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Abstract—An expanding wealth of ubiquitous, heteroge-
neous, and interconnected embedded devices is behind most
of the exponential growth of the “Big Data” phenomenon.
Meanwhile, the same embedded devices continue to improve
in terms of computational capabilities, thus closing the gap
with more traditional computers. Motivated by these trends, we
developed a heterogeneous computing system for MapReduce
applications that couples cloud computing with distributed
embedded computing. Specifically, our system combines a
central cluster of Linux servers with a broadband network of
embedded set-top box (STB) devices. The MapReduce platform
is based on the Hadoop software framework, which we modified
and optimized for execution on the STBs. Experimental results
confirm that this type of heterogeneous computing system can
offer a scalable and energy-efficient platform for the processing
of large-scale data-intensive applications.
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I. INTRODUCTION

The growth in the amount of data created, distributed
and consumed continues to expand at exponential rates:
according to a recent research report from the International
Data Corporation, the amount of digital information created
and replicated has exceeded the zettabyte barrier in 2010
and this trend is expected to continue to grow “as more
and more embedded systems pump their bits into the digital
cosmos” [8]. In recent years the MapReduce framework has
emerged as one of the most widely used parallel computing
platforms for processing data on very large scales [17].
While MapReduce was originally developed at Google [9],
open-source implementations such as Hadoop [2] are now
gaining widespread acceptance.

The ability to manage and process data-intensive applica-
tions using MapReduce systems such as Hadoop has spurred
research in server technologies and new forms of Cloud
services such as those available from Yahoo, Google, and
Amazon.

Meanwhile, the Information Technology industry is ex-
periencing two major trends. On one hand, computation
is moving away from traditional desktop and department-
level computer centers towards an infrastructural core that
consists of many large and distributed data centers with
high-performance computer servers and data storage devices,

virtualized and available as Cloud services. These large-
scale centers provide all sorts of computational services
to a multiplicity of peripheral clients, through various in-
terconnection networks. On the other hand, the increasing
majority of these clients consist of a growing variety of em-
bedded devices, such as smart phones, tablet computers and
television set-top boxes (STB), whose capabilities continue
to improve while also providing data locality associated
to data-intensive application processing of interest [21],
[22]. Indeed, the massive scale of today’s data creation
explosion is closely aligned to the distributed computational
resources of the expanding universe of distributed embedded
systems and devices. Multiple Service Operators (MSOs),
such as cable providers, are an example of companies that
drive both the rapid growth and evolution of large-scale
computational systems, consumer and business data, as well
as the deployment of an increasing number of increasingly-
powerful embedded processors.

Our work is motivated precisely by the idea that the
ubiquitous adoption of embedded devices by consumers
and the combination of the technology trends in embedded
systems, data centers, and broadband networks open the way
to a new class of heterogeneous Cloud computing for pro-
cessing data-intensive applications. In particular, we propose
a broadband embedded computing system for MapReduce
utilizing Hadoop as an example of such systems. Its potential
application domains include: ubiquitous social networking
computing, large-scale data mining and analytics, and even
some types of high-performance computing for scientific
data analysis. We present a heterogeneous distributed system
architecture which combines a traditional cluster of Linux
blade servers with a cluster of embedded processors inter-
connected through a broadband network to offer massive
MapReduce data-intensive processing potential (and, poten-
tially, energy and cost efficiency).

Contributions. We have implemented a prototype small-
scale version of our proposed system where a Linux Cluster
features nine high-end blade servers and an Embedded
Cluster consists of a network of 64 STBs. The two clusters
are interconnected through the broadband network of a
complete head-end cable system, as described in Section II.
While the cable system remains fully operational in terms
of its original function (e.g. by distributing streaming-video
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Figure 1. Architecture of the broadband embedded computing system for MapReduce utilizing Hadoop.

content to the STBs which render it to their displays),
it is possible to simultaneously and effectively execute
other MapReduce applications by leveraging the additional
computation resources that are available in the STB multi-
core processors.

Specifically, we ported the Hadoop MapReduce frame-
work to our broadband embedded computing system. As dis-
cussed in Section III, this porting posed important challenges
in terms of software portability and resource management.
We addressed these challenges in two ways. First, we devel-
oped porting techniques for embedded devices that leverages
back-porting of enterprise software in order to implement the
Hadoop system for embedded environments. Second, to ex-
ecute MapReduce applications on such resource-constrained
embedded devices as STBs, we optimized both memory and
storage requirements by eliminating unnecessary software
components of the Hadoop platform. The result is an em-
bedded version of the Hadoop framework.

