
The Art and Science of Integrated Systems Design

Luca P. Carloni†, Fernando De Bernardinis†§,
Alberto L. Sangiovanni-Vincentelli†, and Marco Sgroi†

†University of California at Berkeley,
Berkeley, CA 94720-1772

§Dipartimento di Ingegneria dell’Informazione
Universit̀a di Pisa, Italy

www-cad.eecs.berkeley.edu/∼{lcarloni,fdb,alberto,sgroi}

Abstract

The design of next-generation integrated systems re-
quires that “Art”, a mix of knowledge, experience, intu-
ition and creativeness, be supported by “Science”, i.e.,
design methodologies that provide rigorous foundations
and guarantee correctness either by construction or by a
set of powerful synthesis and verification tools. We present
platform-based design as the overarching principle to de-
velop a class of methodologies that satisfy in part the re-
quirements set above. A platform is an abstraction layer
that hides the details of several possible implementation
refinements of the underlying layers. We discuss the im-
portance of carefully defining the platform layers and for-
mally deriving the transitions from one platform to the
next, including the role of top-down constraint propaga-
tion and bottom-up performance estimation. Finally, we
present examples of these concepts at different key articu-
lation points of the design process: system platforms and
implementation platforms including analog design, thus
covering the entire spectrum of design from conception
and algorithms to final SoC implementation.

1. Introduction

Time-to-market pressure, design complexity and cost
of ownership for masks are driving the electronics in-
dustry towards more disciplined design styles that favor
design re-use and correct-the-first-time implementations.
However, traditional computer-aided design (CAD) tool
flows come short of providing proper support to reach
these goals mainly because they are built as juxtaposition
of independently-conceived stages. Each stage manipu-
lates a representation of the final design by applying cer-
tain transformations on it before the next stage takes over.
The exchange of information between stages is based
on standard data formats, where functional specification,
structural information and performance-related annotation
are intertwined. These data formats are autonomously in-
terpreted by the tools at each stage. The tools have dif-
ferent purposes (functional manipulation, structural trans-
formation, performance optimization) and, based on their

interpretation of the current status of the design, take de-
cisions that have global effects and that are difficult to
reverse. As a consequence, several time-consuming it-
erations between subsequent stages of the design flow
are often necessary. For instance, due to the increas-
ing impact of second-order physical effect in deep submi-
crometer (DSM) technologies (0.13µ and below), design-
ers are forced to iterate many times between hardware-
description language (HDL) specification and layout, be-
cause logic synthesis uses statistical delay models which
badly estimate the impact of post-layout wire load capac-
itance and the netlist lack of structure prevents manual in-
tervention on the layout. Furthermore, HDLs allow poor
control on physical design and the output of logic syn-
thesis is not robust with respect to small variations in the
HDL specification. The general problem is that the design
flow does not provide formal methods to propagate (and
refine) design constraints from the first stages of the pro-
cess, where the specs are set, down to the last stages where
the final implementation is derived. Similarly, there is lack
of formal methods to uniformally feed the first stages with
those technology and performance parameters that are im-
posed by the adoption of a given process technology and
the choice of a specific library of pre-design components.
The ultimate consequence is that designers struggle in:

• orienting themselves among the various design rep-
resentation,

• understanding the combined behavior of the tools,
and

• tracking the evolution oftheir design.

Naturally, as they must spend time coping with these is-
sues, designers encounter increasing difficulties in lever-
aging their knowledge, experience, intuition, and creative-
ness.

We argue that now more than ever the art of inte-
grated system design needs to be supported by science,
i.e., design methodologies that offer rigorous foundations
to build a design flow that guarantees correctness of the
design by construction or features powerful verification

25

ESSCIRC 2002

and synthesis tools. In particular, the creation of an eco-
nomically feasible electronic design flow requires a struc-
tured methodology thattheoretically limits the space of
exploration, yet still achieves superior results in the fixed
time constraints of the design. This approach has been
very powerful in design for both integrated circuits and
computer programs. For computer programs, the use of
high-level programming languages has replaced for the
most part assembly languages; for integrated circuits, reg-
ular structures such as gate arrays and standard cells have
replaced transistors as a basic building block.

In addition to the obvious pressure towards increas-
ingly shorter time-to-market, there is a new phenomenon
that is taking place in the electronics industry and that has
to be addressed by design methodologies. The complex-
ity of electronic designs and the number of technologies
that must be mastered to bring to market winning products
have forced electronic companies to focus on their core
competence. Product specification, intellectual property
(IP) creation, design assembly and manufacturing are, for
the most part, no longer taking place in the same organi-
zation. Over the last decade, we have been assisting to the
disaggregation of the electronic industryfrom a vertically-
oriented model into a horizontally-oriented one. In this
situation, integration of the supply chain has become a se-
rious problem. In particular, the hand-off points in the de-
sign chain from one company to another are at risk. If they
are not defined clearly and with no ambiguity, then costly
re-designs are the likely result. The most critical hand-off
points in the design chain are between system, subsystem
and IC companies on one hand, and between IC design
and manufacturing. For this reason, we call these points
articulation pointsto stress their importance in the overall
design process.

Finally, the cost of mask ownership and “custom” de-
signs together with the need of maintaining flexibility up
to the last moment to be able to accommodate engineering
and specification changes, has caused a decrease in num-
ber of design starts that is increasingly noticeable. ASIC
solutions are less and less appealing for system companies
and application-specific ICs are not always economically
feasible for semiconductor companies. Hence, semicon-
ductor companies that manufacture anddesign silicon will
increasingly design standardized chips, capable of serv-
ing a range of applications via reconfigurable hardware
and software, thus spreading the multimillion-dollar cost
of a design across a range of applications. The boundaries
between semiconductor companies and system companies
have to be even more clearly defined than in the previous
case. In fact, semiconductor companies need to minimize
risks when designing these standardized chips. Hence
they need to have a fairly complete characterization of the
application spaces they wish to address with their prod-
ucts with the associated constraints in terms of affordable
costs and performance levels. By the same token, system
companies need to have an accurate characterization of the
capabilities of the chips in terms of performance such as

Transistor Model
Capacity Load

1970’s

Gate Level Model
Capacity Load

1980’s

RTL

SDF
Wire Load

1990’s

IP Block Performance
Inter IP Communication Performance Models

RTL SW

Year 2000 +

ab
st

ra
ct

cluster

ab
st

ra
ct

cluster

ab
st

ra
ct

cluster

ab
st

ra
ct

cluster

Figure 1. A brief history of abstraction in design
(Source: F. Schirrmeister).

power consumption, size and timing, as well as“Applica-
tion Program Interfaces” (APIs)that allow the mapping
of their application into the chip at a fairly abstract level.
APIs must then support a number of tools to ease the pos-
sibly automatic generation of the personalization of the
programmable components of the chips.

