
Benefits and Challenges for Platform-Based Design

Alberto Sangiovanni-Vincentelli†† Luca Carloni† Fernando De Bernardinis†§ Marco Sgroi∗

†Department of EECS §Dip. di Ingegneria dell’Informazione ∗ DoCoMo Euro-Labs
University of California, Berkeley Università di Pisa, Italy Munich, Germany

ABSTRACT
Platforms have become an important concept in the design
of electronic systems. We present here the motivations be-
hind the interest shown and the challenges that we have
to face to make the Platform-based Design method a stan-
dard. As a generic term, platforms have meant different
things to different people. The main challenges are to distill
the essence of the method, to formalize it and to provide a
framework to support its use in areas that go beyond the
original domain of application.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids

General Terms
Design, Performance, Standardization.

1. INTRODUCTION
Platform-Based Design [9, 7] has emerged as an important

design style as the electronic industry has to face serious
difficulties due to three major factors:

• Disaggregation (or “horizontalization”) of the electronic
industry has begun about a decade ago and has af-
fected the structure of the electronics industry favor-
ing the move from a vertically-oriented business model
into a horizontally-oriented one. In the past, electronic
system companies used to maintain full control of the
product development cycle from product definition to
final manufacturing. Today, the identification of a new
market opportunity, the definition of the detailed sys-
tem specifications, the development and assembly of
the components, and the manufacturing of the final
product are tasks performed more and more frequently
by distinct organizations. In fact, the complexity of
electronic designs and the number of technologies that
must be mastered to bring to market winning products
have forced electronic companies to focus on their core

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004,June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

competence. In this scenario, the integration of the de-
sign chain becomes a serious problem at the hand-off
points from one company to another.

• The pressure for reducing time-to-market of electron-
ics products in the presence of exponentially increas-
ing complexity has forced designers to adopt methods
that favor component re-use at all levels of abstrac-
tion. Furthermore, each organization that contributes
a component to the final product naturally strives for
flexibility in their design approach that allows to make
continuous adjustments and accommodate last-minute
engineering changes.

• The dramatic increase in Non-Recurring Engineering
(NRE) costs due to mask making at the Integrated
Circuit (IC) implementation level (a set of masks for
the 90 nanometer technology node costs more than
two millions US dollars), development of production
plants (a new fab costs more than two Billions US
dollars), and design (a new generation microprocessor
design requires more than 500 designers with all the
associated costs in tools and infrastructure!)

has created on one hand the necessity of correct-the-first-
time designs and on the other, the push for consolidation of
efforts in manufacturing 1.

The combination of these factors has caused several sys-
tem companies to reduce substantially their ASIC design
efforts. Traditional paradigms in electronic system and IC
design have to be revisited and re-adjusted or altogether
abandoned. Along the same line of reasoning, IC manufac-
turers are moving towards developing parts that have guar-
anteed high-volume production form a single mask set (or
that are likely to have high-volume production, if successful)
thus moving differentiation and optimization to reconfigura-
bility and programmability.

Platform-based design has emerged over the years as a
way of coping with the problems listed above. The term
“platform” has been used in several domains: from service
providers to system companies, from tier 1 suppliers to IC
companies. In particular, IC companies have been very ac-
tive lately to espouse platforms. The TI OMAP platform
for cellular phones, the Philips Viper and Nexperia plat-
forms for consumer electronics, the Intel Centrino platform

1The cost of fabs have changed the landscape of IC manu-
facturing in a substantial way forcing companies to team up
for developing new technology nodes (see, for example, the
recent agreement among Motorola, Philips and ST Micro-
electronics and the creation of Renesas in Japan).

409

26.3

for laptops, are but a few examples. Recently, Intel has been
characterized by its CEO Ottellini as a “platform company”.

As is often the case for fairly radical new approaches, the
methodology emerged as a sequence of empirical rules and
concepts but we have reached a point where a rigorous design
process was needed together with supporting EDA environ-
ments and tools. The research carried out in the MARCO
GSRC (see [6, 7, 9]) has identified the basic tenets of the
methodology. Platform-based design

• lies the foundation for developing economically feasi-
ble design flows because it is a structured methodol-
ogy that theoretically limits the space of exploration,
yet still achieves superior results in the fixed time con-
straints of the design;

• provides a formal mechanism for identifying the most
critical hand-off points in the design chain: the hand-
off point between system companies and IC design
companies and the one between IC design companies
(or divisions) and IC manufacturing companies (or di-
visions) represent the articulation points of the overall
design process;

• eliminates costly design iterations because it fosters de-
sign re-use at all abstraction levels thus enabling the
design of an electronic product by assembling and con-
figuring platform components in a rapid and reliable
fashion;

• provides an intellectual framework for the complete
electronic design process.

