
Heterogeneous Reactive Systems Modeling and
Correct-by-Construction Deployment�

Albert Benveniste1, Luca P. Carloni3, Paul Caspi2, and
Alberto L. Sangiovanni-Vincentelli3

1 Irisa/Inria, Campus de Beaulieu, 35042 Rennes cedex, France,
Albert.Benveniste@irisa.fr

http://www.irisa.fr/sigma2/benveniste/
2 Verimag, Centre Equation, 2, rue de Vignate, F-38610 Gieres,

Paul.Caspi@imag.fr
http://www.imag.fr/VERIMAG/PEOPLE/Paul.Caspi

3 U.C. Berkeley, Berkeley, CA 94720,
{lcarloni,alberto}@eecs.berkeley.edu

http://www-cad.eecs.berkeley.edu/HomePages/{lcarloni,alberto}

Abstract. We propose a mathematical framework to deal with the com-
position of heterogeneous reactive systems. Our theory allows to establish
theorems, from which design techniques can be derived. We illustrate this
by two cases: the deployment of synchronous designs over GALS archi-
tectures, and the deployment of synchronous designs over the so-called
Loosely Time-Triggered Architectures.

1 Introduction

The notion of time has been a crucial aspect of electronic system design for years.
Dealing with concurrency, time and causality has become increasingly difficult
as the complexity of the design grows. The synchronous programming model has
had major successes at the specification level because it provides a simpler way
to access the power of concurrency in functional specification. Synchronous Lan-
guages like Esterel [8], Lustre [14], and Signal [19], the Statecharts mod-
eling methodology [15], and design environments like Simulink/Stateflow [23]
all benefit from the simplicity of the synchronous assumption, i.e.: (1) the system
evolves through an infinite sequence of successive atomic reactions indexed by a
global logical clock, (2) during a reaction each component computes new events
for all its output signals based on the presence/absence of events computed in
the previous reaction and, (3) the communication of events among components
occur instantaneously between two successive reactions.

However, if the synchronous assumption simplifies system specification, the
problem of deriving a correct physical implementation from it does remain. In
� This research was supported in part by the European Commission under the projects

COLUMBUS, IST-2002-38314, and ARTIST, IST-2001-34820, by the NSF under the
project ITR (CCR-0225610), and by the GSRC.

R. Alur and I. Lee (Eds.): EMSOFT 2003, LNCS 2855, pp. 35–50, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

36 A. Benveniste et al.

particular, difficulties arise when the target architecture for the embedded sys-
tem has a distributed nature that badly matches the synchronous assumption
because of large variance in computation and communication times and because
of the difficulty of maintaining a global notion of time. This is increasingly the
case for many important classes of embedded applications in avionics, indus-
trial plants, and the automotive industry. Here, multiple processing elements
operating at different clock frequencies are distributed on an extended area and
connected via communication media such as busses (e.g., CAN for automotive
applications, ARINC for avionics, and Ethernet for industrial automation) or se-
rial links. Busses and serial links can, however, be carefully designed to comply
with a notion of global synchronization as the family of Time-Triggered Archi-
tectures (tta), introduced and promoted by H. Kopetz [17], testifies. A syn-
chronous implementations must be conservative, forcing the clock to run as slow
as the slowest computation/communication process (worst-case approach). The
overhead implied by time-triggered architectures and synchronous implementa-
tions is often enough to convince designers to use asynchronous communication
architectures such as the ones implemented by the busses mentioned above.

We argue that imposing an “homogeneous” design policy, such as the fully
synchronous approach, on complex designs will be increasingly difficult. Hetero-
geneity will manifest itself at the component level where different models of com-
putation may be used to represent component operation and, more frequently,
at different levels of abstraction, where, for example, a synchronous-language
specification of the design may be refined into a globally asynchronous locally
synchronous (GALS) architecture.

In this paper, we provide a mathematical framework for the heterogeneous
modeling of reactive and real-time systems to allow freedom of choice between
different synchronization policies at different stages of the design. The focus of
our framework is handling communication and coordination among heteroge-
neous processes in a mathematically sound way. Interesting work along similar
lines has been the Ptolemy project [13,22], the MoBIES project [1], the Model-
Integrated Computing (MIC) framework [16], and Interface Theories [12].

Our main contributions are a mathematical model for heterogeneous sys-
tem built as a variation of the “Tagged-Signal Model” of Lee and Sangiovanni-
Vincentelli [21] (in this paper, called the LSV model) and a set of theorems that
support effective techniques to generate automatically correct-by-construction
adaptors between designs formulated using different design policies. We illus-
trate these concepts with two applications that are of particular relevance for
the design of embedded systems: the deployment of a synchronous design over
a GALS architecture and over a so-called Loosely Time-Triggered Architecture
(Ltta) [7]. The idea followed in these examples is to abstract away from the
synchronous specifications the constraints among events of different signals due
to the synchronous paradigm and, then, to map the “unconstrained” design into
a different architecture characterized by a novel set of constraints among events.
In doing so, we must make sure that, when we remap the design, the intended
“behaviour” of the system is retained. To do so we introduce a formal notion

Heterogeneous Reactive Systems Modeling 37

of semantic preserving transformation. The constraints on coordination among
processes are captured by using the “tags” in the LSV model and the trans-
formations are handled with morphisms among tag sets. For more details, the
reader is referred to the extended version [5] of this paper.