Platform-Based Designis a methodology that has been
indicated as an effective method to cope with the difficul-
ties we exposed above [7]. To place this methodology in
a historical perspective, it is useful to see it as the result
of a natural progression in the quest for higher level of
abstractions illustrated in Figure 1. Since the term “plat-
form” has been used in several ways by the various seg-
ments of the electronic industry, we believe there is a sub-
stantial need of defining precisely this term and the ac-
companying methodology in an extended framework so
that it can be used to support both traditional ASIC de-
sign flows and design flows that extensively use software
and reconfigurable hardware to implement system func-
tionality. For us, aplatform represents a layer in the
design flow for which the underlying, subsequent design-
flow steps are abstracted. Thus a design from conception
to implementation can be seen in our framework as a set
of platforms (abstraction layers) and of methods to trans-
form the design from one platform to the next. Platform-
based design provides a rigorous foundation to design
re-use,correct-by-constructionassembly of pre-designed
and pre-characterized components (versus full-custom de-
sign methods), design flexibility (through an extended use
of reconfigurable and programmable modules) and effi-
cient compilation from specifications to implementations.
At the same time, it allows us to trade-off various compo-
nents of manufacturing, NRE and design costs while sac-
rificing as little as possible potential design performance.

In this paper, we first summarize (Section 2) the mo-
tivations and principles for platform-based design. Our
goal is to define what these characteristics are so that a
common understanding can be built and a precise refer-
ence can be given to the electronic system and circuit de-

26

Upper Layer of Abstraction

Lower Layer of Abstraction

P
erfo

rm
an

ce
A

n
n

o
tatio

n
 C

o
n

st
ra

in
ts

P
ro

p
ag

at
io

n

Figure 2. Interactions Between Abstraction Layers.

sign community. The rest of the paper is about the use
of this principle in system design and in silicon imple-
mentation. We begin in Section 3, with the description of
Platforms that are of great importance to define the hand-
off of design from system conception to system imple-
mentation, the ones that have received most of the atten-
tion in the past few years. For pure system design, we
selected network design as an important example of ap-
plication (Section 4). For silicon implementation, we be-
lieve that analog components will have an increasing im-
portance in determining the overall design time and ef-
fort. For this reason, we will show in Section 5 how to
apply the basic principles of platforms to the analog do-
main to make the design of System-on-Chip (SoC) easier
and based on a uniform methodology. This part is quite
novel since most of the work on platforms has taken place
at the architecture/micro-architecture boundaries.

2. Platform-Based Design

The basic tenets of platform-based design are:

• The identification of design as ameeting-in-the-
middle process, where successive refinements of
specifications meet with abstractions of potential im-
plementations.

• The identification of precisely defined layers where
the refinement and abstraction processes take place.
Each layer supports a design stage providing an
opaque abstraction of lower layers that allows ac-
curate performance estimations. This information
is incorporated in appropriate parameters that anno-
tate design choices at the present layer of abstrac-
tion. These layers of abstraction are calledplatforms
to stress their role in the design process and their so-
lidity.

In general, a platform is a library of components that
can be assembled to generate a design at that level of ab-
straction. This library not only contains “computational”
blocks that carry out the appropriate computation but also
“communication” components that are used to intercon-

nect the functional components. Each element of the li-
brary has a characterization in terms of performance pa-
rameters together with the functionality it can support. For
every platform level, there is a set of methods used to map
the upper layers of abstraction into the platform and a set
of methods used to estimate performances of lower level
abstractions. As illustrated in Figure 2, themeeting-in-
the-middle processis the combination of two efforts:

• top-down: map an instance of the top platform into
an instance of the lower platform and propagate con-
straints;

• bottom-up: build a platform by defining thelibrary
that characterizes it and a performance abstraction
(e.g., number of literals for tech. independent opti-
mization, area and propagation delay for a cell in a
standard cell library).

A platform instanceis a set of architecture compo-
nents that are selected from the library and whose param-
eters are set. From a historical perspective and the newly
formed concepts stated above, we can state that the gen-
eral definition of a platform is an abstraction layer in the
design flow that facilitates a number of possible refine-
ments into a subsequent abstraction layer in the design
flow. Often the combination of two consecutive layers
and their “filling” can be interpreted as a unique abstrac-
tion layer with an “upper” view, the top abstraction layer,
and a “lower” view, the bottom layer. Every pair of plat-
forms, along with the tools and methods that are used to
map the upper layer of abstraction into the lower level, is
a platform stack. Note that we can allow a platform stack
to include several sub-stacks if we wish to span a large
number of abstractions.

Platforms should be defined to eliminate large loop it-
erations for affordable designs: they should restrict de-
sign space via new forms of regularity and structure that
surrender some design potential for lower cost and first-
pass success. The library of function and communication
components is the design space we can explore at the ap-
propriate level of abstraction. Establishing the number,
location and components of intermediate platforms is the
essence of platform-based design. In fact, designs with
different requirements and specification may use differ-
ent intermediate platforms, hence different layers of regu-
larity and design-space constraints. A critical step of the
platform-based design process is the definition of interme-
diate platforms to supportpredictability, that enables the
abstraction of implementation detail to facilitate higher-
level optimization, andverifiability, i.e. the ability to
formally ensure correctness. On the other hand, when
design-time and product volume permit it, it may be use-
ful to skip intermediate platforms. This is equivalent to
enlarge the design space and, therefore, can potentially
produce a superior design. However, even if a “large-step-
across-platform flow” can be adopted, there is still a bene-
fit, from an evaluation standpoint, in having a lower-bound
on the optimality of the feasible design as the one that can

27

be provided by a more constrained and predictable flow.
Naturally, the larger the step across platforms, the more
difficult is predicting performance, optimizing at system
level, and providing a tight lower bound. In fact, the de-
sign space for this approach may actually be smaller than
the one obtained with smaller steps because it becomes
harder to explore meaningful design alternatives and the
restriction on search impedes complete design space ex-
ploration. Ultimately, predictions/abstractions may be so
inaccurate that design optimizations are misguided and
the lower bounds are incorrect.