This paper presents the foundations of this discipline and
outlines a variety of domains where the PBD principles can
be applied. In particular, in Section 2 we define the main
principles of PBD. Our goal is to provide a precise refer-
ence that may be used as the basis for reaching a common
understanding in the electronic system and circuit design
community. Then, we present the platforms that define the
articulation points between system definition and implemen-
tation (Section 3). As a demonstration of applicability of
the Platform-Based Design paradigm to all levels of design.
in the following sections, we show that platforms can be
applied to very high levels of abstraction such as communi-
cation networks (Section 4), where platforms provide con-
nectivity and services, as well as to low levels such as analog
parts (Section 5), where performance is the main focus.

2. PLATFORM-BASED DESIGN
The basic tenets of platform-based design are the identi-

fication of design as a meeting-in-the-middle process, where
successive refinements of specifications meet with abstrac-
tions of potential implementations, and the identification of
precisely defined layers where the refinement and abstrac-
tion processes take place. Each layer supports a design stage
providing an opaque abstraction of lower layers that allows
accurate performance estimations. This information is in-
corporated in appropriate parameters that annotate design
choices at the present layer of abstraction. These layers of
abstraction are called platforms.

A platform is a library of components together with their
composition rules. A design at each level of abstraction is
a platform instance, i.e., a legal composition of a set of li-
brary elements. The library not only contains computational

blocks that carry out the appropriate computation but also
communication components that are used to interconnect
the functional components. Each element of the library has
a characterization in terms of performance parameters to-
gether with the functionality it can support. For every plat-
form level, there is a set of methods used to map the upper
layers of abstraction into the platform and a set of methods
used to estimate performances of lower level abstractions.
The meeting-in-the-middle process is the combination of two
efforts:

• top-down: map an instance of the top platform with
constraints into an instance of the lower platform with
appropriate constraints resulting from an appropriate
propagation involving budgeting wherever needed;

• bottom-up: build a platform by defining its com-
ponents and their performance abstraction (e.g., num-
ber of literals for technology independent optimization,
and area and propagation delay for a cell in a standard
cell library).

Establishing the number, location, abstraction and com-
ponents of intermediate platforms is the essence of platform-
based design. The trade-offs involved in the selection of the
number and characteristics of platforms relate to the size of
the design space to be explored and the accuracy of the
estimation of the characteristics of the solution adopted.
Naturally, the larger the step across platforms, the more
difficult is predicting performance, optimizing at the higher
levels of abstraction, and providing a tight lower bound. In
fact, the design space for this approach may actually be
smaller than the one obtained with smaller steps because
it becomes harder to explore meaningful design alternatives
and the restriction on search impedes complete design space
exploration. Ultimately, predictions/abstractions may be so
inaccurate that design optimizations are misguided and the
lower bounds are incorrect.

3. SYSTEM PLATFORM STACK
The articulation point between system definition and im-

plementation is a critical one for design quality and time.
Indeed, the very notion of platform-based design originated
at this point (see [3, 4, 6, 7]). In [6, 7, 9], we have discovered
that at this level there are two distinct platforms forming a
system platform stack: a (micro-)architecture platform and
an API platform. The API platform allows system designers
to use the services that a (micro-)architecture offers them.
In the world of Personal Computers, this concept is well
known and is essential to the development of application
software on different hardware that share some commonali-
ties allowing the definition of a unique API.

3.1 (Micro-) Architecture Platforms
Integrated circuits used for embedded systems will most

likely be developed as an instance of a particular (micro-)
architecture platform. That is, rather than being assembled
from a collection of independently developed blocks of silicon
functionalities, they will be derived from a specific family
of micro-architectures, possibly oriented toward a particular
class of problems, that can be extended or reduced by the
system developer. The elements of this family are a sort of
“hardware denominator” that could be shared across mul-
tiple applications. Every element of the family can be ob-
tained quickly through the personalization of an appropriate

410

Platform
Design-Space
Export

Platform
Mapping

Architectural Space

Application Space
Application Instance

Platform Instance

System
Platform

Figure 1: System Platform Stack.

set of parameters controlling the micro-architecture. Often
the family may have additional constraints on the compo-
nents of the library that can or should be used. Depending
on the implementation platform that is chosen, each element
of the family may still need to go through the standard man-
ufacturing process including mask making. This approach
then conjugates the need of saving design time with the op-
timization of the element of the family for the application
at hand.