In Section IV we present a set of experiments which
confirm that our embedded system implementation of the
Hadoop runtime environment and related software libraries
runs successfully a variety of MapReduce benchmark ap-
plications. Also, in order to gain further insight into the
relative performance scaling of the Embedded Cluster versus
the Linux Cluster while running MapReduce applications,
we varied the number of processing elements (which cor-
respond to the number of Hadoop nodes) and the size of
the input data. Overall, the experimental results expose the
Embedded Cluster performance sensitivity to certain classes
of MapReduce applications and indicate avenues of future
research to improve our system.

II. THE SYSTEM ARCHITECTURE

Fig. 1 provides an overview of the architecture of the
system that we developed and built: this is a heterogeneous
system that leverages a broadband network of embedded
devices to execute MapReduce applications by utilizing
Hadoop. It is composed of four main subsystems.

Linux Blade Cluster. The Linux Cluster consists of a
traditional network of nine blade servers and a Network
Attached Storage (NAS). Each blade has two quad-core
2GHz Xeon processors running Debian Linux with 32GB
of memory and a 1Gb/s Ethernet interface. One of the nine
blades is the Hadoop master host acting both as NameNode
and JobTracker for the MapReduce runtime management [2].
Each of the other eight blades is a Hadoop slave node, acting
both as DataNode and TaskTracker [2] while leveraging the
combined computational power of the eight processing cores
integrated on the blade. The blades use the Network File
System (NFS) to mount the 2TB Sun storage array which
provides a remote common file-system partition to store
applications for each of the executing Hadoop MapReduce
applications. For storing the Hadoop Distributed File System
(HDFS) data, the blades use their own local hard-disk drive
(HDD).

Embedded STB Cluster. The Embedded Cluster consists
of 64 Samsung SMT-C5320 set-top boxes (STB) that are
connected with a radiofrequency (RF) network for data
delivery using MPEG and DOCSIS transport mechanisms.
The Samsung SMT-C5320 is an advanced (2010-generation)
STB featuring an SoC with a Broadcom MIPS 4000 class
processor, a floating-point unit, dedicated video and 2D/3D-
graphics processors with OpenGL support, 256MB of sys-
tem memory, 64MB internal Flash memory, 32GB of ex-
ternal Flash memory accessible through USB, and many
network transport interfaces (DOCSIS 2.0, MPEG-2/4 and
Ethernet). Indeed, an important architectural feature of mod-
ern STBs is the heterogeneous multi-core architecture design
which allows the 400MHz MIPS processor, graphics/video
processors, and network processors to operate in parallel
over independent buses. Hence, user-interface applications
(such as the electronic programming guides) can execute
in parallel with any real-time video processing. From the
viewpoint of running Hadoop applications as a slave node,
however, each STB can leverage only the MIPS processor
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while acting both as DataNode and TaskTracker. 1 This is an
important difference between the Embedded Cluster and the
Linux Cluster. Finally, in each STB, a 32GB USB memory
stick is used for HDFS data storage, while NFS is used for
Java class storage.

Network. The system network is a managed dedicated
broadband network which is divided into three IP subnets
to isolate the traffic between the DOCSIS-based broadband
Embedded Cluster network, the Linux Cluster network, and
the digital cable head-end. Its implementation is based on
two Cisco 3560 1Gb/s Ethernet switches and one Cisco
7246 DOCSIS broadband router. The upper switch in Fig. 1
interconnects the eight blades along with the NAS and
master host. The lower switch aggregates all the components
on the head-end subnetwork. The DOCSIS subnetwork is
utilized by the Embedded Cluster whose traffic exists on
both the Linux Cluster and the digital head-end network. The
broadband router has 1Gb/s interfaces for interconnection
to the Linux Cluster and head-end networks as well as a
broadband interface for converting between the DOCSIS
network and the Ethernet backbone. Each broadband router
can support over 16,000 STBs, thus providing large-scale
fan-out from the Linux Cluster to the Embedded Cluster.

Embedded Middleware Stack. The embedded middle-
ware stack is based on Tru2way, a standard platform de-
ployed by major cable operators in U.S. as part of the
Open Cable Application Platform (OCAP) developed in
conjunction with Cablelabs [4]. Various services are deliv-
ered through the Tru2way platform including: chat, e-mails,
electronic games, video on-demand (VOD), home shopping,
interactive program guides, stock tickers, and, most impor-
tantly, web browsing [5]. To enable cable operators and
other third-party developers to provide portable services,
Tru2way includes middleware based on Java technology that
is integrated into digital video recorders, STBs, TVs, and
other media-related devices.