It is important to emphasize that the Platform-Based
Design paradigm applies to all levels of design. While
it is rather easy to grasp the notion of a programmable
hardware platform, the concept is completely general and
should be exploited through the entire design flow to solve
the design problem. In the following sections, we will
show that platforms can be applied to low levels of ab-
straction such as analog components, where flexibility
is minimal and performance is the main focus, as well
as to very high levels of abstraction such as networks,
where platforms have to provide connectivity and ser-
vices. Looking at the involved platforms, in the former
case platforms abstract hardware to provide (physical) im-
plementation, while in the latter communication services
abstract software layers (protocol) to provide global con-
nectivity.

3. Platforms at the System
Definition-Implementation Articulation
Point

As we mentioned above, the key to the application of
the design principle is the careful definition of the plat-
form layers. Platforms can be defined at several point of
the design process. Some levels of abstraction are more
important than others in the overall design trade-off space.
In particular, the articulation point between system defini-
tion and implementation is a critical one for design quality
and time. Indeed, the very notion of platform-based de-
sign originated at this point (see [1, 3, 4, 5]). In studying
this articulation point (see [7] for full details), we have dis-
covered that at this level there are indeed two distinct plat-
forms that form the “system platform stack” that need to
be defined together with the methods and tools necessary
to link the two: an “architecture” platform and an “API”
platform. The API platform is used for system design-
ers to use the “services” that a (micro-)architecture offers
them. In the world of Personal Computers, this concept
is well known and is the key to the development of ap-
plication software on different hardware that share some
commonality allowing the definition of a unique API.

3.1. (Micro-) Architecture Platforms

Integrated circuits used for embedded systems will
most likely be developed as an instance of a particular
(micro-) architecture platform. That is, rather than be-

ing assembled from a collection of independently devel-
oped blocks of silicon functionalities, they will be derived
from a specificfamily of micro-architectures, possibly ori-
ented toward a particular class of problems, that can be
extended or reduced by the system developer. The ele-
ments of this family are a sort of “hardware denominator”
that could be shared across multiple applications. Hence,
an architecture platform is a family of micro-architectures
that share some commonality, the library of components
that are used to define the micro-architecture. Every ele-
ment of the family can be obtained quickly by personaliz-
ing an appropriate set of parameters that control the micro-
architecture. Often the family may have additional con-
straints on the components of the library that can or should
be used. For example, a particular micro-architecture plat-
form may be characterized by the same programmable
processor and the same interconnection scheme, while the
peripherals and the memories of a particular implemen-
tation may be selected from the pre-designed library of
components depending on the particular application. De-
pending on the implementation platform that is chosen,
each element of the family may still need to go through the
standard manufacturing process including mask making.
This approach then conjugates the need of saving design
time with the optimization of the element of the family
for the application at hand. Although it does not solve the
mask cost issue directly, it should be noted that the mask
cost problem is primarily due to generating multiple mask
sets for multiple design spins, which is addressed by the
architecture platform methodology.

The less constrained the platform, the more freedom a
designer has in selecting an instance and the more poten-
tial there is for optimization, if time permits. However,
more constraints mean stronger standards and easier addi-
tion of components to the library that defines the architec-
ture platform (as with PC platforms). Note that the basic
concept is similar to the cell-based design layout style,
where regularity and the re-use of library elements allows
faster design time at the expense of some optimality. The
trade-off between design time and design “quality” needs
to be kept in mind. The economics of the design problem
have to dictate the choice of design style. The higher the
granularity of the library, the more leverage we have in
shortening the design time. Given that the elements of the
library are re-used, there is a strong incentive to optimize
them. In fact, we argue that the “macro-cells” should be
designed with great care and attention to area and perfor-
mance. It makes also sense to offer a variation of cells
with the same functionality but with implementations that
differ in performance, area and power dissipation. Ar-
chitecture platforms are, in general, characterized by (but
not limited to) the presence of programmable components.
That means that each of the platform instances that can be
derived from the architecture platform maintains enough
flexibility to support an application space that guarantees
the production volumes required for economically viable
manufacturing.

28

The library that defines the architecture platform may
also contain re-configurable components. Reconfigura-
bility comes in two flavors. Run-time reconfigurability,
where FPGA blocks can be customized by the user with-
out the need of changing mask set, thus saving both design
cost and fabrication cost. Design-time reconfigurability,
where the silicon is still application-specific; in this case,
only design time is reduced.

An architecture platform instanceis derived from an
architecture platform by choosing a set of components
from the architecture platform library and/or by setting
parameters of re-configurable components of the library.
The flexibility, or the capability of supporting different
applications, of a platform instance is guaranteed by pro-
grammable components. Programmability will ultimately
be of various forms. One is software programmabil-
ity to indicate the presence of a microprocessor, DSP or
any other software programmable component. Another is
hardware programmability to indicate the presence of re-
configurable logic blocks such as FPGAs, whereby logic
function can be changed by software tools without re-
quiring a custom set of masks. Some of the new archi-
tecture and/or implementation platforms being offered on
the market mix the two into a single chip. For exam-
ple, Triscend, Altera and Xilinx are offering FPGA fabrics
with embedded hard processors. Software programmabil-
ity yields a more flexible solution, since modifying soft-
ware is, in general, faster and cheaper than modifying
FPGA personalities. On the other hand, logic functions
mapped on FPGAs execute orders of magnitude faster and
with much less power than the corresponding implemen-
tation as a software program. Thus, the trade-off here is
between flexibility and performance.

