
Heterogeneous Reactive Systems Modeling:
Capturing Causality and the Correctness

of Loosely Time-Triggered Architectures (LTTA) ∗

Albert Benveniste
†

Benoı̂t Caillaud Luca P. Carloni Paul Caspi
Alberto L. Sangiovanni-Vincentelli

ABSTRACT
We present an extension of a mathematical framework pro-
posed by the authors to deal with the composition of hetero-
geneous reactive systems. Our extended framework encom-
passes diverse models of computation and communication
such as synchronous, asynchronous, causality-based partial
orders, and earliest execution times. We introduce an al-
gebra of tag structures and morphisms between tag sets to
define heterogeneous parallel composition formally and we
use a result on pullbacks from category theory to handle
properly the case of systems derived by composing many
heterogeneous components. The extended framework al-
lows us to establish theorems, from which design techniques
for correct-by-construction deployment of abstract specifica-
tions can be derived. We illustrate this by providing a com-
plete formal support for correct-by-construction distributed
deployment of a synchronous design specification over an
Ltta medium.

Categories and Subject Descriptors: C.3.3 [Special-
purpose and application-based systems]: Real-time and em-
bedded systems.

General Terms: Theory.

Keywords: Heterogeneous reactive systems, distributed
deployment, GALS.

∗This research was supported in part by the European Com-
mission under the projects COLUMBUS, IST-2002-38314,
and ARTIST, IST-2001-34820, by the NSF under the project
ITR (CCR-0225610), and by the GSRC.
†A. Benveniste and B. Caillaud are with Irisa/Inria, Cam-
pus de Beaulieu, 35042 Rennes cedex, France; Email:
{Albert.Benveniste,Benoit.Caillaud}@irisa.fr;
Web pages: www.irisa.fr/sigma2/benveniste/ and
www.irisa.fr/prive/Benoit.Caillaud/. L. Carloni
and A. Sangiovanni-Vincentelli are with the EECS
Department of U.C. Berkeley, Berkeley, CA 94720;
Email: {lcarloni,alberto}@eecs.berkeley.edu; Web:
www-cad.eecs.berkeley.edu/∼{lcarloni,alberto};
P. Caspi is with Verimag, Centre Equation, 2, rue de
Vignate, F-38610 Gieres, Email: caspi@imag.fr; Web:
www-verimag.imag.fr/∼caspi.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’04,September 27–29, 2004, Pisa, Italy.
Copyright 2004 ACM 1-58113-860-1/04/0009 ...$5.00.

1. INTRODUCTION
Heterogeneity is a typical characteristic of embedded sys-

tems: it naturally manifests itself at the component level
where different models of computation may be used to repre-
sent component operation and, more frequently, at different
levels of abstraction, where, for example, a synchronous-
language specification of the design may be refined into a
globally asynchronous locally synchronous (GALS) archi-
tecture. Having a mathematical framework for the het-
erogeneous modeling of reactive systems gives freedom of
choice between different synchronization policies at differ-
ent stages of the design process and provides a solid foun-
dation to handle formally communication and coordination
among heterogeneous components. Interesting work along
similar lines has been the Ptolemy project [9, 12], the Mo-
BIES project [1], the Model-Integrated Computing (MIC)
framework [13], and Interface Theories [10].

In [5] we introduced Tagged Systems as a mathematical
model for composing heterogeneous reactive systems. This
model is a special case of the Tagged-Signal Model proposed
by Lee and Sangiovanni-Vincentelli’s [15] (simply referred
in the sequel as the LSV model). Common to both ap-
proaches is the concept of tags. Tags are used to mark the
events of the signals of a system for various purposes. These
include indexing the evolution in time (time stamping) of
a signal and expressing relations among signal events such
as coordination in time (synchrony, asynchrony) and causal
dependency. The LSV model is not itself a model of compu-
tation or a “grand unified model” but rather a denotational
framework to analyze and compare important properties of
various models of computations. In the LSV model a system
is specified as a set of behaviours, which are sets of events.
Each event is associated to a signal and characterized by a
data value and a tag.

In developing tagged systems we have built on top of the
LSV model. Since we focused on providing a mathematical
tool to guide the design of reactive and real-time embedded
systems through the assembly of heterogeneous components,
we restricted the generality of the LSV model to a particular
subset. This subset represents a powerful tool to analyze the
design process while it progresses from the system specifica-
tion to the final implementation through a set of refinement
steps. Using tags we can easily express heterogeneous mod-
els of computation. Components of different nature present
different tag sets and we can formalize their composition
by resolving tags and values of the interface signals (unifi-
cation process). This allows us to capture communication

220

and coordination policies among the components at various
levels of abstraction from specification to implementation.
In particular, we can formalize the conditions under which
the implementation of a synchronous design on distributed
loosely-synchronized architecture maintains the original be-
haviour, i.e. the implementation is semantics-preserving.