Tru2way is based on Java ME (Java Micro Edition) with
CDC (Connected Device Configuration) designed for mobile
and other embedded devices. The Tru2way standard follows
FP (Foundation Profile) and PBP (Personal Basis Profile) in-
cluding: io, lang, net, security, text, and util packages as well
as awt, beans, and rmi packages, respectively. Additional
packages include JavaTV for Xlet applications, JMF (Java
Media Framework), which adds audio, video, and other time-
based media functionalities, and MHP (Multimedia Home
Platform), which comprises classes for interactive digital
television applications. On top of these profiles, the OCAP
API provides applications with Tru2way-specific classes
related to hardware, media, and user-interface packages
unique to cable-based broadband content-delivery systems.

1In the Embedded Cluster, there is also a Linux blade which is the
Hadoop master node, acting both as NameNode and JobTracker.
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Figure 2. Two software stacks to support Hadoop: STB vs. Linux Blade.

Remark. While this rich set of Java profiles offer ad-
ditional features to the embedded Java applications, there
exists a significant gap between the Java stack provided by
Tru2way and the Java Platform Standard Edition (Java SE),
which is common to enterprise-class application develop-
ment. Hence, since the standard Hadoop execution depends
on the Java SE environment, we had to develop a new
implementation of Hadoop specialized for the embedded
software environment that characterizes devices such as
STBs. We describe our effort in the next section.

III. PORTING HADOOP TO THE BROADBAND EMBEDDED
SYSTEM

There are several issues that need to be addressed in
order to successfully run Hadoop on a distributed embedded
systems like our broadband network of STB devices.

First, Hadoop and Hadoop third-party libraries require
many bootstrap classes not supported by the Tru2way
JVM. Also, for many classes the Tru2way JVM sup-
ports only a subset of methods: e.g., both Tru2way and
Java SE have the java.lang.System class, but the
java.lang.System.getenv() method exists only in Java
SE.

Second, the Tru2way JVM only supports older versions
of Java class file formats while Hadoop is developed using
many Java 1.6 language features including: generics, enums,
for-each loops, annotations, and variable arguments.

Third, the task of porting Java applications to another
JVM with different profiles is quite challenging and, differ-
ently from porting native codes to JVM [7], [16], it has not
been actively studied in the literature. If not an impossible
task, to modify Hadoop and the Hadoop third-party libraries
at the source code level is not really practical because there
are more than fifty of such libraries and, in some cases, their
source code is not available.

Finally, despite all the efforts to improve the JVM porta-
bility [23], [24], to port the Java SE JVM to the STB
environment is difficult because these embedded devices
do not support key features such as frame buffer or native
implementations.
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To address these challenges, we have developed a binary
level porting method for embedded devices that imports
missing class files and retro-translates all the class files
so that the embedded Tru2way JVM can execute them.
Our method leverages the Java Backport package, which is
the implementation of JSR 166 (java.util.concurrent
APIs), introduced in Java SE 5.0 and further refined in
Java SE 6.0, for older versions of Java platforms [1]. The
Retrotranslator has two main functionalities: 1) it translates
newer class files into an older format for an older JVM; and,
2) it extends the Backport package so that most Java SE 5.0
features are available for an application that runs on the Java
SE 1.4 and Java SE 1.3 JVMs [3]. The runtime classes from
those two packages can be added to the Tru2way JVM.

Fig. 2 shows the resulting software stack to support the
execution of Hadoop in the embedded environment of an
STB running the Tru2way JVM and contrasts it with the tra-
ditional software stack based on the Java SE JVM running on
a common Linux blade. In particular, the embedded software
stack includes the Imported Runtime Classes, which are the
results of the backporting technique, and the Profile Gap
Filler, which collects all additional components that were
developed specifically for the embedded STB devices.

Fig. 3 illustrates the procedure that we developed to port
Hadoop and all the Java packages necessary for running
Hadoop to the STB devices. While it was developed and
tested for our broadband embedded system, for the most
part this procedure is a contribution of general applicability
to port Java applications originally developed for the Java
SE JVM to other embedded systems which have different
and more limited JVMs: e.g., this procedure can be followed
also for porting any Java applications to other JVM such as
BD-J or Android’s Dalvik [13], [18]. The procedure consists
of a sequence of eight main steps:

1) Class Aggregation. Here all the input classes are simply
copied into a single directory and the priorities among the
duplicated or collided classes are determined.