2 Tagged Systems and Heterogeneous Systems

In this section, we build on the Lee and Sangiovanni-Vincentelli (LSV) “Tagged-
Signal Model” [21]. For reasons that will be clear in the sequel, we slightly deviate
from the original LSV model.

2.1 Tagged Systems

Symbol N denotes the set of positive integers. X �→ Y denotes the set of all
maps having X as domain, and whose range is contained in Y . Also, if (X,≤X)
and (Y,≤Y) are partial orders, a map f ∈ X �→ Y is called nondecreasing if

∀x, x′ ∈ X : x ≤X x′ ⇒ ¬[f(x′) <Y f(x)] (1)

Condition (1) expresses that a nondecreasing map cannot invert orders. However,
it can add or remove some orders. Thus, nondecreasing is weaker than increasing.

Definitions. We assume an underlying partially ordered set T of tags, we denote
by ≤ the partial oder on T , and we write τ < τ ′ iff τ ≤ τ ′ and τ �= τ ′. A clock is
a nondecreasing map h ∈ N �→ T . Assume an underlying set V of variables, with
domain D. For V ⊂ V finite, a V -behaviour, or simply behaviour, is an element:

σ ∈ V �→ N �→ (T ×D), (2)

meaning that, for each v ∈ V , the n-th occurrence of v in behaviour σ has tag
τ ∈ T and value x ∈ D. For v a variable, the map σ(v) ∈ N �→ (T ×D) is called
a signal. For σ a behaviour, an event of σ is a tuple (v, n, τ, x) ∈ V ×N×T ×D
such that σ(v)(n) = (τ, x); thus we can regard behaviours as sets of events. We
require that, for each v ∈ V , the 1st projection of the map σ(v) (it is a map
N �→ T) is nondecreasing. Thus it is a clock, we call it the clock of v in σ.

A tagged system is a triple P = (V, T , Σ), where V is a finite set of variables,
T is a tag set, and Σ a set of V -behaviours. If T1 = T2 =def T , the parallel
composition of systems P1 and P2 is by intersection:

P1 ‖P2 =def (V1 ∪ V2, T , Σ1 ∧Σ2), where
Σ1 ∧Σ2 =def

{
σ

∣
∣ σ|Vi

∈ Σi, i = 1, 2
}

,
(3)

and σ|W denotes the restriction of σ to a subset W of variables. The set T of
tags can be adjusted to account for different classes of systems.

38 A. Benveniste et al.

Synchronous Systems. To represent synchronous systems with our model,
take for T a totally ordered set, and require that all clocks are strictly increasing.
The tag index set T organizes behaviours into successive reactions, as explained
next. Call reaction a maximal set of events of σ with identical τ . Since clocks
are strictly increasing, no two events of the same reaction can have the same
variable. Regard a behaviour as a sequence of global reactions: σ = σ1, σ2, . . .,
with tags τ1, τ2, . . . ∈ T . Thus T provides a global, logical time basis. Particular
instances for T correspond to different views of synchronous systems:

– Taking T = N means that we assume some basic logical clock (the identity
map, from N to N), which is global to all considered systems, and all clocks
are sub-clocks of this basic one. This is a good model for closed systems.

– Now, take for T a totally ordered dense set—e.g., T = R, the set of real
numbers, or Q, the set of rational numbers. Then, for any given clock h, there
exists another clock k whose range has empty intersection with the range of h.
This models the fact that, for any given system, there exists another system
that is working while the former is sleeping; this is a suitable model for open
systems. In fact, adequate models for open systems are stuttering invariant
systems we define next. Call time change any bijective and strictly increasing
function ρ : T �→ T , and denote by RT the set of all time changes over T .
Then a synchronous system P = (V, T , Σ) is called stuttering invariant iff
it is invariant under time change, i.e., for every behaviour σ ∈ Σ and every
time change ρ ∈ RT , then σρ ∈ Σ holds, where

(v, n, τ, x) ∈ σρ ⇔def σ(v, n, ρ(τ), x) ∈ σ. (4)

Examples of stuttering invariant systems are the stallable processes of
latency-insensitive design [9], where T = N.

Timed Synchronous Systems. Timed synchronous systems are synchronous
systems in which physical time is available, in addition to the ordering of suc-
cessive reactions. Note that events belonging to the same reaction may occur
at different physical instants. For this case we take T = Tsynch × Tϕ, where
Tsynch indexes the reactions, and Tϕ is the physical time basis (e.g., Tϕ = R for
real-time).

Asynchronous Systems. The notion of asynchronicity is vague. Any system
that is not synchronous could be called asynchronous, but we often want to re-
strict somewhat this notion to capture particular characteristics of a model. In
this paper, we take a very liberal interpretation for an asynchronous system. If
we interpret a tag set as a constraint on the coordination of different signals of
a system and the integer n ∈ N as the basic constraint of the sequence of events
of the behaviour of a variable, then the most “coordination unconstrained” sys-
tem, the one with most degrees of freedom in terms of choice of coordination
mechanism, could be considered an ideal asynchronous system. Then an asyn-
chronous system corresponds to a model where the tag set does not give any

Heterogeneous Reactive Systems Modeling 39

information on the absolute or relative ordering of events. In more formal way,
take T = {.}, the trivial set consisting of a single element. Then, behaviours
identify with elements σ ∈ V �→ N �→ D.

