [1,(M —1)] and n € [1, N]. Further, we may also assume to
“decompose” any channel process C(my, [,,) with an arbitrary number X of channel processes
C(mp,z1),C(x1,22),...,C(xx-1,1y), by adding X — 1 auxiliary signals, each of them forced
to be equal to m,, = l,,. The theory developed in section 2 guarantees that if we replace each
process Pp, € Psirice with a latency equivalent patient process and each channel C(é, j) with
a patient buffer Bil(i, J) we obtain a system Ppasient Which is patient and latency equivalent
to Psiricr. In fact, “having a patient buffer in a patient system is equivalent to having a
channel in a strict system”. Since “decomposing” a channel C(7, j) has no observable effect
on a strict system, we are therefore free to add an arbitrary number of patient buffers into
the corresponding patient system to replace this channel. Since we use patient buffers with
unitary latencies, we can distribute them along that long wire on the chip which implements
C(4,j), in such a way that the wire gets decomposed in segments whose physical lengths can
be spanned in a single physical clock cycle.

3.2 Relay Stations

The following Lemma 3 proves that no behaviors in Bll’l(z',j) may contain two informative
events of s;, s; which are synchronous: this implies that the maximum achievable throughput
across such a buffer is 0.5, which may be considered suboptimal. Instead, buffer B%l(z', J) is the
minimum capacity buffer which is able to “transfer” one informative unit per timestamp, thus
allowing, in the best case, to communicate with maximum throughput equal to 1. Figure 1
compares two possible behaviors of these buffers.

Lemma 3. Bil(i,j) is the minimum capacity buffer with [y = l; =1 s.1.
* = (s7,...,s%) € Bil(i,j) A Jk €N, (ex(sy) € E(sF) A ek(s?) € &(s}k))

Definition 19. The buffer Bil 15 called a relay station RS.

4 Latency Insensitive Design Methodology

In this section, we move towards the implementation of the theory introduced in the previous
sections. To do so, we assume that:

— the pre-designed functional blocks are synchronous processes;

— there is a set of signals for each process that can be considered as inputs to the process
and a set of signals that can be considered as outputs of the process, i.e., the processes
are functional;

— the processes are strictly causal (a process is strictly causal if two outputs can only be
different at timestamps that strictly follow the timestamps when the inputs producing
these outputs show a difference 7).

— the processes belong to a particular class of processes called stallable, a weak condition
to ask the processes to obey.

The basic ideas are as follows. Composing a set of pre-designed synchronous functional blocks
in the most efficient way is fairly straightforward if we assume that the synchronous hypothesis
holds. This composition corresponds to a composition of strict processes since there is a priori
no need of inserting stalling events. However, as we have argued in the introduction, it is very
likely that the synchronous hypothesis will not be valid for communication. If indeed the
processes to be composed are patient, then adding an appropriate number of relay stations
yields a process that is latency equivalent to the strict composition. Hence, if we use as the
definition of correct behavior the fact that the sequences of informative events do not change,
the addition of the relay stations solves the problem. However, requiring processes to be
patient at the onset is quite strong. Still, in practice, a patient system can be derived from
a strict one as follows: first, we take each strict process P, and we compose it with a set
of auxiliary processes to obtain an equivalent patient process P . To be able to do so, all
processes P, must satisfy a simple condition (the processes must be stallable) specified in
the next section. Then, we put together all patient processes by connecting them with relay
stations. The set of auxiliary processes implements a “queuing mechanism” across the signal
of P,, in such a way that informative events are buffered and reordered before being passed
to Pp,: informative events having the same ordinal are passed to P,, synchronously.

In the sequel, we first introduce the formal definition of functional processes. Then, we
present the simple notion of stallable processes and we prove that every stallable process
can be encapsulated into a wrapper process which acts as an interface towards a latency
insensitive protocol.

4.1 Stallable Processes

An input to a process P C SV is an externally imposed constraint Py C SV such that P;NP is
the total set of acceptable behaviors. Commonly, one considers processes having input signals
and output signals: in this case, given process P, the set of signals can be partitioned into
three disjoint subsets by partitioning the index set as {1,...,N} = TUOU R, where I is the
ordered set of indexes for the input signals of P, O is the ordered set of indexes for the output
signals and R is the ordered set of indexes for the remaining signals (also called irrelevant
signals with respect to P). A process is functional with respect to (I, O) if for all behaviors
be Pand b € P, projr(b) = projr(b’') implies projo(b) = projo(b').