This paper extends our previous work on tagged systems [5]
in three directions:

• Originally, we restricted ourselves to a model in which
parallel composition is by intersection, i.e. unifiable
events of each component must have identical vari-
able, data value, and tag. While this restriction has
allowed us to handle semantic-preserving deployment
on GALS architectures, it does not cover all cases of
interest. For example, causality relations, scheduling
constraints, or earliest execution times are not com-
patible with parallel composition by intersection. Yet,
these are all very important aspects to consider when
implementing an embedded system. To capture them,
we propose here an extension of tagged systems where
the unification rule for tags is itself parameterized.

• In [5], we provided a first set of theorems on the preser-
vation of semantics during distributed deployment. In
this paper, we further elaborate on this by introducing
an algebra of tag structures that allows us to formally
define heterogeneous systems. By using morphisms in
this algebra and a result on pullbacks from category
theory we show how to extend our previous results
to the case of systems derived by composing multiple
(more than two) heterogeneous components.

Note that this extension has led us to modify even the
bases of our model as presented in [5]. The search
for uniformity and compositionality obliged us to de-
fine tag morphisms that be true morphisms, i.e., keep
their properties through composition (which was not
the case of the previous proposal). The result is a more
uniform and (seemingly) elegant proposition.

• Finally, to show the use of the theory and prove the
effectiveness of the companion correct-by-construction
methodology, we apply the proposed framework to a
fully comprehensive study of deploying a synchronous
specification on a loosely time triggered architecture
(Ltta) [5, 6]. This architecture is an important con-
cept developed in conjunction with the aerospace in-
dustry where a precise notion of time and synchronous
events cannot be guaranteed on the field due to the
distributed nature of the target architecture.

2. TAGGED SYSTEMS
In this section, we first present a summary of the LSV

tagged signal model and then we define our tagged systems
and their homogeneous parallel composition.

Throughout this paper, N = {1, 2, . . . } denotes the set of
positive integers; N is equipped with its usual total order
≤. X 7→ Y denotes the set of all partial functions from X
to Y .

2.1 The Original LSV Model
We assume an underlying partially ordered set T of tags,

we denote by ≤ the partial oder on T , and we write τ < τ ′

iff τ ≤ τ ′ and τ 6= τ ′. Assume also an underlying set V of
variables, with domain D. Elements of T × D are called
events, and subsets of events are called signals. Thus the
set of all signals is S = P(T ×D). Isomorphically, we also
have S = T 7→ P(D).

Tagged systems. In the original LSV model, a tagged
system is simply a subset of the set V 7→ S of all behaviours,
i.e., functions mapping variables to signals.

Parallel composition. In the original LSV model, parallel
composition is defined by intersection for tagged systems
having identical tag sets.

Discussion. Tags are used to capture relations between
events. If the tag set is the set of real numbers, then we
can think of this set as time and the induced ordering rep-
resents the sequence of events in a signal each with its time
of occurrence. If the tag set is the set of natural numbers,
then the induced ordering represents “logical” time, i.e., the
sequencing of events with no notion of “when” the events
occur. This generality allows representing different models
of computation and describe their relationship. Of particu-
lar interest is the use of tags in systems that are described
by a set of signals. In that case, relations among tags of dif-
ferent signals are useful to represent causality relationships
that are more complex than the simple causality that occurs
when we think of a single signal.

The flexibility of a tag signal model is ideal to represent
all phases of a design from specification to implementation.
In this case we can march through the various levels of ab-
straction and understand the refinement of tag sets as going
from an “untimed” specification, where tags are minimally
constrained, to a timed implementation, where tags corre-
spond to real time. As we proceed through the intermediate
levels, we can capture synchronization policies as additional
constraints on the tags of different signals. This flexibility
has a price: as in many cases, a very general model is deno-
tational and not operational, i.e., the model offers little help
in synthesis and other automatic transformations from one
level of abstraction to another. In addition, because of its
elegant simplicity, we must store all the intermediate models
to keep track of the various transformations of the design.

In this paper we restrict ourselves to a less general model
of tags that is suited to embedded and reactive systems,
where each individual variable takes a totally ordered se-
quence of values.