Running example. This simple example will be used throughout the rest of
the paper to illustrate our results and their implications. Let P and Q be two
synchronous systems involving the same set of variables: b of type boolean, and
x of type integer. Each system possesses only a single behaviour, shown on the
right hand side of P : . . . and Q : . . ., respectively. Each behaviour consists of a
sequence of successive reactions, separated by vertical bars. Events sitting in the
same reaction can be seen aligned. Each reaction consists of an assignment of
values to a subset of the variables; a blank indicates the absence of the considered
variable in the considered reaction.

P :
b : t f t f t f . . .
x : 1 1 1 . . . , Q :

b : t f t f t f . . .
x : 1 1 1 . . .

One of the questions addressed in this paper is how to deploy a synchronous
design on a less constrained architecture. The general strategy we follow is to
eliminate first the constraints introduced by the synchronous assumption and
then to map the resulting asynchronous system on a less constrained architecture
that may range from asynchronous to relaxed versions of timed-triggered archi-
tectures. The desynchronization of a synchronous system like P or Q consists
in (1) removing the synchronization barriers separating the successive reactions,
and, then, (2) compressing the sequence of values for each variable, individually.
This yields:

Pα = Qα :
b : t f t f t f . . .
x : 1 1 1 . . .

where the subscript α refers to asynchrony. The reader may think that events
having identical index for different variables are aligned, but this is not the
case. In fact, as the absence of vertical bars in the diagram suggests, there is no
alignment at all between events associated with different variables.

Regarding desynchronization, the following comments are in order. Note that
P �= Q but Pα = Qα. Next, the synchronous system R defined by R = P ∪Q, the
nondeterministic choice between P and Q, possesses two behaviours. However,
its desynchronization Rα equals Pα, and possesses only one behaviour.

Now, we use the proposed framework to derive formal models for P, Q, and
Pα. For the synchronous systems P and Q, we take T = N to index the successive
reactions. P possesses a single behaviour (note the absence of x at tag 2n):

σ(b)(2n− 1) = (2n− 1, t) , σ(b)(2n) = (2n, f)
σ(x)(n) = (2n− 1, 1) (5)

For Q, we have (note the difference):

σ(b)(2n− 1) = (2n− 1, t) , σ(b)(2n) = (2n, f)
σ(x)(n) = (2n, 1) (6)

40 A. Benveniste et al.

For the asynchronous systems Pα = Qα, we take T = {.}, the trivial set with a
single element. The reason is that we do not need any additional time stamping
information. Thus, Pα = Qα possess a single behaviour:

σα(b)(2n− 1) = t, σα(b)(2n) = f, and σα(x)(n) = 1. (7)

Discussion. A proactive reader would immediately criticize the definition (2)
of behaviours. Our definition uses two indexing mechanisms, namely N, to order
events in each individual signal, and T , to order (time stamp) events globally
across signal boundaries. Of course, since the events of a signal are totally ordered
by their “time stamps”, their local index n results redundant. The redundancy
of the indexing is particularly visible in (5) and (6). The reason for introducing
the redundancy is related to the different semantics of the two orders: one is
intrinsic in the very notion of events of a signal, the other is related to the
constraints on event ordering due to the synchronous assumption. Decoupling
the two orders allows us to represent cleanly the desynchronization operation
and the deployment on more general architectures. We refer to [5] for a more
detail discussion with respect to the original LSV model.

2.2 Heterogeneous Systems

Assume a functional system specification using a synchronous approach, for sub-
sequent deployment over a distributed asynchronous architecture (synchronous
and asynchronous are considered in the sense of subsection 2.1). When we de-
ploy the design on a different architecture, we must make sure that the original
intent of the designer is maintained. This step is non trivial because the infor-
mation on what is considered correct behaviour is captured in the synchronous
specifications that we want to relax in the first place. We introduce the no-
tion of semantic-preserving transformation to identify precisely what is a correct
deployment. We present the idea with our running example:

Running example, cont’d. The synchronous parallel composition of P and Q,
defined by intersection: P ‖Q =def P ∩Q, is empty. The reason is that P and Q
disagree on where to put absences for the variable x. On the other hand, since
Pα = Qα, then Pα ‖Qα =def Pα∩Qα = Pα = Qα �= ∅. Thus, for the pair (P, Q),
desynchronization does not preserve the semantics of parallel composition, in
any reasonable sense. �
How to model that semantics is preserved when replacing the ideal synchronous
broadcast by the actual asynchronous communication? In the case of deployment
using the Ltta-protocol, we face the same issues, but with the occurrence of time
as an additional component of tags. In fact, an elegant solution was proposed by
Le Guernic and Talpin for the former GALS case [20]. We cast their approach
in the framework of tagged systems and we generalize it.