2) Dependency Analysis. For this step, which is key
to implementing efficiently a large Java application like
Hadoop on resource-constrained embedded devices, we de-
veloped a novel dependency analysis technique called Class
Weaving. This starts by analyzing the class dependencies
within a Java package as well as across the packages and
then changes the dependency to reuse as much as possible
those classes which are available in the embedded Java ME
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boolean matches(…) { 
    … 
    if (Character.getType(c) == …) 
    … 
    Matcher m = new Matcher(this, input); 
} 

void setJobConf(JobConf conf) { 
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    … 
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Figure 4. Example of applying the proposed Class Weaving method.

environment. The goal is to generate all the information
on class dependencies that is necessary at later steps to
minimize the number of classes which will be imported
from the various open-source Java SE runtime libraries
(and to strip out all unnecessary classes from the original
packages.) Fig. 4 illustrates how Class Weaving works: a
class dependency tree is generated by analyzing each class
while minimizing the number of classes to be imported. For
example, Hadoop’s TaskTracker class uses the Pattern

class, which in turn uses the Matcher class: both these
classes exist in Java SE but not in the STB Java ME
environment and, therefore, need to be imported. On the
other hand, the Pattern class uses the Character class,
which exists also in Java ME and, therefore, it will not be
imported from Java SE: instead, the Pattern class will be
woven to use Java ME’s Character class.

3) Import List Generation. Based on the information
collected at the previous step, the list of classes to be
imported is generated. At this step, the list can be refined
through additional customizations. Unlike most JVMs, some
embedded JVMs have their bootstrap classes embedded in
a way that are not accessible to the application developers
and provide only stub classes to them. For instance, packages
like xerces or log4j do exist in the actual bootstrap classes
for internal purposes but are not included in the stub classes.

4) Backport List Generation. The Java class load-
ers check if the package name of the target class be-
gins with the ’java.’ prefix when the class file lo-
cation is not in the bootstrap classpaths and, if so,
returns an error. To avoid this, the prefix needs to
be changed: e.g., in the case of our system with the
’edu.columbia.cs.sld.backport.ocap.java.’ pre-
fix. A list of the mappings between the original and the
new prefix is generated for all the imported classes with
package names that begin with ’java.’ to be used later in
the retro-translation step.

5) Class Stripping Optimization. Since many embedded
systems have limited memory and storage resources, only
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Hadoop & JavaSE
3rd-party libs Bootstrap

Before 14490 10110
After 4141 5978

Table 1. Class count before & after class stripping optimization.

the necessary Java classes should be stored in the embedded
device. This is achieved by collecting dependency trees
that begin with the seed classes, which include the entry
point Xlet class that launches Hadoop DataNode and Task-
Tracker, various classes that are dynamically loaded from
configuration files or from the source code, and the patched
classes. In our case, this step results in a 60% reduction of
the number of classes that must be deployed in the STBs,
as shown in Table 1.

6) Retro-translation. Since the Tru2way JVM recognizes
classes up to Major Version Number 48, all the class
files with Major Version Number 49 or higher need to be
retro-translated. Most packages, including Hadoop, provide
classes with major version number 50, which corresponds
to Java 1.6. At the binary level, the class file formats and
package names of Hadoop, Java SE, and the application
libraries need to be properly modified.

7) Patch Application. While a number of classes were im-
ported from open-source Java SE runtime libraries through
the Class Weaving technique described above, we had to
newly develop a number of missing classes and methods
which needed to be optimized before being added to the
Java stack of the STBs. The same was necessary for classes
that could not be imported from the open-source Java SE
runtime library due to the native implementations. Also,
patches were necessary to fix some defects found in the
Tru2way implementations.

8) Package Generation. This final step generates the
packages that will be launched on the Tru2way JVM from
the stripped classes, links a custom class loader that will
loads user-defined Mapper and Reducer classes, and binds
an entry point Xlet that will execute Hadoop DataNode and
TaskTracker.

A. Challenges in Porting Hadoop to STB Devices

The number of JVM processes supported in the system
is one of the biggest differences between the STB Java
environment and a Linux blade server utilizing Java SE.
While the users of the latter can launch multiple instances
of JVM, only one JVM instance can be launched during
boot time within an STB. On the other hand, there are two
important behaviors in Hadoop that rely on the capability of
multiple JVM executions: first, TaskTracker and DataNode
are running two different JVM processes; second, for each
task processed in a TaskTracker node, a new JVM instance
is launched unless there is an idle JVM which can be reused
for the task.