In the original LSV model, parallel composition is classi-
cally based on the common notion of parallel composition by
intersection. This means that two signals can be unified if
they are identical (identical tags and identical data at each
event); and two behaviours can be unified if they are identi-
cal. Then, unification is by superimposition. In this paper,
we shall relax the request that unifiability corresponds to
the equality of tags and we replace it with a notion of pa-
rameterizable unifiability that is modeled through a partial
order relation. This becomes the key for capturing diverse
models of computation.

2.2 Tagged Systems and Their (Homogeneous)
Parallel Composition

If (X,≤X) and (Y,≤Y) are partial orders, f ∈ X 7→ Y is
called increasing if f(≤X) ⊆≤Y , i.e., ∀x, x′ ∈ X : x ≤X x′

⇒ f(x) ≤Y f(x′).

221

Tag structures. A tag structure is a triple (T ,≤,v), where
T is a set of tags, and ≤ and v are two partial orders.

Partial order ≤ relates tags seen as time stamps. Call a
clock any increasing function (N,≤) 7→ (T ,≤).

Partial order v, called the unification order, defines how
to unify tags and is essential to express coordination among
events. Write τ1 ./ τ2 to mean that there exists τ ∈ T such
that τi v τ . We assume that any pair (τ1, τ2) of tags, such
that τ1 ./ τ2 holds, possesses an upper bound. We denote
it by τ1 t τ2. In other words, (T ,v) is a sup-semi-lattice.
We call ./ and t the unification relation and unification
map, respectively.

We assume that unification is causal with respect to par-
tial order of time stamps: the result of the unification can-
not occur prior in time than its constituents. Formally, if
τ1 ./ τ2 is a unifiable pair then τi ≤ (τ1 t τ2), for i = 1, 2.
Equivalently:

∀τ, τ ′ : τ v τ ′ ⇒ τ ≤ τ ′. (1)

Condition (1) has the following consequence: if τ1 ≤ τ ′1,
τ2 ≤ τ ′2, τ1 ./ τ2, and τ ′1 ./ τ ′2 together hold, then
(τ1 t τ2) ≤ (τ ′1 t τ ′2) must also hold. This ensures that
the system obtained via parallel composition preserves the
agreed order of its components.

Tagged systems. Let V be an underlying set of variables
with domain D. For V ⊂ V finite, a V -behaviour, or simply
behaviour, is an element:

σ ∈ V 7→ N 7→ (T ×D), (2)

meaning that, for each v ∈ V , the n-th occurrence of v in
behaviour σ has tag τ ∈ T and value x ∈ D. For v a variable,
the map σ(v) ∈ N 7→ (T × D) is called a signal. For σ a
behaviour, an event of σ is a tuple (v, n, τ, x) ∈ V ×N×T ×D
such that σ(v)(n) = (τ, x). Thus we can regard behaviours
as sets of events. We require that, for each v ∈ V , the first
projection of the map σ(v) (it is a map N 7→ T) is increasing
with respect to ≤. Thus it is a clock and we call it the clock
of v in σ. A tagged system is a triple P = (V, T , Σ), where
V is a finite set of variables, T is a tag structure, and Σ a
set of V -behaviours.

Homogeneous parallel composition. Consider two tag-
ged systems P1 = (V1, T1, Σ1) and P2 = (V2, T2, Σ2) with
identical tag structures T1 = T2 = T . Let t be the uni-
fication function of T . For two events e = (v, n, τ, x) and
e′ = (v′, n′, τ ′, x′), define

e ./ e′ iff v = v′, n = n′, τ ./ τ ′, x = x′, and

e ./ e′ ⇒ e t e′ =def (v, n, τ t τ ′, x).

The unification map t and relation ./ extend point-
wise to behaviours. Then, for σ a V -behaviour and σ′ a
V ′-behaviour, define, by abuse of notation:

σ ./ σ′ iff σ|V ∩V ′ ./ σ′|V ∩V ′ ,

and then

σtσ′ =def

(
σ|V ∩V ′ t σ′|V ∩V ′

)
∪ σ|V \V ′ ∪ σ′|V ′\V .

where σ|W denotes the restriction of behaviour σ to the vari-
ables of W . Finally, for Σ and Σ′ two sets of behaviours,
define their conjunction

Σ ∧ Σ′ =def

{
σtσ′ | σ ∈ Σ, σ′ ∈ Σ′ and σ ./ σ′

}
(3)

The homogeneous parallel composition of P1 and P2 is

P1 ‖P2 =def (V1 ∪ V2, T , Σ1 ∧ Σ2) (4)

2.3 The Tagged System Model as an LSV Model?
At first glance, our model can be seen as a particular

case of the LSV model. This is obtained by considering
deterministic signals and composite tags with one special
component called “natural tags”:

Deterministic signals. In the original LSV setting a signal
can take nondeterministically several values at a given tag.
If we want to restrict to deterministic signals, the possible
outcome at a given tag is either a single value or no value at
all. We then move to S = T 7→ D, where, now, 7→ denotes
partial maps.