Heterogeneous Reactive Systems Modeling 41

Morphisms. For T , T ′ two tag sets, call morphism a map ρ : T �→ T ′ which is
nondecreasing and surjective 1. For ρ : T �→ T ′ a morphism, and σ ∈ V �→ N �→
(T ×D) a behaviour, replacing τ by ρ(τ) in σ defines a new behaviour having
T ′ as tag set, we denote it by

σρ, or by σ◦ρ. (8)

Performing this for every behaviour of a tag system P yields the tag system

Pρ. (9)

For T1
ρ1−→ T ρ2←− T2 two morphisms, define:

T1 ρ1×ρ2 T2 =def { (τ1, τ2) | ρ1(τ1) = ρ2(τ2) } . (10)

A case of interest is Ti = T ′
i × T , i = 1, 2, and the T ′

i are different. Then
T1 ρ1×ρ2 T2 identifies with the product T ′

1 × T × T ′
2 .

Desynchronization. For example, the desynchronization of synchronous systems
is captured by the morphism α : Tsynch �→ {.}, which erases all global timing
information (see Equations (5,6), and (7)).

Heterogeneous Parallel Composition. In this subsection we define the com-
position of two tagged systems Pi = (Vi, Ti, Σi), i = 1, 2, when T1 �= T2. This
definition is provided in two stages. For the first stage, we assume that T1 = T2.
For σi a behaviour of Pi, say that (σ1, σ2) is a unifiable pair, written

σ1 �� σ2 iff σ1|V1∩V2 = σ2|V1∩V2 .

For σ1 �� σ2, the unification of σ1 and σ2 is the behaviour σ1�σ2 having V1∪V2
as set of variables, and such that:

(σ1 � σ2)|Vi
= σi, i = 1, 2.

Now, return to the case T1 �= T2, and assume two morphisms T1
ρ1−→ T ρ2←− T2.

Write:

σ1 ρ1��ρ2 σ2 iff σ1◦ρ1 �� σ2◦ρ2. (11)

For (σ1, σ2) a pair satisfying (11), define

σ1 ρ1�ρ2 σ2 (12)

as being the set of events (v, n, (τ1, τ2), x) such that ρ1(τ1) = ρ2(τ2) =def τ
and (v, n, τ, x) is an event of σ1◦ρ1 � σ2◦ρ2. We are now ready to define the
heterogeneous conjunction of Σ1 and Σ2 by:

Σ1 ρ1∧ρ2 Σ2 =def {σ1 ρ1�ρ2 σ2 |σ1 ρ1��ρ2 σ2 } (13)
1 Strictly speaking, these are not morphisms of order structures. We use this word by

abuse of terminology.

42 A. Benveniste et al.

Finally, the heterogeneous parallel composition of P1 and P2 is defined by:

P1 (ρ1‖ρ2) P2 = (V1 ∪ V2 , T1 ρ1×ρ2 T2 , Σ1 ρ1�ρ2 Σ2) . (14)

We simply write (ρ1‖ instead of (ρ1‖ρ2) when ρ2 is the identity.

GALS and Hybrid Timed/Untimed Systems. To model the interaction
of a synchronous system with its asynchronous environment, take the het-
erogeneous composition P (α‖ A, where P = (V, Tsynch, Σ) is a synchronous
system, A = (W, {.}, Σ′) is an asynchronous model of the environment, and
α : Tsynch �→ {.} is the trivial morphism, mapping synchrony to asynchrony
(hence the special notation).

For GALS, take T1 = T2 = Tsynch, where Tsynch is the tag set of synchronous
systems. Then, take T = {.} is the tag set of asynchronous ones. Take α :
Tsynch �→ {.}, the trivial morphism. And consider P1 (α‖α) P2.

For timed/untimed systems, consider P (ρ‖ Q, where P = (V, Tsynch × Tϕ, Σ)
is a synchronous timed system, Q = (W, Tsynch, Σ′) is a synchronous but untimed
system, and ρ : Tsynch × Tϕ �→ Tsynch is the projection morphism.

3 Application to Correct Deployment

In this section we formalize the concept of semantics preserving and present a
general result on correct-by-construction deployment.

3.1 Preserving Semantics: Formalization

We are given a pair Pi = (Vi, Ti, Σi), i = 1, 2, such that T1 = T2, and a pair
T1

ρ−→ T ρ←− T2 of identical morphisms. We can consider two semantics:

The strong semantics : P1 ‖P2

The weak semantics : P1 (ρ‖ρ) P2.

We say that ρ is semantics preserving with respect to P1 ‖P2 if

P1 (ρ‖ρ) P2 ≡ P1 ‖P2. (15)

Running example, cont’d. The reader can check the following as an exercise:
P ‖Q = ∅, and, as we already discussed, Pα ‖Qα = Pα. Now we compute
P (α‖α) Q. From (12) we get that, using obvious notations, (σP , σQ) is a pair of
behaviours that are unifiable modulo desynchronization, i.e., σP α��α σQ. Then,
unifying these yields the behaviour σ such that:

∀n ∈ N : σ(b)(n) = ((n, n), vb) and σ(x)(n) = ((2n− 1, 2n), 1) (16)

where vb = t if n is odd, and vb = f if n is even. In (16), the expression for
σ(b)(n) reveals that desynchronizing causes no distortion of logical time for b,