The flexibility, or the capability of supporting different
applications, of a platform instance is guaranteed by pro-
grammable components. Programmability will ultimately
be of various forms. One is software programmability to in-
dicate the presence of a microprocessor, DSP or any other
software programmable component. Another is hardware
programmability to indicate the presence of reconfigurable
logic blocks such as FPGAs, whereby logic function can be
changed by software tools without requiring a custom set of
masks. Some of the new architecture and/or implementa-
tion platforms being offered on the market mix the two into
a single chip.

3.2 API Platform
The concept of architecture platform by itself is not enough

to achieve the level of application software re-use we re-
quire. The architecture platform has to be abstracted at a
level where the application software “sees” a high-level in-
terface to the hardware that we call Application Programm
Interface (API) or Programmers Model. A software layer
is used to perform this abstraction. This layer wraps the
essential parts of the architecture platform, which are the
programmable cores and the memory subsystem via a Real
Time Operating System (RTOS), the I/O subsystem via the
Device Drivers, and the network connection via the network
communication subsystem.

In our framework, the API or Programmers Model is a
unique abstract representation of the architecture platform
via the software layer. With an API so defined, the appli-
cation software can be re-used for every platform instance.
Indeed the Programmers Model (API) is a platform itself
that we can call the API platform. Of course, the higher the
abstraction level at which a platform is defined, the more in-
stances it contains. For example, to share source code, we
need to have the same operating system but not necessar-
ily the same instruction set, while to share binary code, we
need to add the architectural constraints that force to use
the same ISA, thus greatly restricting the range of architec-
tural choices.

3.3 System Platform
The basic idea of system platform is captured in Figure 1.

The vertex of the two cones represents the combination of
the API or Programmers’ Model and the architecture plat-
form. A system designer maps its application into the ab-
stract representation that “includes” a family of architec-
tures that can be chosen to optimize cost, efficiency, energy
consumption and flexibility. The mapping of the applica-
tion into the actual architecture in the family specified by
the Programmers’ Model or API can be carried out, at least
in part, automatically if a set of appropriate software tools
(e.g., software synthesis, RTOS synthesis, device-driver syn-
thesis) is available. It is clear that the synthesis tools have
to be aware of the architecture features as well as of the
API. This set of tools makes use of the software layer to go
from the API platform to the architecture platform. Note
that the system platform effectively decouples the applica-
tion development process (the upper triangle) from the ar-
chitecture implementation process (the lower triangle). Note
also that, once we use the abstract definition of “API” as
described above, we may obtain extreme cases such as tra-
ditional PC platforms on one side and full hardware imple-
mentation on the other. Of course, the programmer model
for a full custom hardware solution is trivial since there is
a one-to-one map between functions to be implemented and
physical blocks that implement them. In this latter case,
platform-based design amount to adding to traditional de-
sign methodologies some higher level of abstractions.

4. NETWORK PLATFORMS
In distributed systems, the design of the protocols that

support the communication among system components is
difficult due to the tight constraints on performance and
cost. To make the communication design problem more
manageable, designers usually decompose the communica-
tion function into distinct protocol layers, and design each
layer separately. At the same time, meeting the tight per-
formance constraints of the present embedded system ap-
plications often requires to optimize also across layers. The
definition of an optimal layered architecture, the design of
the correct functionality for each protocol layer, and the
design space exploration for the choice of the physical im-
plementation must be supported by tools and methodolo-
gies that allow to evaluate the performance and guarantee
the satisfaction of the constraints after each step. Below
we formalize the concept of Network Platform and outline a
methodology for selecting, composing and refining Network
Platforms [10].