In the sequel, we consider only strictly causal processes and for each of them we assume
that the well founded order <. of definition 12 subsumes the causality relations among its
signals, i.e. formally: Vi € I,Vj € O, (s; <. s;).

" For a more formal definition see [5].

81 = t1l301 7T 37T T ... S84 = T 11 T 1381 T 13
82 = T 14 T L7118 T lg ... — 8, = T 14 T l718 T g
83 = T il T 9T lg ... 8¢ — T I5 T ls51lg T lg

Fig.2. Example of a behavior of an equalizer F with I = {1,2,3} and O = {4,5,6}.

Definition 20. A process P with I ={1,... ,Q} and O ={Q+1,..., N} is stallable iff for
allb=(s1,...,5Q,50+41,-..,5n) € P and for all k € N :

Viel (U[fk,tk](si) = T) = Vj €0 (U[tk+1,tk+1](5j) = T)

Hence, while a patient process tolerates arbitrary distributions of stalling events among its
signals (as long as causality is preserved), a stallable process demands more regular patterns:
7 symbols can only be inserted synchronously (i.e., with the same timestamp) on all input
signals and this insertion implies the synchronous insertion of 7 symbols on all output signals
at the following timestamp. To assume that a functional process is stallable is quite reasonable
with respect to a practical implementation. In fact, most hardware systems can be stalled:
for instance, consider any sequential logic block that has a gated clock or a Moore finite state
machine M with an extra input, that, if equal to 7, forces M to stay in the current state and
to emit 7 at the next cycle.

4.2 Encapsulation of Stallable Processes

Now, our goal is to define a group of functional processes that can be composed with a
stallable process P to derive a patient process which is latency equivalent to P. We start
considering a process that aligns all the informative events across a set of channels.

Definition 21. An equalizer E is a process, with I = {1,...,Q} and O = {Q+1,...,2-Q},
s.t. for all behaviorsb = (s1,...,8Q,8Q+1,-..,82.Q) € E: Yi€ I, (s; =5 sg4i) and Vk € IN

Vi, j €0 ((01ty,11(51) = T) = (O[5, 11(55) = 7))
I}g}l{ | o [0ft0,0(s0)] | } — I].Heag{ | o [oft0,ex1(s5)] |} >0

The first relation forces the output signals to have stalling events only synchronously, while
the second guarantees that at every timestamp the number of informative events occurred at
any input is always greater than the number of informative events occurred at any output.
In particular, the presence of a stalling event at any input at a given timestamp forces the
presence of a stalling event on all outputs at the same timestamp. Figure 2 illustrates a
possible behavior of an equalizer.

Definition 22. An extended relay station ERS is a process with I = {i} and O = {j, 1},
i # j # 1 st signals sy, s2 are related by inequalities (1) and (2) of definition 18 (with
lf=Ul=1and c=2) and Yk € IN:

1 - f; 0 7 — fL o . . — 2
a[tk,tk](g,):{ if | Fo[opto,01(50)] | | Fo (00 tx_11(55)] |

0 otherwise

1 Sp, Sp} Sq} ms,h '
1 P 1
1 y s 1
! Sey | E | Sey Say ERS,, Say !
1 S Sy’ M e 1
1 9Py P st S '
: ~ d :
: SSG er :
1 1

Fig. 3. Encapsulation of a stallable process P into a wrapper W(P).

Definition 23. A stalling signal generator S8G is a process with I = {1,...,Q} and O =
{Q+ 1} s.t. Vb= (s1,...,5041), Yk € IN,Vi € [1,Q],(F. [op,,1,1(5:)] € [0,1]) and

T Zf 3.7 S [LQ] (ft [U[tk,tk](sj)] =1)

0 otherwise

Oty tx] (5Q+1) = {

As illustrated in Figure 3, any stallable process P can be composed with an equalizer, a
stalling signal generator and some extended relay stations to derive a patient process which
is latency equivalent to P.