To support these behaviors while coping with the STB
limitation of running only one JVM instance, we imple-

mented a new ProcessBuilder class that creates a thread
group whenever the launch of a new JVM process is
requested. Each thread group provides a distinct set of
Hadoop environmental variables which are managed within
the threads belonging to a given thread group without in-
terfering with other threads groups. The ProcessBuilder

class implementation also enables optimizations such as
replacing IPC (Inter-Process Call) with method invocations
in the same process, and the elimination of local data
transfers through sockets with local file-copy operations.

A number of other middleware issues related to porting
Hadoop to an embedded device like the STB were discov-
ered and resolved. For example, certain Java classes have
bugs that make the application behave improperly, halt, or
sometimes fail. In these cases the classes were replaced with
better implementations or patched to align with the Hadoop
Java class requirements. Also, some configuration changes
were made to the system: e.g., the Socket timeout constant
had to be slightly extended to account for variations in
network response times or delays. Finally, to relieve memory
constraints, we reduced the number of threads associated
to unimportant services such as the metrics service which
profiles the statistics of performance or the web service that
provides status information.

IV. EXPERIMENTS

In order to evaluate our embedded Hadoop system for its
scalability characteristics and execution performance, we ex-
ecuted a number of MapReduce experimental tests across the
Linux Cluster and Embedded Cluster. All the experiments
were performed while varying the degree of parallelism, i.e.
by iteratively doubling the number of Hadoop nodes, of each
cluster: specifically, from 1 to 8 Linux blades for the Linux
Cluster (where each blade contains eight 2GHz processor
cores) and from 8 through 64 STBs for the Embedded
Cluster (where each STB contains one 400MHz processor
core). The results can be organized in four groups which are
presented in the following subsection. We report the average
results after executing all tests multiple times.

A. The WordCount Application

WordCount is a typical MapReduce application that counts
the occurrences of each word in a large collection of docu-
ments. The results reported in Fig. 5(a) and 5(b) show that
this application scales consistently for both the Embedded
Cluster and Linux Cluster. As the size of the input data
increases, the Embedded Cluster clearly benefits from the
availability of a larger number of STB nodes to process
larger data sets. The Linux Cluster execution time remains
approximately constant for data sizes growing from 128MB
to 512MB since these are relatively small, but then it begins
to double as the data sizes grow from 1GB to 32GB. In fact,
above the 1GB threshold the amount of data that needs to
be shuffled in the Reduce task begins to exceed the space



2012 IEEE 4th International Conference on Cloud Computing Technology and Science

978-1-4673-4510-1/12/$31.00 ©2012 IEEE  
6

524

1,049

2,097

4,194

8,389

16,777

33,554

67,109

32M 64M 128M 256M 512M 1G 2G 4G

8 nodes
16 nodes
32 nodes
64 nodes

(sec) 

(a) Embedded Cluster (each node is one STB).

33

66

131

262

525

1,049

2,098

4,197

128M 256M 512M 1G 2G 4G 8G 16G 32G

1 node (8 cores)
2 nodes (16 cores)
4 nodes (32 cores)
8 nodes (64 cores)

(ms) (sec) 

(b) Linux Cluster (each node is a 8-core blade.)

# of Nodes
STB / Blade

Size 8 / 1 64 / 8

1G 49.2 49.4
2G 52.9 41.5
4G 63.9 39.6
8G (64.5) (48.8)
16G (64.5) (42.1)
32G (61.3) (38.3)

(c) Execution-time ratio.

Figure 5. WordCount execution time as function of problem size (bytes), node count: (a) Embedded Cluster and (b) Linux Cluster; (c) relative comparison.

available within the heap memory of each node. A similar
transition from in-memory shuffling to in-disk shuffling
occurs in the Embedded Cluster for smaller data sets due to
the smaller memory available in the STB nodes: specifically,
it occurs somewhere between 64MB and 512MB, depending
on the particular number of nodes of each Embedded Cluster
configuration.