A Network Platform (NP) is a library of resources that
can be selected and composed together to form a Network
Platform Instance (NPI) and support the interaction among
a group of interacting components. The structure of an
NPI is defined abstracting computation resources as nodes
and communication resources as links. Ports interface nodes
with links or with the environment of the NPI. The behav-
iors and the performances of an NPI are defined in terms
of the type and the quality of the communication services
it offers. We formalize the behaviors of an NPI using the
Tagged Signal Model [8]. NPI components are modeled as
processes and events model the instances of the send and
receive actions of the processes. An event is associated with
a message which has a type and a value and with tags that

411

specify attributes of the corresponding action instance (e.g.
when it occurs in time). The set of behaviors of an NPI is
defined by the intersection of the behaviors of the compo-
nent processes.

A Network Platform Instance is defined as a tuple NPI =
(L,N, P, S), where: 1) L = {L1, L2, ...LNl} is a set of di-
rected links, 2) N = {N1, N2,NNn} is a set of nodes,
3) P = {P1, P2, ...PNp} is a set of ports. A port Pi is a
triple (Ni, Li, d), where Ni ∈ N is a node, Li ∈ L ∪ Env
is a link or the NPI environment and d = in if it is an
input port, d = out if it is an output port. The ports
that interface the NPI with the environment define the sets
P in = {(Ni, Env, in)} ⊆ P, P out = {(Ni, Env, out)} ⊆ P ,
4) S =

T
Nn+Nl Ri is the set of behaviors, where Ri indi-

cates the set of behaviors of a resource that can be a link in
L or a node in N .

The basic services provided by an NPI are called Commu-
nication Services (CS). A CS consists of a sequence of mes-
sage exchanges through the NPI from its input to its output
ports. A CS can be accessed by NPI users through the in-
vocation of send and receive primitives whose instances are
modeled as events. An NPI Application Programming Inter-
face (API) consists of the set of methods that are invoked
by the NPI users to access the CS. For the definition of an
NPI API it is essential to specify not only the service prim-
itives but also the type of CS they provide access to (e.g.
reliable send, out-of-order delivery). Formally, a Commu-

nication Service (CS) is a tuple (P
in
, P

out
, M,E, h, g, <t),

where P
in ⊆ P in is a non-empty set of NPI input ports,

P
out ⊆ P out is a non-empty set of NPI output ports, M is a

non-empty set of messages, E is a non-empty set of events,

h is a mapping h : E → (P
in ∪ P out

) that associates each
event with a port, g is a mapping g : E → M associating
each event with a message, <t is a total order on the events
in E. A CS is defined in terms of the number of ports, that
determine, for example, if it is a unicast, multicast or broad-
cast CS, the set M of messages representing the exchanged
information, the set E including the events that are associ-
ated with the messages in M and model the instances of the
send and receive methods invocations. The CS concept is
useful to express the correlation among events, and explicit,
for example, if two events are from the same source or are
associated with the same message.

NPIs can be classified according to the number, the type,
the quality and the cost of the CS they offer. Rather than
in terms of event sequences, a CS is more conveniently de-
scribed using QoS parameters like error rate, latency, through-
put, jitter, and cost parameters like consumed power and
manufacturing cost of the NPI components. QoS parame-
ters can be simply defined using annotation functions that
associate individual events with quantities, such as the time
when an event occurs and the power consumed by an action.
Hence, one can compare the values of pairs of input and out-
put events associated with the same message to quantify the
error rate, or compare the timestamp of events observed at
the same port to compute the jitter. The number of CS that
an NPI can offer is large, so the concept of Class of Commu-
nication Services (CCS) is useful to simplify the description
of an NPI. CCS define a new abstraction (and therefore a
platform) that groups together CS of similar type and qual-
ity. For each NPI supporting multiple CS, there are several
ways to group them into CCS. It is task of the NPI designer

to identify the CCS and provide the proper abstractions to
facilitate the use of the NPI.

4.1 Design of Network Platforms
The design methodology derives an NPI implementation

by successive refinement from the specification of the be-
haviors of the interacting components and the declaration
of the constraints that an NPI implementation must satisfy.
The most abstract NPI is defined by a set of end-to-end di-
rect logical links connecting pairs of interacting components.
Communication refinement of an NPI defines at each step
a more detailed NPI′ by replacing one or multiple links in
the original NPI with a set of components or NPIs. Dur-
ing this process another NPI can be used as a resource to
build other NPIs. A correct refinement procedure gener-
ates an NPI′ that provides CS equivalent to those offered by
the original NPI with respect to the constraints defined at
the upper level. A typical communication refinement step
requires to define both the structure of the refined NPI′,
i.e. its components and topology, and the behavior of these
components, i.e. the protocols deployed at each node. One
or more NP components (or predefined NPIs) are selected
from a library and composed to create CS of better quality.
Two types of compositions are possible. One type consists
of choosing a NPI and extending it with a protocol layer
to create CS at a higher level of abstraction (vertical com-
position). The other type is based on the concatenation of
NPIs using an intermediate component called adapter (or
gateway) that maps sequences of events between the ports
being connected (horizontal composition).