Definition 24. Let P be a stallable process with Ip = {p, ... ,phy} and Op = {q}, ..., dv}-
A wrapper process (or, shell process) W(P) of P is the process with Iy = {p1,... ,pm} and
Ow = {q1,...,qn} which is obtained composing P with the following processes:

— an equalizer E with Ig = {p1,...,pm,pm41} and Op = {p}, ..., Py, Prrr b
— N extended relay stations ERS1,ERSa, ... ,ERSN s.t. I; = {q;} and O; = {q;,7;}, with

je[l,N]
— a stalling signal generator S8G with I = {r1,...,rn} and O¢ = {ppm+1}-
Theorem 5. Let W(P) be the wrapper process of def. 24. Process W = projry,uow (W(P))
1s a patient process that is latency equivalent to P.

In conclusion, our latency insensitive design methodology can be summarized as follows:

1. Begin with a system of M stallable processes and N channels.

2. Encapsulate each stallable process to yield a wrapper process.

3. Using relay stations decompose each channel in segments whose physical length can be
spanned in a single physical clock cycle.

This approach clearly ”orthogonalizes” computation and communication: in fact, we can build
systems by putting together hardware cores (which can be arbitrarily complex as far as they
satisfy the stalling assumption) and wrappers (which interface them with the channels, by
“speaking” the latency insensitive protocol). While the specific functionality of the system is
distributed in the cores, the wrappers can be automatically generated around them ®. Finally,
the validation of the system can now be efficiently decomposed based on assume-guarantee
reasoning [4,6]: each wrapper is verified assuming a given protocol, and the protocol is verified
separately.

8 This is the reason why wrappers are also called shells: they just “protect” the intellectual property
(the pearl) they contain from the “troubles” of the external communication architecture.

5 Conclusions and Future Work

A new design methodology for large digital systems implemented in DSM technology has been
presented. The methodology is based on the assumption that the design is built by assem-
bling blocks of Intellectual Properties (IPs) that have been designed and verified previously.
The main goal i1s to develop a theory for the composition of the TP blocks that ensures the
correctness of the overall design. The focus is on timing properties since DSM designs suffer
(and will continue to suffer even more for the foreseeable future) from delays on long wires
that often cause costly redesigns. Designs carried out with our methodology are called la-
tency insensitive design. Latency insensitive designs are synchronous distributed systems and
are realized by assembling functional modules exchanging data on communication channels
according to a latency-insensitive protocol. The protocol guarantees that latency insensitive
designs composed of functionally correct modules, behave correctly independently of the wire
delays. This allow us to pipeline long wires by inserting special memory elements called relay
stations. The protocol works on the assumption that the functional blocks satisfy certain
weak properties.

The method trades-off latency for throughput, hence it is important to optimize the
amount of latency that we must allow to obtain correct designs. This optimization leads
to the concept of speculative latency insensitive protocols which will be the subject of a
future paper.

6 Acknowledgments

We wish to acknowledge the discussions with Luciano Lavagno and Alex Saldanha that led
to the theory of latency insensitive designs. Patrick Scaglia gave us strong support based on
his experience as a designer of highly complex digital systems and continuous encouragement.
This research has been partially sponsored by Cadence Design Systems, SRC and by CNR.

References

1. L. P. Carloni, K. L. McMillan, and Alberto L. Sangiovanni-Vincentelli. Latency-Insensitive Pro-
tocols. Technical Report UCB/ERL M99/11, Electronics Research Lab, University of California,
Berkeley, CA 94720, February 1999.

2. D. Matzke. Will Physical Scalability Sabotage Performance Gains? IEEE Computer, 8(9):37-39,
September 1997.

3. D.L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-Independent Circuits.
The MIT Press, Cambridge, Mass., 1988. An ACM Distinguished Dissertation 1988.

4. T.A. Henzinger, S. Qadeer, and R.K. Rajamani. You Assume, We Guarantee: Methodology and
Case Studies. In Proceedings of the 10th International Conference on Computer-Aided Verification,
Vancouver, Canada, July 1998.

5. E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of Computation.
IEEE Transactions on Computer-Aided Design, 17(12):1217-1229, December 1998.

6. K. L. McMillan. A Compositional Rule for Hardware Design Refinement. In Proceedings of the
9th International Conference on Computer-Aided Verification, Haifa, Israel, July 1997.

7. J. L. A. van de Snepscheut. Trace Theory and VLSI Design, volume 200 of Lecture Notes in
Computer Science. Springer Verlag, Berlin, 1985.