Fig. 5(c) reports the ratios between the execution times
of two Embedded Cluster configurations over two corre-
sponding equivalent Linux Cluster configurations, for large
input data sets. 2 The first column reports the ratio of the
configuration with eight STBs over one single blade with
eight processor cores; the second column reports the ratio
of the Embedded Cluster configuration (with 64 STBs) over
the Linux Cluster configuration (with eight blades for a total
of 64 cores.) Across the different data sizes, the performance
gap of the Embedded Cluster relative to the corresponding
Linux Cluster with the same number of Hadoop nodes re-
main approximately constant: it is about 60 times slower for
the configuration with 8 nodes and about 40 times slower for
the one with 64 nodes. Notice that these values are the actual
measured execution times; they are not modified to account
for the important differences among the two systems such
as the 5X gap in the processor’s clock frequency between
the Linux blades and the STBs. A comprehensive discussion
of the reasons behind the performance gap between the two
systems and how this may be reduced in the future is given
in Section IV-E.

B. HDFS & MapReduce Benchmarks

The second group of experiments involve the execution
of a suite of standard Hadoop benchmarks. The goal is
to compare how the performance of the Embedded Cluster
and Linux Cluster scales for different MapReduce applica-
tions. The execution times of these applications expressed
in seconds and measured for different configurations of
the two clusters are reported in Table 2. The numbers
next to the application names in the first column denote
input parameters, which are specific to each application:

2The values in parenthesis are computed by extrapolating the execution
times on the Embedded Cluster.

8 STBs 64 STBs 1 Blades 8 Blades
Benchmarks (8 cores) (64 cores) (8 cores) (64 cores)

Sleep 1285.1 119.6 1223.6 114.5
RandomTextWriter 8 799.6 743.9 177.6 172.0
PiEstimator 1k 461.1 163.5 212.1 52.5
PiEstimator 16k 463.4 474.0 213.7 52.5
PiEstimator 256k 603.6 783.2 214.6 52.4
PiEstimator 4M 1240.9 2048.2 213.9 52.5
PiEstimator 64M 7373.0 10482.5 314.8 58.4

K-Means 1G 3679.2 1149.3 794.7 24.5
Classification 1G 3009.0 784.9 864.7 25.45

Table 2. Execution times (in seconds) for various Hadoop benchmarks.

e.g. “RandomTextWriter 8” denotes that the RandomTex-
tWriter application is running eight mappers, while the “Pi-
Estimator 1k” means that Pi-estimator runs with a 1k sample
size.

Sleep is a program that simply keeps the processor in an
idle state for one second, whenever a Map or a Reduce task
should be executed. Hence, this allows us to estimate the
performance overhead of running the Hadoop framework.
For the representative case of running Sleep with 128
mappers and 16 reducers, the Embedded Cluster and the
Linux Cluster performance is basically the same.

RandomTextWriter is an application that writes random
text data to HDFS and, for instance, it can be configured to
generate a total of 8GB of data uniformly distributed across
all the Hadoop nodes. When it is running, eight mappers are
launched on each Linux blade, i.e. one per processor core,
while only one mapper is launched on each STB node. Since
the I/O write operations dominate the execution time of this
application, scaling up the number of processor cores while
maintaining the size of the random text data constant does
not really improve the overall execution time.

Pi-Estimator is a MapReduce program that estimates the
value of the π constant using the Monte-Carlo method [6].
For the Linux Cluster, the growth of the input size does
not really impact the execution time for a given system
configuration, while moving from a configuration with one
blade to one with eight blades yields a 4x speedup. For the
Embedded Cluster, in most cases scaling up the number of
nodes causes higher execution times because this program
requires that during the initialization phase the STBs receive
a set of large class files which are not originally present in
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Figure 6. HDFS data-replication mechanism (R=3) and replication time.

the Embedded Java Stack. This file transfer, which uses the
pipelined mechanism explained in Section IV-D, takes a long
time that more than cancel out any benefits of increasing the
number of Hadoop nodes.

C. Data Mining Applications

To evaluate the feasibility of utilizing the Embedded Clus-
ter system for data mining applications, we performed two
experiments based on MapReduce versions of two common
algorithms. K-Means is a popular data mining algorithm to
cluster input data into K clusters: it iterates until the change
in the centroids is below a threshold to successively improve
the clustering result [14]. Classification is a MapReduce
version of a classic machine learning algorithm: it classifies
the input data into one of K pre-determined clusters [20].
Unlike K-Means, Classification does not run iteratively, and,
therefore, does not produce intermediate data.