5. ANALOG PLATFORMS
An analog platform consists of performance models P(ζ),

behavioral models µ(in, out, ζ) and interconnection models
ι(in, out, ζA, ζB), where µ(in, out, ζ) is a parameterized exe-
cutable model that introduces at the functional level a num-
ber of non-idealities due to the actual circuit implementa-
tion and ζ is a vector of parameters controlling the actual
behavior of the model (e.g. specific gain and noise values).
Even though behavioral models introduce a number of non-
idealities in system simulation, their actual scope is quite
limited since ζ can assume any value. In this sense, a be-
havioral model is a functional model that does not expose
any architectural effect, which however are very important
when exploring different tradeoffs at system level. P(ζ)
are provided by analog platforms to constrain µ to feasible
behaviors according to the selected architecture/topology.
Performance models (P(·)) are represented as a relation on
ζ. ι(in, out, ζA, ζB) are specialized behavioral models that
take into account interface issues in the composition between
block A and block B. Behavioral models have no intrinsic
loading notion. This may have a serious impact on circuit
performance since circuit composition may significantly al-
ter individual circuit performance. Unfortunately, it is not
possible to give general guidelines on how to model ana-
log communication. The required effort obviously depends
on the mutual dependence of the connected components.
For linear systems, the specification of input and output
impedances is sufficient to model the interconnection. How-
ever, for complex interfaces, loading effects between blocks
A and B may be explicitly included in the behavioral mod-
els µA and µB so that the composition µA ◦ ι◦µB is correct.
One possible approach is to model all the composition ef-

412

fects in the output port of the driving block (e.g. A) so that
all performance figures of A (ζA) embed the loading effect
of B. Consequently, the performance model has to include
some variables that parameterize the output load as well as
other possible parameters affecting ι. For example, given an
amplifier with {gain, bandwidth, power}, and characterizing
its output load with the area of the next input stage MOS
transistors, its performance model introduces a dependence
of gain, bandwidth and power on the next stage MOST area.
Therefore, the behavioral model µA does not have to explic-
itly model the loading of B, since its effects are accounted
for by the relation existing on ζA. This modeling scheme is
very general, and can model very complex interactions.

Analog Platforms can be generated at multiple levels of
abstraction. Platforms can be hierarchically organized into
platforms stacks. At each level of the stack, an optimiza-
tion process can be used to map constraints from one level
to the next. Platform stacks provide a unifying framework
to model both the system abstraction hierarchy and the
system refinement process. Essential to analog platform
is that performance models constrain behavioral optimiza-
tions/explorations to the feasibility region of the current
platform level, so that the next level constraints is feasible
and exploration can proceed.

5.1 Performance Models
Performance models are at the heart of analog platforms.

Because of the nature of analog designs, performance mod-
els have to characterize continuous variations in performance
as a function of continuous variations of design parameters.
For accuracy, Ps are derived bottom-up from general per-
formance evaluation schemes, such as simulation for circuit
platforms. Differently from common approaches that repre-
sent performances through a regression on circuit configura-
tion parameters, e.g., [5], relations on performance param-
eters are directly modeled by means of characteristic func-
tions. Hiding architecture parameters (regression variables)
allows design flows to proceed top-down and enables differ-
ent architectures to be directly compared based on the ef-
fects they introduce. Given a behavioral model µ(in, out, ζ),
a performance model P constrains µ to feasible values of ζ
(P(ζ) = 1). Performance models are defined by:

1. Input space I - Given a circuit C and m parameters
controlling its configuration (a vector κ), IC ⊆ Rm is
the set of κ over which we want to characterize C.

2. Output space O - Given a circuit C and n performance
figures (a vector ζ) characterizing its behavioral model,
OC ⊆ Rn is the set of ζ that are achievable by C.