3.2. API Platform
The concept of architecture platform by itself is not

enough to achieve the level of application software re-
use we require. The architecture platform has to be ab-
stracted at a level where the application software “sees”
a high-level interface to the hardware that we call Appli-
cation Programm Interface (API) or Programmers Model.
A software layer is used to perform this abstraction. This
layer wraps the essential parts of the architecture platform:

• the programmable cores and the memory subsystem
via a Real Time Operating System (RTOS),

• the I/O subsystem via the Device Drivers, and

• the network connection via the network communica-
tion subsystem.

In our framework, the API or Programmers Model is a
unique abstract representation of the architecture platform
via the software layer. With an API so defined, the appli-
cation software can be re-used for every platform instance.
Indeed the Programmers Model (API) is a platform itself
that we can call the API platform. Of course, the higher
the abstraction level at which a platform is defined, the

Platform
Design-Space
Export

Platform
Mapping

Architectural Space

Application Space
Application Instance

Platform Instance

System
Platform

Figure 3. System Platform Stack.

more instances it contains. For example, to share source
code, we need to have the same operating system but not
necessarily the same instruction set, while to share bi-
nary code, we need to add the architectural constraints
that force to use the same ISA, thus greatly restricting the
range of architectural choices.

The RTOS is responsible for the scheduling of the
available computing resources and of the communication
between them and the memory subsystem. Note that in
several embedded system applications, the available com-
puting resources consist of a single microprocessor. In
others, such as wireless handsets, the combination of a
RISC microprocessor or controller and DSP has been used
widely in 2G, now for 2.5G and 3G, and beyond. In set-
top boxes, a RISC for control and a media processor have
also been used. In general, we can imagine a multiple core
architecture platform where the RTOS schedules software
processes across different computing engines.

3.3. System Platform Stack
The basic idea of system platform-stack is captured in

Figure 3. The vertex of the two cones represents the com-
bination of the API or Programmers’ Model and the archi-
tecture platform. A system designer maps its application
into the abstract representation that “includes” a family
of architectures that can be chosen to optimize cost, effi-
ciency, energy consumption and flexibility. The mapping
of the application into the actual architecture in the fam-
ily specified by the Programmers’ Model or API can be
carried out, at least in part, automatically if a set of ap-
propriate software tools (e.g., software synthesis, RTOS
synthesis, device-driver synthesis) is available. It is clear
that the synthesis tools have to be aware of the architecture
features as well as of the API. This set of tools makes use
of the software layer to go from the API platform to the
architecture platform. Note that the system platform effec-
tively decouples the application development process (the
upper triangle) from the architecture implementation pro-
cess (the lower triangle). Note also that, once we use the
abstract definition of “API” as described above, we may
obtain extreme cases such as traditional PC platforms on
one side and full hardware implementation on the other.

29

Of course, the programmer model for a full custom hard-
ware solution is trivial since there is a one-to-one map be-
tween functions to be implemented and physical blocks
that implement them. In this latter case, platform-based
design amount to adding to traditional design methodolo-
gies some higher level of abstractions.

4. Network Platforms

One of the most challenging problems in the design of
distributed systems is the choice of the resources, such
as physical links and protocols, that support the commu-
nication among the system components while satisfying a
given set of constraints on cost and performances. To sim-
plify the problem, designers usually decompose the prob-
lem into a stack of distinct protocol layers following the
OSI layering principle. Each protocol layer together with
the lower layers defines a platform providing services to
its users, i.e., the upper layers and, at the topmost of the
stack, the application-level components. Identifying from
the communication requirements of the application the
number and type of protocol layers requires finding a good
compromise between optimality (minimize the number of
layers) and design manageability (maximize the number
of intermediate steps), that is the problem of platform-
based design as defined in Section 2. Furthermore, explor-
ing the design space to determine the functionality of each
protocol layer and its implementation requires the use of
tools and methodologies that allow to evaluate the perfor-
mances and guarantee the satisfaction of constraints after
each step. For these reasons, we believe that the Platform-
Based Design principles and methodology outlined in the
previous section can be very effective in protocol design.
In this section, first, we formalize the concept of Network
Platform. Second, we outline a methodology for selecting,
composing and refining network platforms [8].

4.1. Definitions

A Network Platform (NP)is a set of resources that
are composed together to form a Network Platform In-
stance (NPI) and provideCommunication Services (CS)
to a group of interacting system components (NPI users).
Hence, the behaviors and the performances of an NPI are
defined in terms of the type and the quality of the CS it
is capable to provide. The structure of an NPI is defined
by a set of nodes and links connecting them. Ports inter-
face nodes with links or with the external environment of
an NPI. We formalize the behaviors of an NPI using the
event as a communication primitive that models either a
send or a receive action of an NPI component. An event is
associated with a message and identified by the type and
the value of the message and by tags specifying attributes
such as ordering or time of the corresponding action. A
behavior of an NPI component, is defined by a totally or-
dered sequences = (e1, e2...en) of eventsei observed
at its input and output ports. The set of behaviors of an

NPI can be obtained by intersecting the behaviors of the
individual components.

A Network Platform Instance is a tupleNPI = (L,N,
P, S), where

• L = {L1, L2, ...LNl} is a set of directed links,

• N = {N1, N2,NNn} is a set of nodes,

• P = {P1, P2, ...PNp} is a set of ports. A portPi is
a triple (Ni, Li,±), whereNi ∈ N is a node,Li ∈
L∪E is either a link or the environmentE and+(−)
identifies an input (output) port.

• S is a set of behaviors, each identified by a totally
ordered sequence of events observed at the portsPi ∈
P .

The services provided by an NPI are called Commu-
nication Services (CS) and allow users to exchange mes-
sages between NPI input and output ports. Properties of
a CS (commonly called quality of service or QoS) are,
for example, the correctness and the delay of the message
transfer. Formally, a Communication Service (CS) is a

tuple (P
in

, P
out

, M,E, h, g, <t, t), whereP
in ⊆ P in

is a non-empty set of NPI input ports,P
out ⊆ P out is

a non-empty set of NPI output ports,M is a non-empty
set of messages,E is a non-empty set of events,h is a

mappingh : E → (P
in ∪ P

out
) that associates each

event with a port,g is a mappingg : E → M associ-
ating each event with a message,<t is a total order on
the events inE, t is a mappingt : E → T associating
each event with its timestamp. A CS is defined in terms of
the number of ports, that determine, for example, if it is a
unicast, multicast or broadcast CS, the setM of messages
representing the exchanged information, the setE includ-
ing the events that are associated with the messages inM
and model the instances of the send and receive methods
invocations. The CS concept is useful to express the cor-
relation among events, and explicit, for example, if two
events belong to the same user or are associated with the
same message. To facilitate the design task it is key to
provide a user with an abstraction that hides the details
of the internal components of the NPI and describes only
the behavior which is observable at the ports interfacing
the NPI with the environment. This abstraction is an Ap-
plication Programming Interface (API) and consists of a
set of methods that can be invoked by external users to
access the services provided by the NPI. An API layer is
defined by a set of CS and the methods available to access
them. Using CS allows to express much more compactly
the behavior of an NPI.