The last two rows in Table 2 report the results of running
these two applications, each with an input data set of
size 1GB. For both applications the results are similar:
the execution time when running on the Embedded Cluster
with eight STBs is about four times longer than running
in the Linux Cluster with one 8-core blade; furthermore,
when both systems are scaled up by a factor of eight,
the performance gap grows from four to forty times. The
growing gap is mainly due to the fact that scaling up the
system parallelism while keeping the input data size constant
leads to shuffling a large number of small data sets across the
Hadoop nodes. This requires peer-to-peer communication
among the nodes, an operation that the DOCSIS network
of the Embedded Cluster does not support as well as the
gigabit Ethernet network of the Linux Cluster does. To better
evaluate the difference in transfer time between the two
networks we complete the following experiment focused on
the HDFS data replication, which requires similar peer-to-
peer communication among the Hadoop nodes.

D. Data Replication in HDFS

The Hadoop Distributed File System (HDFS) replicates
data blocks through pipelining of DataNodes based on
the scheme illustrated in Fig. 6(a): for a given replication
number R, a pipeline of R DataNodes is created whenever
a new block is copied to a DataNode and the data are
transferred to the next DataNode in the pipeline until the last
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one receives it. This mechanism causes a large transfer-time
penalty for the Embedded Cluster due to DOCSIS-network
overhead associated with the transfer of data between pairs
of Hadoop nodes. Specifically, a DOCSIS network does not
support direct point-to-point communications among STBs.
Instead, all communications occur between a given STB and
the DOCSIS router located in the cable-system head-end:
this acts as a forwarding agent on behalf of the two com-
municating STBs. Due to this architecture, as we increase
the number of STBs in the system (each STB corresponding
to one Hadoop node) more slow communications between
pairs of STBs occur, thus impacting negatively the overall
data-replication time. In contrast, the data replication time
spent in the Linux Cluster remains constant as we grow
the number of nodes thanks to: (i) the fast communication
channels among cores on the same blade and (ii) the gigabit
Ethernet network connecting cores across different blades.

E. Discussion

The performance of executing Hadoop MapReduce appli-
cations is influenced by various system properties including:
the processor speed, memory, I/O, and networking capabili-
ties of each node. Further, the relative impact of each factor
depends on the computation and communication properties
of the specific MapReduce application in a way that may
vary considerably with the given input problem size and
the total number of nodes comprising the Hadoop system.
Next, we discuss how the system properties of the Embedded
Cluster compare to those of the Linux Cluster and outline
how the technology trends may reduce the gap between the
two systems.

Processor performance. In our experimental setup, there
is a 5X gap in processor clock frequency between the
Embedded Cluster and Linux Cluster nodes. Further, we
empirically noticed another factor of 2X in processing speed
which we attributed to the different computer architectures
of the 2GHz Xeon and 400MHz MIPS processors. This
gap is expected to decrease considerably as next-generation
STB devices will incorporate commodity 1GHz+ multi-core
processors now found in smartphone and tablets, while it is
unlikely that the blade clock frequency will increase much.

I/O Operations. The RandomTextWriter benchmark rep-
resents many MapReduce applications which execute nu-
merous data-block storage operations. In fact, the Hadoop
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system itself can be very I/O intensive when performing data
replication. We run the TestDFSIO test to evaluate the I/O
performance of HDFS by reading/writing files in parallel
through a MapReduce job. This program reads/writes each
file in a separate map task, and the output of the map is used
for collecting statistics relating to the file just processed;
then, the statistics are aggregated in the reduce task to pro-
duce a summary. The results of running TestDFSIO reveal
that an STB has 0.115MB/s reading and 1.061MB/s writing
speed while the corresponding values for a Linux blade
are 68.526MB/s and 99.581MB/s. 3 We also run a simple
native C program that executes read/write operations using
large files on the two clusters with 4 different interfaces:
USB, FLASH, NFS, and HDD. The results are reported in
Fig. 7. We note that the network performance of STB NFS
reads/writes is significantly less, by a factor of nearly 100,
than the network performance of the Linux blade server.
This gap is primarily due to the DOCSIS network, whose
effective transfer rate is limited to 4MB/s compared to 1Gb/s
Ethernet network, whose effective maximum transfer rate
is closer to 125MB/s. On the other hand, the measured
performance of the USB and external hard-drive interfaces
on both the STB and Linux blade server is comparable. This
is due to the common commodity SoC for USB and disk
interfaces used in the design of both the STBs and blades.
In our experiments, the Linux blades use an internal hard-
drive disk (HDD) while the STBs, which do not contain
an internal hard-drive, rely on a USB memory stick whose
read performance is 6 times slower (and write performance
is 24 times slower) than the HDD when providing HDFS
storage. This gap can be reduced by having the STBs use
a better file system for the USB sticks than FAT32 such as
SFS [19]. Also, as shown in Fig. 7, an external USB HDD
could provide a 1.5-4.2 speed-up for reading/writing over
the USB memory stick. Here, the technology trends should
provide next-generation STB devices with HDD and USB
3.0.