3. Evaluation function φ - Given a circuit C, IC and OC ,
φC : I → O allows translating a parameter m-tuple
set into a performance n-tuple set.

4. Performance relation P - Given a circuit C, IC , OC
and φC , we define the performance relation of C given
IC and φC to be PC on Rn that holds only for points
o ∈ OC . With a little abuse in notation, we will denote
both the performance relation characteristic function
χP(x) : Rn → {0, 1} and the relation itself with PC(ζ).

We rely on statistical sampling of I to generate a set of
performance vectors ζ and on statistical learning theory to
generate an approximation to PC . The bottom-up charac-
terization process is potentially expensive in terms of num-
ber of simulations required. However, by choosing the right

Define µ, ι and !

Select new topology

Derive ACG and
nominal configuration

Generate !

Build System with APs

Define a formal set
of conditions for feasibility

Define an objective
function for optimization

Optimize system constraining
behavioral models to their !

Run local circuit optimization

Refine/Add platforms

a) b)

Figure 2: Design flow with analog platforms. Bottom-up
(a) and top-down (b) design phases are shown.

level of granularity for platform generation, using ad hoc
heuristics to limit I (see Sec. 5.2) and eventually exploiting
approximate simulation methods such as Model Order Re-
duction schemes, the cost of characterization can be made
affordable.

The problem of approximating P from performance sam-
ples can be stated as a classification problem. We adopt an
approximation method based on Support Vector Machines
(SVM) to represent P as described in [2]. SVMs provide a
favorable approximation scheme since they lead to compact
models with smooth approximation and good generalization
properties. In particular, we use SVMs with a Gaussian
RBF kernel that provide a basis function for the approxi-
mation of the form:

f(x) = sign(
X

i

αie
−γ|x−xi|2 − ρ) (1)

Vectors xi are performance vector obtained through simula-
tion, γ is a kernel parameter that controls approximation
features. The coefficients αi, ρ are weight and bias pa-
rameters that can be efficiently computed solving a convex
problem. xis are a subset of the simulated ζ also selected
through the convex problem. Since only vectors useful for
classification are retained, compact performance models can
be obtained.

5.2 Analog Constraint Graphs
The bottom-up characterization of Analog platforms is

usually achieved using a simulator as the mapping function
φ(·). Thus, it is possible to characterize accurately complex
blocks. The overall characterization cost is proportional to
the simulation time for each circuit. The number of sim-
ulations is exponentially dependent on the number of di-
mensions of the configuration space I. However, even if
I ⊆ Rn, the n dimensions of I are usually strongly corre-
lated in “functional” circuits. For example, matching re-
quirements, device stacking, operating region enforcement
introduce a set of constraints on κ that effectively reduces
the size of I. We can therefore define an effective Ieff as the
subset of I for which the following constraints hold

fi(κ) = 0 for i = 1 . . . n
gj(κ) < 0 for j = 1 . . .m

(2)

These constraints can be used to bias properly sampling so
that approximations of P can be obtained efficiently. The

413

constraints in 2 can be easily supplied by the platform de-
signer using simple analytical equations and inequalities.
Since constraint equations are usually analytic approxima-
tions of the underlying circuit relations, some attention has
to paid on the conservativeness of constraints. A set of con-
straints is conservative when Rn \ Ieff corresponds only to
incorrect circuits, even though some incorrect circuit may
be generated for some κ ∈ Ieff . A most useful way to repre-
sent 2 is through bipartite non directed graphs. An Analog
Constraint Graph (ACG) is defined as a (Ξ,Ψ,Υ) where Ξ
is the set of design variables, Ψ is the set of constraints on
ξs and Υ ⊆ Ξ×Ψ∪Ψ×Ξ is the set of edges that link design
variable ξi to constraint ψj . Bipartite graphs are a natural
way to operate on systems of equations, as in the DONALD
workbench [11]. Statistical sampling can leverage the graph
representation of 2 to obtain an operative way of drawing
samples in Rn. This can be achieved obtaining a schedule
of the ACG that leads to very efficient code to generate ran-
dom configurations. Exploiting ACGs, the characterization
cost can be cut by orders of magnitude in terms of number
of simulations at virtually no expense in terms of (useful)
performances. For some LNA and mixer platforms that we
generated, the reduction was respectively on the order of
104 and 103, leading to characterization times on the order
of a couple of days.