4.2. Quality of Service
NPIs can be classified according to the number, the

type, the quality and the cost of the CS they offer. Number,
type and quality of the supported CS define the capabili-
ties of the NPI. To describe effectively the properties of a
CS, it is convenient to export a set of QoS parameters such

30

as error rate, latency, throughput, jitter. To quantify such
parameters, we use event annotations and compare value
and timestamps of the events in CS. For example one can
compare the values of pairs of input and output events as-
sociated with the same message to measure the error rate,
or compare the timestamp of events observed at the same
port to compute the jitter. We label events with indexesj

andi, so thatej,i ∈ e(P
in∪P

out
),M indicates the event car-

rying thei-th message and observed at thej-th port, and
define the main QoS parameters as follows:

• Delay: The communication delay of a message is
given by the difference between the timestamps of
the input and output events carrying that message.
Assuming that thei-th message is transferred from
input portj1 to output portj2, the delay∆i of thei-th
message, the average delay∆Av and the peak delay
∆Peak are defined respectively as∆i = t(ej2,i) −
t(ej1,i),∆Av =

∑|M |
i=1

t(ej2,i)−t(ej1,i)
|M | ,∆Peak =

maxi{t(ej2,i)− t(ej1,i)}.

• Throughput: The throughput is given by the number
of output events in an interval(t0, t1), i.e. the cardi-

nality of the setΘ = {ei ∈ E|h(ei) ∈ P
out

, t(ei) ∈
(t0, t1)}.

• Error rate: The message error rate (MER) is given
by the ratio between the number of lost or cor-
rupted output events and the total number of in-
put events. Given1 LostM = {ei ∈ E|h(ei) ∈
P

in
,¬∃ej ∈ E s.t. h(ej) ∈ P

out
g(ej) = g(ei)},

CorrM = {ei ∈ E|h(ei) ∈ P
in

,∃ej ∈ E s.t.

h(ej) ∈ P
out

, g(ej) = g(ei), v(ej) 6= v(ei)} and

InM = {ei ∈ E|h(ei) ∈ P
in}, the message error

rateMER = |LostM |+|CorrM |
|InM |

2.

Using the above definitions, the following types of CS
can be defined:

• Unicast vs. Broadcast CS:a CS is unicast if ev-
ery message is transferred to at most one output port,
broadcast if messages are transferred to all output
ports.

• Lossless vs. Lossy CS:a CS is lossless ifMER =
0, otherwise is called lossy.

• In-order vs. Out-of-order CS: in-order communi-
cation services ensure that the order of messages at
the input ports is maintained at the output ports, i.e.
∀mi,mj ∈ M(mi 6= mj)ein,i < ein,j ⇒ eout,i <
eout,j

• Synchronous vs. Asynchronous CS:in syn-
chronous CS the communication delay is negli-
gible and the input and output events carrying

1v(ei) gives the value of the message carried by eventei.
2MER can be converted to Packet and Bit Error Rate, if the encoding

of the messages is known.

the same message have the same timestamp, i.e.
∀mi,mj ∈ M(mi 6= mj), t(ein

i) = t(eout
i)

4.3. Examples of Network Platforms

A wire and two end nodes define an elementary type of
NPI that provides in-order and lossy CS due to the noise
in the wire. A bounded FIFO channel is an NPI providing
asynchronous and in-order CS. It offers lossy (when over-
flows) or lossless CS depending on the arrival pattern of
the input events. If the protocol at the end nodes includes a
blocking write mechanism, it can provide lossless CS for a
larger set of input patterns. More complex NPIs can be de-
signed selecting protocols and physical media or reusing
existing NPIs as building blocks. If the type and the qual-
ity of the services that a given NPI provides do not satisfy
the communication requirements, additional protocol lay-
ers can be introduced to derive another NPI offering more
sophisticated services. For example, if a physical link de-
signed to transmit messages between one pair of users is
to be shared by multiple pairs of communicating users,
one must introduce a MAC protocol that schedules trans-
missions and avoids collisions. The components of the
extended NPI are the physical link initially given and the
MAC protocol. Figure 4 shows three examples of NPIs:
a reliable one-hop NPI that supports lossless communica-
tion among components (in the figure labeled as A and B)
directly connected by a single hop link, a multi-hop NPI
for communication between end nodes (C and D in the
figure) that are connected by a path composed of multiple
nodes and links, and a reliable end-to-end NPI for lossless
communication between end users (E and F).

4.4. Design of Network Platforms

The starting point of the design of an NPI is the set of
behaviors of the interacting system components that de-
fine an abstract NPI and a set of constraints on the quality
of the CS that the fully implemented NPI must provide.
The procedure we propose is based on the concept ofsuc-
cessive refinement: successive because it usually consists
of a sequence of steps and refinement because at each step
the communication is specified at a greater level of detail
and at a finer granularity in time, space or data types. The
refinement of an NPI consists of defining a more detailed
NPI′ by replacing one or more components in the original
NPI with a set of components or NPIs. A correct refine-
ment procedure generates an NPI′ that provides CS equiv-
alent to those offered by the original NPI with respect to
the constraints defined at the upper level. For example, an
NPI consisting of a direct link between end nodes can be
refined into an NPI′ where intermediate nodes are used as
repeaters (multi-hop network). The refinement is correct
if the end-to-end delay of the multi-hop network is within
the delay constraints satisfied by the direct link. A typi-
cal communication refinement step requires to define both
the structure of the refined NPI′, i.e. its components and
topology, and the behavior of these components, i.e. the
protocols deployed at each node. One or more NP com-

31

Figure 4. Examples of NPIs

ponents (or predefined NPIs) are selected from a library
and composed to create CS of higher quality. Two types
of compositions are possible. One type consists of choos-
ing a NPI and extending it with a protocol layer to create
CS at a higher level of abstraction (vertical composition).
The other type is based on the concatenation of NPIs (and
therefore of their CS) using an intermediate object called
adapter (or gateway) that maps sequences of events be-
tween the ports being connected (horizontal composition).