Networking. The lack of support for peer-to-peer commu-
nication among STBs in the DOCSIS network limits con-
siderably the HDFS replication mechanism (as discussed in
Section IV-D), the Hadoop shuffling operations (as seen for
the K-Means, Classification and WordCount programs), and
the transfer of large class files during the initialization phase
(as in the PI-Estimator). In particular, shuffling generates an
implicit all-to-all communication pattern among nodes that is
application specific: each node sends its corresponding Map
results to other nodes through HTTP, generating |Node|2
communication exchanges, which for the DOCSIS network
results in inefficient upstream communication requests as
nodes attempt to transfer data blocks from Mappers to Re-
ducers. A similar performance impact occurs during Hadoop

3The STB shows significant difference between upload and download
speed due to the inherently asymmetric and lower transfer rate character-
istics of the DOCSIS network.

replication: for a given replication factor R and a total
number of blocks M , the number of DOCSIS upstream com-
munication transfers to complete replication is M×(R−1).
As the input size increases the number of blocks increases
in direct proportion, thus increasing the replication time.
The scalability in Embedded Cluster largely depends on the
amount of data to be shuffled generated by the Map tasks
and the replication communication overhead. This problem
may be addressed in part with the deployment of the higher
performance DOCSIS 3.0 standard [12], which supports up
to 300 Mb/s upstream bandwidth. Then, opportunities for
further improvements include: optimization of the Hadoop
scheduling policy, network topology optimization, and lever-
aging the inherent multi-casting capabilities of DOCSIS to
reorder the movement of data blocks among nodes and
reduce network contention.

V. RELATED WORK

The Hadoop platform for executing MapReduce applica-
tions has received great interest in recent years as problems
in large-scale data analysis and Big Data have increased in
importance. Work in the area of heterogeneous MapReduce
computation, however, remains rather limited, notwithstand-
ing the growth of embedded devices interconnected through
broadband networking to distributed data centers. Our work
is aligned with efforts in the Mobile Space to bridge
MapReduce execution to embedded systems and devices.
For example, the Misco system implements a novel frame-
work for integrating smartphone devices for MapReduce
computation [10]. Similarly, Elespuro et al. developed a
system for executing MapReduce using smartphones under
the coordination of a Web-based service framework [11].
Besides the fact that our system uses a wired network of
embedded stationary devices instead of a mobile network,
the main difference with these systems is that we ported the
Hadoop framework, including the HDFS, based on the Java
programming model. Other related work include utilizing
GPU processors to execute MapReduce [15]. While most
related work in adapting MapReduce execution to embedded
devices has focused on leveraging service-side infrastructure,
our work is closer to current research under way for large
scale execution of MapReduce applications on the Hadoop
platform across Linux blades and PC clusters [25].

VI. CONCLUSION

We developed, implemented, and tested a heterogeneous
system to execute MapReduce applications by leveraging
a broadband network of embedded STB devices. In doing
so, we addressed various general challenges to successfully
port the Hadoop framework to the embedded JVM environ-
ment. We completed a comprehensive set of experiments
to evaluate our work by comparing various configurations
of the prototype Embedded Cluster with a more traditional
Linux Cluster. First, the results validate the feasibility of our
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idea as the Embedded Cluster successfully executes a variety
of Hadoop applications. From a performance viewpoint, the
Embedded Cluster typically trails the Linux Cluster, which
can leverage more powerful resources in terms of processor,
memory, I/O, and networking. On the other hand, for many
applications both clusters demonstrate good performance
scalability as we grow the number of Hadoop nodes. But
a number of problems remain to be solved to raise the per-
formance of executing MapReduce applications in the Em-
bedded Cluster: in particular, critical areas of improvement
include the STB I/O performance and the communication
overhead among pairs of STBs in the DOCSIS broadband
network. Still, the gap between embedded processors and
blade processors in terms of speed, memory, and storage
continues to decrease, while higher performance broadband
networks are expected to integrate embedded devices into the
Cloud. These technology trends hold the promise that future
versions of the MapReduce computing system presented
in this paper can help to leverage embedded devices for
Internet-scale data mining and analysis.
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