Heterogeneous Reactive Systems Modeling 43

since (n, n) attaches the same tag to the two behaviours for unification. On
the other hand, the expression for σ(x)(n) reveals that desynchronizing actually
causes distortion of logical time for x, since (2n − 1, 2n) attaches different tags
to the two behaviours for unification. Thus P ‖Q = ∅, but P (α‖α) Q consists
of the single behaviour defined in (16). Hence, P (α‖α) Q �≡ P ‖Q in this case:
semantics is not preserved. �

3.2 A General Result on Correct Deployment

Here we analyse requirement (15). The following theorem holds (see (9) for the
notation Pρ used in this theorem):

Theorem 1. The pair (P1, P2) satisfies condition (15) if it satisfies the follow-
ing two conditions:

∀i ∈ {1, 2} : (Pi)ρ is in bijection with Pi (17)
(P1 ‖ P2)ρ = (P1)ρ ‖ (P2)ρ (18)

Comments. The primary application of this general theorem is when P and Q
are synchronous systems, and ρ = α is the desynchronization morphism. This
formalizes GALS deployment. Thus, Theorem 1 provides sufficient conditions to
ensure correct GALS deployment.

Conditions (17) and (18) are not effective because they involve (infinite) be-
haviours. In [3,4], for GALS deployment, condition (17) was shown equivalent to
some condition called endochrony, expressed in terms of the transition relation,
not in terms of behaviours. Similarly, condition (18) was shown equivalent to
some condition called isochrony, expressed in terms of the pair of transition re-
lations, not in terms of pairs of sets of behaviours. Endochrony and isochrony are
model checkable and synthesizable, at least for synchronous programs involving
only finite data types (see [3,4] for a formal definition of these conditions).

In the same references, it was claimed that the two conditions (17) and (18)
“mean” the preservation of semantics for a GALS deployment of a synchronous
design. Several colleagues pointed to us that they did not see why this claim
should be obvious. In the subsequent paper [2], an attempt was provided to fill
this gap, with no real formalization, however. Theorem 1 provides the missing
formal justification for this claim.

Proof. Inclusion ⊇ in (15) always hold, meaning that every pair of behaviours
unifiable in the right hand side of (15) is also unifiable in the left hand side.
Thus it remains to show that, if the two conditions of Theorem 1 hold, then
inclusion ⊆ in (15) does too. Now, assume (17) and (18). Pick a pair (σ1, σ2)
of behaviours which are unifiable in P1 (ρ‖ρ) P2. Then, by definition of (ρ‖ρ) ,
the pair ((σ1)ρ, (σ2)ρ) is unifiable in (P1)ρ ‖ (P2)ρ. Next, (18) guarantees that
(σ1)ρ � (σ2)ρ is a behaviour of (P1 ‖P2)ρ. Hence there must exist some pair
(σ′

1, σ
′
2) unifiable in P1 ‖ P2, such that (σ′

1 � σ′
2)ρ = (σ1)ρ � (σ2)ρ. Using the

same argument as before, we derive that ((σ′
1)ρ, (σ′

2)ρ) is also unifiable with
respect to its associated (asynchronous) parallel composition, and (σ′

1)ρ�(σ′
2)ρ =

44 A. Benveniste et al.

(σ1)ρ� (σ2)ρ. But (σ′
1)ρ is the restriction of (σ′

1)ρ� (σ′
2)ρ to its events labeled by

variables belonging to V1, and similarly for (σ′
2)ρ. Thus (σ′

i)ρ = (σi)ρ for i = 1, 2
follows. Finally, using (17), we know that if (σ′

1, σ
′
2) is such that, for i = 1, 2:

(σ′
i)ρ = (σi)ρ, then: σ′

i = σi. Hence (σ1, σ2) is unifiable in P1 ‖P2. �
Corollary 1. Let P1 and P2 be synchronous systems whose behaviors are
equipped with some equivalence relation ∼, and assume that P1 and P2 are closed
with respect to ∼. Then, the pair (P1, P2) satisfies condition (15) if it satisfies
the following two conditions:

∀i ∈ {1, 2} : (Pi)ρ is in bijection with Pi/∼ (19)
(P1 ‖ P2)ρ = (P1)ρ ‖ (P2)ρ (20)

where Pi/∼ is the quotient of Pi modulo ∼.

Proof. Identical to the proof of Theorem 1 until the paragraph starting with
“Finally”. Finally, using (19), we know that if (σ′

1, σ
′
2) is such that, for i = 1, 2:

(σ′
i)ρ = (σi)ρ, then: σ′

i ∼ σi. Hence (σ1, σ2) is unifiable in P1 ‖P2, since all
synchronous systems we consider are closed under ∼. �
This result if of particular interest when ∼ is the equivalence modulo stuttering,
defined by (4).

Running example, cont’d. Since P and Q possess a single behaviour, they clearly
satisfy condition (17). However, the alternative condition (18) is violated: the left
hand side is empty, while the right hand side is not. This explains why semantics
is not preserved by desynchronization, for this example. In fact, it can be shown
that the pair (P, Q) is not isochronous in the sense of [3,4]. More examples and
counter-examples can be found in [5].

Discussion. In [10] the following result was proved. For P and Q two syn-
chronous systems such that both P , Q, and P ‖Q are functional, clock-
consistent, and with loop-free combinational part, then P ‖Q can be seen as
a Kahn network—for our purpose, just interpret Kahn networks as functional
asynchronous systems. This result applies to functional systems with inputs and
outputs, it gives no help for partial designs or abstractions. Our conditions of
endochrony and isochrony allows us to deal even with partial designs, not only
with executable programs. Hence, they do represent effective techniques that
can be used as part of the formal foundation for a successive-refinement design
methodology.