5. Analog Platforms

Analog components are required in every system that
interfaces with the physical world to acquire signals, and,
hence, they are needed in any System-On-a-Chip (SOC)
implementation. In addition, even when analog solutions
could be replaced by digital ones from a pure functional
point of view (for example, radio links), performance re-
quirements may be so tight that the digital approach is out
of the question.

Analog design has been traditionally the most difficult
discipline of IC design. This difficulty stems from the
effects that physical implementations have on the func-
tionality of analog circuits. In the digital case, function-
ality depends on discrete sequences of discrete (binary)
signals. Not so in the analog case, where continuous se-
quences (waveforms) of continuous values encode the in-
formation we need to manipulate and use. For this rea-
son, any second order physical effect may have a signifi-
cant impact on the function and performance of an analog
circuit. Hence, the design of analog components has tra-
ditionally pivoted around low-level “clever tricks” (art or
black magic?) that involve transistor layout and parameter
selection, thus making virtually impossible to use higher
levels of abstraction. At this juncture of the evolution of
IC design where complexity and time-to-market reign, we
believe there is a need to develop more abstract design
techniques that can encapsulate some of the art of analog
design into a methodology that could shorten design time
without compromising the quality of the solutions. Ac-
tually, given that traditional analog design is carried out

at the transistor level, design space exploration is quite
limited because of the time needed to evaluate alternative
solutions with circuit simulators.

We believe that platform-based design can provide the
necessary insight to develop a methodology for analog
components that takes into consideration system level
specifications and can choose among a set of possible so-
lutions including digital approaches wherever it is feasible
to do so. Today, system-level analog design is a design
process dominated by heuristics. Given a set of specifi-
cations/requirements that describes the system to be real-
ized, the selection of a feasible (let alone optimal) imple-
mentation architecture comes mainly out of experience.
Usually, what is achieved is just a feasible point at the
system level, while optimality is sought locally at the cir-
cuit level. The reason for this is the difficulty in the analog
world of knowing whether something is realizable without
actually attempting to design the circuit. The number of
effects to consider and their complex interrelations make
this problem approachable only through the experience of
past designs.

5.1. Definitions

We define anAnalog Platform(AP) as a library of ana-
log components and interconnect. Each components is a
parameterized block with parameters varying over a con-
tinuous space. An AP is characterized by an input (param-
eter) space and an output (performance) space. The input
spaceI defines the region of the architectural space that
is captured by the components of the Analog Platform.
For example, in a Low Noise Amplifier (LNA) we may
defineI as{Win, Lin, Ibias}, where the first two quanti-
ties are related to the input transistor andIbias is the bias
current. Each quantity spans a given interval of values.
The LNA component is itself a platform and represents
only the implementations defined byI, thus constraining
the architecture space. A platform instance defines spe-
cific values for{W ∗

in, L∗
in, I∗bias}, i.e. the actual circuit

to be considered. The output spaceO defines the perfor-
mance parameters that are needed in order to evaluate (the
mapping of a behavior on) the platform (performance an-
notation). Continuing with the LNA example,O may be
defined as{Gain, Power, Noise}. For each platform be-
ing considered, anevaluate() method mapsI into O.
Mathematically, we can consider such a method to be a
functionφ(·) : I → O. The functionφ(·) can be defined
in different ways, depending on the level of abstraction of
the current platform, spanning from circuit simulations to
circuit equations.

A key concept of Analog Platforms is that onlyO has
to be exported at the current level of abstraction (platform
opaqueness), because the functionφ(·) andI are not nec-
essary to evaluate the performances of mapped behaviors.
Because of this, Analog Platforms are also suitable can-
didates to protect sensitive data when exporting IPs. Plat-
form performances can be represented through mathemat-
ical relations,P(Gain, Power, Noise) = 1, which are sat-

32

isfied only by thosen-tuples of performance figures that
are actually obtainable with the current platform. In this
way it is possible to capture all the interrelations among
the different performance figures and annotate behavioral
models consequently.

In order to allow hierarchical exploitation of platform
instances, three operations have to be defined and imple-
mented in terms ofPs:

• abstraction - given a platform relationP(Gain,
Power, Noise, IP3, SR) = 1 we may want to derive
an abstracted view of the platform (virtual platform)
that only relates a subset of performance figures, e.g.
P ′(Gain, Power, Noise) = 1 ⇔ ∃IP3∗, SR∗ s.t.
P(Gain,Power, Noise, IP3∗, SR∗) = 1. This oper-
ation is needed every time we use models at higher
levels of abstraction.

• composition - given two platformsA and B and
some interface parametersλ (e.g. the output load
for A/input load for B), we may want to derive
PAB(x, y) = 1 ⇔ ∃λ s.t. PA(x, λ) = 1 and
PB(y, λ) = 1. PAB represents the set of compati-
ble performances of the compositionA → B.

• merge - given n platforms for the same functional-
ity, a super-set platform can be defined byor-ing the
respectiveP ’s after moving to a common level of ab-
straction. Pmerge = 1 ⇔ ∃i s.t. Pi = 1. Intu-
itively, this means considering the union of the per-
formance space of individual platforms. For exam-
ple, if each platform models a different topology for
a given circuit functionality, a platform instance will
define both the topology and the circuit to be refined,
thus intrinsically performing architecture selection.