5.3 AP Design Flow
Analog design with APs consists of two separate phases.

Platform characterization is the bottom-up platform gener-
ation process that, starting from a given set of candidate ar-
chitectures, builds the models (µ, ι,P). Each platform can
be successively refined to improve accuracy locally during
the design space exploration process. This process is shown
in Fig. 2a. The second phase consists of casting the design
problem as an optimization problem on platforms that im-
plements constraint propagation through a platform stack
until a bottom level platform instance is defined (Fig. 2b).
Since several circuit topologies (lower platform levels) can
be merged at higher abstraction levels for a given function-
ality, constraint propagation intrinsically performs topology
selection. In fact, performance models constraints force the
optimization process to pick an optimal (feasible) point that
may correspond to architecture (platform) A rather than
B, thus selecting platform B for further refinements. In
conclusion, analog platforms allow raising the level of ab-
straction of system level analog design, and the apparently
increased effort in developing platform models is largely bal-
anced by the exploration and optimization possibilities that
are achievable exploiting APs.

6. CONCLUDING REMARKS
Platform-based design (PBD) is an all-encompassing in-

tellectual framework in which scientific research, design tool
development, and design practices can be embedded and jus-
tified. In our definition, a platform is simply an abstraction
layer that hides the details of the several possible implemen-
tation refinements of the underlying layer. The main benefit
of platform-based design is that it allows designers to trade-
off various components of manufacturing, NRE and design
costs while sacrificing as little as possible potential design
performance. The main challenges in adopting this method-
ology are all related to the lack of precise definitions and
characterization of platforms and of the associated design

flow in the industry today. This in turns causes difficulties in
moving designers from commonly used methodologies such
as the ASIC flow to this paradigm and in developing the ap-
propriate tools to support it. We argued in this paper that
the value of PBD can be multiplied by providing an appro-
priate set of tools and a general framework where platforms
can be formally defined in terms of rigorous semantics, ma-
nipulated by appropriate synthesis and optimization tools
and verified. Examples of platforms have been given us-
ing the concepts that we have developed. We conclude by
mentioning that the Metropolis design environment [1], a
federation of integrated analysis, verification, and synthesis
tools supported by a rigorous mathematical theory of meta-
models and agents, has been designed to provide a general
open-domain PBD framework.

7. REFERENCES

[1] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno,
C. Passerone, and A. Sangiovanni-Vincentelli. Metropolis:
an integrated electronic system design environment. IEEE
Computer, 36:45–52, April 2003.

[2] F. De Bernardinis, M.I. Jordan, and A.L. Sangiovanni Vin-
centelli. Support vector machines for analog circuit perfor-
mance representation. In Proc. of the Design Automation
Conf., June 2003.

[3] F. Balarin et al. Hardware-Software Co-Design of Embedded
Systems: The POLIS Approach. Kluwer Academic Publish-
ers, Boston/Dordrecht/London, 1997.

[4] H. Chang et al. Surviving the SOC Revolution: A Guide
to Platform Based Design, . Kluwer Academic Publishers,
Boston/Dordrecht/London, 1999.

[5] H. Liu et al. Remembrance of circuits past: Macromodeling
by data mining in large analog design spaces. In Proceedings
of DAC, 2002.

[6] A. Ferrari and A. L. Sangiovanni-Vincentelli. System De-
sign: Traditional Concepts and New Paradigms. In Proc.
Intl. Conf. on Computer Design, pages 1–12, October 1999.

[7] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and
A. Sangiovanni-Vincentelli. System level design: Orthog-
onalization of concerns and platform-based design. IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 19(12), December 2000.

[8] E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for
Comparing Models of Computation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
17(12):1217–1229, December 1998.

[9] A. Sangiovanni-Vincentelli. Defining Platform-Based Design.
In www.eedesign.com/story/OEG20020204S0062, February
2002.

[10] A. L. Sangiovanni-Vincentelli and M. Sgroi.
Service-based Model and Methodology for Net-
work Platforms. Technical Report available at www-
cad.eecs.berkeley.edu/s̃groi/tech reports, University of
California, Berkeley, CA 94720, June 2002.

[11] K. Swings and W. Sansen. Donald: a workbench for inter-
active design space exploration and sizing of analog circuits.
In Proceedings of the European Conference on Design Au-
tomation. EDAC, pages 475–479, 1991.

414