As said before, this paper extends the ideas of [20] on desynchronization. A
more naive “token-based” argument to explain GALS deployment is also found
in [6], Sect. V.B. This argument is closely related to the use of Marked Graphs
in [11] to justify GALS desynchronization in hardware.

Another example can be found in theory of latency-insensitive design [9]:
here, if P ‖Q is a specification of a synchronous system and P and Q are stallable
processes, then it is always possible to automatically derive two corresponding

Heterogeneous Reactive Systems Modeling 45

Fig. 1. The Ltta-protocol

patient processes Pp and Qp that seamlessly compose to give a system imple-
mentation Pp ‖Qp that preserves semantics while being also robust to arbitrary,
but discrete, latency variations between P and Q. Again, Pp ‖Qp is a correct
deterministic executable system made of endochronous sub-systems. In fact, as
the notion of stallable system and patient system correspond respectively to the
notion of stuttering-invariant system and endochronous system, the extension
to Theorem 1 subsumes the result presented in [9] on the compositionality of
latency-insensitivity among patient processes.

4 Deploying Timed Synchronous Specifications over Ltta

Loosely Time-Triggered Architectures (Ltta) were introduced in [7] as a weak-
ening of H. Kopetz’ tta. We revisit the results of [7] and complete them, by
using the results from the previous section.

4.1 The Ltta-Protocol and Its Properties

See Figure 1 for an illustration of this protocol (the three watches shown indi-
cate a different time, they are not synchronized). We consider three devices,
the writer, the bus, and the reader, indicated by the superscripts (.)w, (.)b,
and (.)r, respectively. Each device is activated by its own, approximately pe-
riodic, clock. The different clocks are not synchronized. In the following spec-
ification, the different sequences written, fetched, or read, are indexed by the
set N = {1, 2, 3, . . . , n, . . .} of natural integers, and we reserve the index 0 for
the initial conditions, whenever needed. Set N will serve to index the successive
events of each individual signal, exactly as in our model of Section 2.1. Thus our
informal description below is in agreement with our formal model. On the other
hand, we believe that this informal description is quite natural.

The writer: At the time tw(n) of the n-th tick of his clock, the writer generates
a new value xw(n) and a new alternating flag bw(n) with:

bw(n) =
{

false if n = 0
not bw(n− 1) otherwise

46 A. Benveniste et al.

and stores both in its private output buffer. Thus at any time t, the writer’s
output buffer content mw is the last value that was written into it, that is the
one with the largest index whose tick occurred before t:

mw(t) = (xw(n), bw(n)) , where n = sup{n′ | tw(n′) < t} (21)

The bus: At the time tb(n) of its n-th clock tick, the bus fetches the value in
the writer’s output buffer and stores it, immediately after, in the reader’s input
buffer. Thus, at any time t, the reader’s input buffer content offered by the bus,
denote it by mb, is the last value that was written into it, i.e., the one written
at the latest bus clock tick preceding t:

mb(t) = mw(tb(n)) , where n = sup{n′ | tb(n′) < t} (22)

The reader: At the time tr(n) of its n-th clock tick, the reader copies the value
of its input buffer into auxiliary variables x(n) and b(n):

(x(n), b(n)) = mb(tr(n))

Then, the reader extracts from the x sequence only the values corresponding
to the indices for which b has alternated. This can be modeled thanks to the
counter c, which counts the number of alternations that have taken place up to
the current cycle. Hence, the value of the extracted sequence at index k is the
value read at the earliest cycle when the counter c exceeded k:

c(n) =

0 if n = 0
c(n− 1) + 1 if b(n) �= b(n− 1)
c(n− 1) otherwise

xr(k) = x(n) , where k = c(n) (23)

Call Ltta-protocol the protocol defined by the formulas (21,22,23).

Theorem 2 ([7]). Let the writing/bus/reading be systems with physically pe-
riodic clocks of respective periods w/b/r. Then, the Ltta-protocol satisfies the
following property whatever the written input sequence is:

∀k : xr(k) = xw(k), (24)

iff the following conditions hold:

w ≥ b , and
⌊w

b

⌋
≥ r

b
, (25)

where, for x a real, �x� denotes the largest integer ≤ x.

Condition (24) means that the bus provides a coherent system of logical clocks.
Note that, since w ≥ b, then w/2b < �w/b� follows. On the other hand, �w/b� ≤
w/b, and �w/b� ∼ w/b for w/b large. Hence, for a fast bus, i.e. b ∼ 0, the
conditions (25) of Theorem 2 reduce to w � b, w > r. In [7], Theorem 2 is

Heterogeneous Reactive Systems Modeling 47

extended to clocks subject to time-varying jitter, assuming some bounds for this
jitter, and the case of multiple-users is briefly discussed.