The generation of platform performancesPs is in gen-
eral accomplished through samplingφ(·) over the input
spaceI. This is because in the general caseφ(·) is a
complex non-linear function, and no explicit representa-
tion for it might be available (in order to provide an accu-
rate characterizations,φ(·) may be implicitly defined by
circuit simulation). The goal is to get a smooth contin-
uous representation of the performance relationP. This
constitutes the bottom-up phase for building a platforms
library and is the crucial step for achieving accurate per-
formance annotations. The characterization of a platform
over its input space is exponentially complex with the
dimensionality ofI. Also, the characterization process
generates large amounts of data that need to be effec-
tively represented. The first problem requires some hints
from the analog designer to limit the dimensionality of
I, i.e. which “knobs” are most meaningful for defining
the platform and which constraints on the value of each
parameter can be exploited to prune the characterization
space. Design of experiments techniques may also be used
to achieve optimal accuracy/complexity tradeoffs. Even
so, large numbers of multi-dimensional samples may be

Figure 5. Projections of a 7-dimensional P for an LNA.

generated, on the order of thousands to hundreds thou-
sands. As Figure 5 illustrates, an effective way of repre-
senting the information provided by these simulations is
to use machine learning techniques, in particular Support
Vector Machines (SVMs). SVMs make possible to store
only a small portion of the original results (typically 10%
or lower) while providing multidimensional interpolation
that enables the extrapolation of performance figures out
of the available data based on some continuity assump-
tions.

5.2. Analog Platform Stack

An Analog Platform Stack contains several layers of
abstraction with the appropriate representation at each
level. In the analog world, finding a model for a plat-
form is a complex matter. Behavioral models allow
fast simulations thus enabling more extensive explo-
rations/optimizations. Furthermore, they are tailored for a
specific platform to include at the behavioral level specific
idiosyncrasies of the platform. By constraining models
to reflect platform performances, i.e. constraining model
parameters to satisfy the platformP, a mapping of func-
tionality onto architecture is achieved.

Analog Platform Stacks provide hierarchies of behav-
ioral models at different levels of abstraction to reflect the
refinement process typical of top-down flows. In order
to promote design space exploration, all the models are
derived from root models characterized by functionality
families (see Figure 6). For example, we can have LNA,
mixer and PLL families, which in turn generate trees of
models at different levels of abstraction. The nodes of
these trees represent higher-level platforms and the leaves
implementation platforms. By exploiting the abstraction
and merge operations defined above, all platforms in a
given family can be included in a tree originating from
the same root model (the most abstract platform). The
refinement process proceeds selecting branches in the tree
and, therefore, more detailed platforms, transforming con-

33

Figure 6. Sample model hierarchy for LNAs.

straints from a more abstract platform to a more detailed
platform (exactly as described in the digital case). The
mapping process ends with the selection of a platform in-
stance of a particular platform.

Platforms require to explicitly model communication.
Communication is a main actor in Analog Platforms, with
even more emphasis than in the digital case. In fact, inter-
actions between communication and computation in ana-
log blocks are much more involved than for digital blocks.
We can consider the communication between two blocks
as well as the respective behaviors to be the fixed-point so-
lution of the composition of the blocks. Because of this,
orthogonalization becomes harder for detailed platforms
and communication has to be modeled together with be-
havior. Therefore, the semantics of the component fam-
ilies requires to specify the allowed block interconnec-
tions. In this sense, the communication at the output of
an LNA is modeled with respect to the mixer that is sup-
posed to follow the LNA. At the most detailed level, this
means that a given LNA can work with some mixers and
not with others. Of course, different domains of appli-
cation may require different composability characteristics
among the component families.

Analog Platforms can be hierarchically composed to
generate new Analog platforms at higher level of abstrac-
tion. PLLs provide examples of hierarchical composition
since their complexity allows them to be considered as
systemsper se. The result of the composition is a new
Analog Platform that needs to be endowed with a set of
behavioral models. The process of deriving new platforms
is the same as deriving platform for circuits (fractal na-
ture of design), whereφ(·) now refers to the composition
of APs in place of simple circuits. Therefore hierarchi-
cal composition provides a more general way to generate
more abstract platforms other than the abstraction/merge
operations previously defined.

5.3. Design of Analog Platforms

Up to now, analog system level design has been car-
ried out only through experience and trial and error. APs
enable systematic, high-level design exploration. The re-
finement and mapping processes available with APs allow
top-down flows to evaluate system level trade-offs with re-
spect to the performance space of the analog platform (P).
The process that maps constraints from one platform to the
next proceeds until a platform implementation instance is
selected, i.e. the specifications for all blocks have been de-
fined. From here on, it is up to the IP provider to generate
an implementation with the required performances or up
to designers to size the schematic and generate the layout.
The novelty of the approach consists in the fact that the
use ofPs guarantees by construction that the set of spec-
ifications generated is feasible, thus drastically reducing
the number of iterations required to get feasible specifica-
tions and achieving optimal points over larger parameter
spaces.

If we focus on a wireless transceiver as an example, at
the most abstract level (largest design space) its function-
ality is transferring information between two points us-
ing a shared, nonideal channel. The channel models both
the physical channel and the effects deriving from hard-
ware limitations (analog and digital) in terms of noise,
linearity, gain, numerical accuracy and so on. An opti-
mal transceiver implementation maximizes some function
of the Bit Error Rate over a set of constraints and spec-
ification scenarios. A global optimum in the transceiver
implementation implies optimum decomposition between
analog and digital functionalities, optimum transceiver
architecture, optimum block topology and finally opti-
mum circuit design. It is then evident that optimality
requires much more than optimal circuit synthesis (that
deals only with local optima). Furthermore, optimizations
at the circuit level may be outperformed by different cir-
cuits/topologies implementing the same block functional-
ity. To really optimize a design, exploration is a must.
By exploiting Analog Platforms, system trade-offs can be
evaluated over much larger design spaces and optimal par-
titions of constraints can be derived for each individual
platform. The bottom-up nature of the platform charac-
terization guarantees that the required performances are
achievable, and APs can actually provide means of auto-
matically generating the requested platform instance.