Let us now consider a more involved situation, where several units commu-
nicate, and where there are data dependencies between communicated values. A
simple example would be that the reader, upon receiving x(n) has to send back
y(n) = f(x(n)) to the writer, by using the same protocol. Thus, the reader has
also to maintain its own br and to update an output buffer mr. It now computes,
at the time tr(n) of its n-th clock tick:

(x(n), b(n)) = mb(tr(n))

c(n) =

0 if n = 0
c(n− 1) + 1 if b(n) �= b(n− 1)
c(n− 1) otherwise

xr(k) = x(n)
yr(k) = f(xr(k))

br(k) =
{

false if k = 0
not br(k − 1) otherwise

mr(tr(n)) = (yr(k), br(k)) , where k = c(n)

This means that the computations indexed by k are only performed when the
counter is increased, i.e., when the reader sees a bit alternation coming from the
writer.

Timing issues: Theorem 2 says that, for the sake of protocol correctness, the
reader should be faster than the writer. But now, the reader is also a writer and
conversely. Hence, we need to distinguish between the period ri at which any
of these actors (reader or writer) i reads, and the period wi at which the same
actor i writes (updates its output buffer). This yields the following condition:

∀i, j,
⌊wi

b

⌋
≥ rj

b

Comparison with Lamport’s logical clocks [18]: When several communicating
actors are involved, the Ltta protocol is very reminiscent of Lamport’s logical
clock synchronization: in Lamport’s protocol, each actor maintains a logical clock
and when sending a message, time-stamps it with this clock. When receiving a
message, the receiver compares its own clock with the time-stamp of the message.
If its own clock is late with respect to the received time-stamps, it updates it. We
could have stated the Ltta protocol similarly, by time-stamping the messages
by the values of the counter c. Yet, the problem with Lamport’s time-stamps is
that they are ever increasing and, thus, subject to overflow. Here, the knowledge
of periods and the properties of the Ltta architecture allow us to abstract these
time-stamps into boolean ones:

b(n) =
{

false if c(n) = 0 modulo 2
true otherwise

48 A. Benveniste et al.

4.2 Correct Ltta Deployment

Here, our work is slightly more involved. The reason is that the systems con-
sidered also involve physical time. And they involve physical time in two forms:
absolute physical time and approximate physical time as provided by the imper-
fect watches. More precisely, in analyzing the deployment of synchronous designs
over Ltta, the following notions need to be considered:

– Synchronous logical time to index the successive reactions of the synchronous
specification.

– Physical global time as provided by an ideal and perfect clock. Corresponding
dates can be used as part of the system specification.

– Actual local physical time as provided by each quasi-periodic
writer/reader/bus clock (recall these are only loosely synchronized).

These are different “times”, for combination and use at different stages of the
design. As expected, heterogeneous systems will solve the problem.

The Ideal Design. Our reference is the so-called ideal design. It consists of a
pair of timed synchronous specifications (P1, P2) for deployment over an ideal
timed synchronous channel. The ideal channel is denoted by Id , it implements
the logically instantaneous broadcast between P1 and P2, with some constant
physical delay δ regarding dates. We adopt the following notational convention:
if x1 is output by P1 toward P2, the corresponding input for P2 is denoted by
x2, and vice versa. Then, Id implements x2 := x1 with physical delay δ. Since
we consider timed synchronous systems, we take as tag set: Tsynch × Tϕ.

The Actual Deployment. It is modeled by P1 (α‖ Ltta ‖α) P2, where α is
the canonical date-preserving desynchronization morphism:

α : Tsynch × Tϕ �−→ {.} × Tϕ,

and Ltta, the model of the Ltta medium, is a timed and asynchronous system
with tag set {.}×Tϕ. By Theorem 2, Ltta preserves the sequence of values of in-
dividual signals (this is the flow invariance condition of [20]). Regarding timing,
if we assume bounded delay for the bus and bounded jitter due to asynchrony in
sampling, then Ltta communication occurs with a nondeterministic delay within
the bounds [δ − ε, δ + η], where δ is the delay of the ideal medium. Semantics
preserving, from ideal design to actual implementation, is captured as follows:

(a) The preservation of the functional semantics is modeled by the following
request, which the reader should compare to relation (15):

P1 ((α,t)‖t) Ltta (t‖(t,α)) P2 ≡ P1 (t‖t) Id (t‖t) P2. (26)

In (26), t denotes the morphism consisting of the removal of physical time
from the tag, α is our desynchronization morphism introduced before, and

Heterogeneous Reactive Systems Modeling 49

the pair (α, t) denotes the morphism consisting in jointly removing physical
time and desynchronizing. Thus the right hand side of (26) is the reference
untimed semantics of our design, whereas the left hand side is the actual
untimed deployment semantics. Thus (26) is indeed the requirement of pre-
serving the functional semantics.

(b) Regarding timing aspects, we consider separately the bounds [δ − ε, δ + η],
for the timing behaviour of Ltta for transmitting each individual message,
asynchronously.

The following theorem holds. It refines Theorem 1 for the case of mixed syn-
chronous/timed and asynchronous/timed systems. It relies on the property

Lttat = Id (α,t),

which is a reformulation of property (24) in Theorem 2. Its proof is omitted
because it is a mild variation of the proof of Theorem 1.