Analog Platforms also separate the design of individ-
ual blocks from system design, thus allowing more ef-
fective explorations and optimizations at higher levels of
abstraction where the design space is much larger. The
introduction of the platform concept enables the integra-
tion of heterogeneous IPs, and does not put any constrain
on analog designers for developing new circuit solutions
for sensitive blocks. In this sense, APs may be exploited
as a fast evaluation method for new solutions, generating
coarse performance regions at first to evaluate the basic
performances of a new solution at the system level, and,
then, refining both the architecture and the functionality

34

Mapping

Performance Eval./
System Optimization

PLL

Behavioral Models

Int. IP’sExt. IP’s

Analog Platforms

New IP’s

Behavior
Refinement

Platform
Refinement

P

Figure 7. Analog design flow exploiting Analog Plat-
forms.

to take full advantage of the new solution (if convenient).
This process can be pictorially represented by the classic
Y chart that is essentially the same as in the digital case
(Figure 7).

Hierarchical platforms allow to progressively refine the
system while maintaining accurate performance estima-
tions in the process. This is a major obstacle in top-
down methodologies that do not leverage the “meeting-
in-the-middle” approach of platform based design. We
can actually consider the platform performance relation
P as a more sophisticated version of the flexibility func-
tion that was at the heart of the refinement process of the
methodology proposed in [2]. Accurate platform evalu-
ation methods are the key to the use of behavioral mod-
els for evaluating trade-offs at the analog/digital boundary,
where fast and reliable methods are needed to determine
which functionalities should be mapped on analog plat-
forms and which on digital platforms. Taken one step fur-
ther, even protocol and network topologies could be evalu-
ated in a unified platform environment, leading to ahard-
ware/software/analogco-design paradigm for embedded
systems.

In the digital implementation platform domain, FPGAs
have played an important role in providing flexibility with
fast design time. In the analog domain, while several at-
tempts have been made in the past, this level of recon-
figurability has not been reached due to the difficulties
in obtaining satisfactory analog designs by programming
interconnects and functionalities of homogeneous build-
ing blocks. Field Programmable Analog Arrays [6] are
a new attempt at this reconfigurable Analog Platform.
FPAAs provide a software configurable switched capac-
itor array that can be programmed on the fly by micro-
controllers in the platform. In this way, they provide an
analog platform that is analogous to FPGAs in the digital
world. From this abstraction level, implementing a func-
tionality with digital signal processing (FPGA) or ana-
log processing (FPAA) becomes subject to system level
optimization while exposing the same abstract interface.

Moreover, while the array already provides a basic plat-
form level, a platform stack can be built by exploiting the
software tools that allow mapping complex functionali-
ties (filters, amplifiers, triggers and so on) directly on the
array. The top level platform, then, provides an API to
map and configure analog functionalities, exposing ana-
log hardware at the software level. By exploiting this ab-
straction, not only design exploration is greatly simplified,
but new synergies between higher layers and analog com-
ponents can be leveraged to further increase the flexibil-
ity/reconfigurability and optimize the system.

6. Conclusions

We have defined platform-based design as an all-
encompassing intellectual framework in which scientific
research, design tool development, and design practices
can be embedded and justified. A platform is an ab-
straction layer that hides the details of the several pos-
sible implementation refinements of the underlying layer.
Platform-based design allows us to trade-off various com-
ponents of manufacturing, NRE and design costs while
sacrificing as little as possible potential design perfor-
mance. We presented examples of these concepts at differ-
ent key articulation points of the design process, including
network platforms, implementation platforms, and analog
platforms.

The platform-based methodology is supported by the
Metropolis framework, a federation of integrated analy-
sis, verification and synthesis tools supported by a rigor-
ous mathematical theory of metamodels and agents. This
framework will be available soon through the standard
channels for software distribution handled by the Depart-
ment of EECS, University of California at Berkeley.

7. Acknowledgments

We gratefully acknowledge the support of the Gigas-
cale Silicon Research Center (GSRC) that funded most of
the work described here. Alberto Sangiovanni-Vincentelli
would like to thank Alberto Ferrari, Luciano Lavagno,
Richard Newton, Jan Rabaey, Henry Chang, Grant Mar-
tin, Frank Schirrmeister and Kurt Keutzer for their many
hours of discussion about platform-based design. Larry
Pileggi has contributed substantially in defining Silicon
Implementation Platforms. We also thank the member of
the DOP center of the University of California at Berke-
ley for their support and for the atmosphere they cre-
ated for our work. The Berkeley Wireless Research Cen-
ter and our industrial partners, (in particular: BMW, Ca-
dence, Intel, Magneti Marelli, and ST Microelectronics)
have contributed with designs and continuous feedback
to make this approach more solid. Felice Balarin, Jerry
Burch, Roberto Passerone, Yoshi Watanabe and the Ca-
dence Berkeley Labs team have been invaluable in con-
tributing to the theory of metamodels and the Metropolis
framework.

35

[1] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A. Ju-
recska, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara.
Hardware-Software Co-Design of Embedded Systems: The
POLIS Approach, . Kluwer Academic Publishers,
Boston/Dordrecht/London, 1997.

[2] H. Chang, E. Charbon, U. Choudhury, A. Demir, E. Felt,
E. Liu, E. Malavasi, A. Sangiovanni-Vincentelli, and I. Vas-
siliou. A Top-Down, Constraint-Driven Design Methodol-
ogy for Analog Integrated Circuits. Kluwer Academic Pub-
lishers, Boston/Dordrecht/London, 1996.

[3] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly,
and L. Todd. Surviving the SOC Revolution: A Guide to
Platform Based Design,. Kluwer Academic Publishers,
Boston/Dordrecht/London, 1999.

[4] A. Ferrari and A. L. Sangiovanni-Vincentelli. System De-
sign: Traditional Concepts and New Paradigms. InProc.
Intl. Conf. on Computer Design, pages 1–12, Oct. 1999.

[5] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System level design: Orthog-
onalization of concerns and platform-based design.IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 19(12), December 2000.

[6] I. Macbeth. Programmable Analog Systems: the Missing
Link. In EDA Vision (www.edavision.com), July 2001.

[7] A. L. Sangiovanni-Vincentelli. Defining Platform-
Based Design. In EEDesign. Available at
http://www.eedesign.com/story/OEG20020204S0062),
Feb. 2002.

[8] A. L. Sangiovanni-Vincentelli and M. Sgroi. Ser-
vice based Model and Methodology for Network
Platforms. Technical Report available at www-
cad.eecs.berkeley.edu/s̃groi/techreports, June 2002.

36