Theorem 3. The pair (P1, P2) satisfies condition (26) if it satisfies the follow-
ing two conditions:

∀i ∈ {1, 2} : (Pi)(α,t) is in bijection with (Pi)t (27)
(
P1 (t‖t) Id (t‖t) P2

)
α
≡ (P1)(α,t) ‖ Id(α,t) ‖ (P2)(α,t) (28)

Discussion. Theorem 3 gives sufficient conditions for semantics preserving, that
are independent from the precise form of Ltta, because only the ideal channel
Id is involved. The conditions that guarantee semantics preserving are (almost)
identical to those of Th. 1, thus endo/isochrony apply as well to this case.

5 Concluding Remarks

In this paper, we proposed a novel mathematical framework (an extension to
the LSV tagged signal model) for handling heterogeneous reactive systems. The
interest of this theory rests on the theorems it can provide. These theorems
support effective techniques to generate automatically correct-by-construction
adaptors, between two designs supported by different coordination paradigms.

References

1. R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra,
G. J. Pappas and O. Sokolsky. Hierarchical Modeling and Analysis of Embedded
Systems. Proc. of the IEEE, 91(1), 11–28, Jan. 2003.

2. A. Benveniste. Some synchronization issues when designing embedded systems
from components. In Proc. of 1st Int. Workshop on Embedded Software, EM-
SOFT’01, T.A. Henzinger and C.M. Kirsch Eds., LNCS 2211, 32–49, 2001.

3. A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony.
In J.C.M. Baeten and S. Mauw, editors, CONCUR’99, Concurrency Theory, 10th
Intl. Conference, LNCS 1664, pages 162–177. Springer, Aug. 1999.

50 A. Benveniste et al.

4. A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in dataflow syn-
chronous languages: specification & distributed code generation. Information and
Computation, 163, 125–171 (2000).

5. A. Benveniste, L. P. Carloni, P. Caspi, and A. L. Sangiovanni-Vincentelli. Heteroge-
neous reactive systems modeling and correct-by-construction deployment. Techni-
cal Report UCB/ERL M03/23, Electronics Research Lab, University of California,
Berkeley, CA 94720, June 2003.

6. A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Si-
mone. The Synchronous Language Twelve Years Later. Proc. of the IEEE,
91(1):64–83, January 2003.

7. A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand, J-P. Talpin and S. Tripakis.
A Protocol for Loosely Time-Triggered Architectures. In Embedded Software. Proc.
of the 2nd Intl. Workshop, EMSOFT 2002, Grenoble, France, Oct. 2002.

8. G. Berry. The Foundations of Esterel. MIT Press, 2000.
9. L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of

Latency-Insensitive Design. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 20(9):1059–1076, September 2001.

10. P. Caspi, “Clocks in Dataflow languages”, Theoretical Computer Science, vol.
94:125–140, 1992.

11. J. Cortadella, A. Kondratyev, L. Lavagno, and C. Sotiriou. A concurrent model
for de-synchronization. In Proc. Intl. Workshop on Logic Synthesis, May 2003.

12. L. de Alfaro and T.A. Henzinger. Interface Theories for Component-Based Design.
In Proc. of 1st Int. Workshop on Embedded Software, EMSOFT’01, T.A. Henzinger
and C.M. Kirsch Eds., LNCS 2211, 32–49, Springer Verlag, 2001.

13. J. Eker, J.W. Janneck, E.A. Lee, J. Liu, J. Ludwig, S. Neuendorffer, S. Sachs, and
Y. Xiong. Taming heterogeneity–The Ptolemy approach. Proc. of the IEEE, 91(1),
127–144, Jan. 2003.

14. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The Synchronous Data Flow
Programming Language LUSTRE. Proc. of the IEEE, 79(9):1305–1320, Sep. 1991.

15. D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8(3):231–274, June 1987.

16. G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-Integrated Develop-
ment of Embedded Software. Proc. of the IEEE, 91(1), 127–144, Jan. 2003.

17. H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. Kluwer Academic Publishers. 1997. ISBN 0-7923-9894-7.

18. L. Lamport. Time, clocks and the ordering of events in a distributed system. Com-
munication of the ACM, 21:558–565, 1978.

19. P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-time
applications with SIGNAL. Proc. of the IEEE, 79(9):1326–1333, Sep. 1991.

20. P. Le Guernic, J.-P. Talpin, J.-C. Le Lann, Polychrony for system design. Journal
for Circuits, Systems and Computers. World Scientific, April 2003.

21. E.A. Lee and A. Sangiovanni-Vincentelli. A Framework for Comparing Models of
Computation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 17(12), 1217–1229, Dec. 1998.

22. E.A. Lee and Y. Xiong. System-Level Types for Component-Based Design. In
Proc. of 1st Int. Workshop on Embedded Software, EMSOFT’01, T.A. Henzinger
and C.M. Kirsch Eds., LNCS 2211, 32–49, Springer Verlag, 2001.

23. M. Mokhtari and M. Marie. Engineering Applications of MATLAB 5.3 and
SIMULINK 3. Springer Verlag, 2000.

	Introduction
	Tagged Systems and Heterogeneous Systems
	Tagged Systems
	Heterogeneous Systems

	Application to Correct Deployment
	Preserving Semantics: Formalization
	A General Result on Correct Deployment

	Deploying Timed Synchronous Specifications over {sc Ltta}
	The {sc Ltta}-Protocol and Its Properties
	Correct {sc Ltta} Deployment

	Concluding Remarks