Composite tags. When tags are composite, for instance
T = T1 ×T2, we get S = T1 ×T2 7→ D. This is known to be
isomorphic to S = T1 7→ (T2 7→ D).

Natural tags. Finally, taking T1 = N yields seemingly
exactly our model of signals: S = N 7→ (T 7→ D).

Discussion. Thus, our model seems less general than the
LSV model in that we allow only for deterministic signals
and tag sets of the special form T = N × T2, where T2 is
arbitrary.

However, this analysis is superficial and does not properly
takes the underlying partial orders into account. The point
is that the usual partial order associated with the Cartesian
product of partial orders is the component-wise order:

(n1, t1) ≤ (n2, t2)⇔ (n1 ≤ n2) ∧ (t1 ≤ t2)

However, this composite order is symmetrical and this does
not match the intent of our model: in our model, the order
on N and the order on T2 do not play a symmetrical role: the
former is local to each variable, whereas the latter is global
to all variables. In particular, we have seen that taking T2 =
N yields synchronous systems, where T2 indexes successive
reactions.

Finally, taking a closer look reveals that our model cannot
be considered simply as a special case of the LSV one.

2.4 Modeling with Tags
The concepts of tags allows us to express various mod-

els of computation as illustrated by the following examples.
Further, tags facilitate the combination of diverse models of
computation to model heterogeneous systems as discussed
in Section 3.

We first discuss the case of parallel composition by inter-
section, with synchronous, asynchronous, and time-triggered
systems as particular instances. Then, by making the uni-
fication rule for tags parameterized, we show how to deal
with causality relations, scheduling constraints, and earliest
execution times defined on each of the components.

Parallel composition by intersection of tagged systems cor-
responds to the following situation:

• the tag set T is arbitrary;

• the unification function is such that τ ./ τ ′ iff τ = τ ′,
and τ t τ ′ =def τ .

Modeling synchronous systems, asynchronous systems, and
timed systems, with this framework is extensively discussed
in [5]. We summarize here the main points.

222

Synchrony. To represent synchronous systems with our
model, take Tsynch = N as tag structure, and require that
all clocks are strictly increasing. The tag index set Tsynch

organizes behaviours into successive reactions, as explained
next. Call reaction a maximal set of events of σ with iden-
tical τ . Since clocks are strictly increasing, no two events
of the same reaction can have the same variable. Regard a
behaviour as a sequence of global reactions: σ = σ1, σ2, . . . ,
with tags τ1, τ2, · · · ∈ Tsynch. Thus Tsynch provides a global,
logical time basis.

Time-triggered systems. Timed systems such as those
used to model Time-Triggered Architectures (tta) [14] are
similar to synchronous systems. The main difference is that
the reaction index is replaced by physical real-time. For-
mally, the associated tag structure is Ttta =def R+ with its
usual order ≤ for time stamping and the unification order
is flat (τ ./ τ ′ iff τ = τ ′).

Asynchrony. The notion of asynchrony is vague. Any sys-
tem that is not synchronous could be called asynchronous.
However, we often want to restrict somewhat this notion
to capture particular characteristics of the system in our
modeling. In this paper, we take a very liberal interpre-
tation for asynchronous systems. If we interpret a tag set
as a constraint on the coordination of different signals of
a system and the integer n ∈ N as the basic constraint of
the sequence of events of the behaviour of a variable, then
the most “coordination-unconstrained” system, i.e. the one
with the highest degree of freedom in terms of choice of co-
ordination mechanisms, could be considered an ideal asyn-
chronous system. This translate into a model where the tag
set does not give any information on the absolute or rel-
ative ordering of events. In a more formal way, to model
asynchrony we choose T = Ttriv =def {∅}, i.e. the trivial
set consisting of a single element. Then, behaviours identify
with elements σ ∈ V 7→ N 7→ D. Hence, the behaviour of
an asynchronous system is a set of sequences of values with
each sequence associated to a distinct variable.

So far we discussed parallel composition by intersection.
The following examples require a more sophisticated way to
unify tags.

Causalities and scheduling specifications. Causalities
or scheduling specifications were integral part of the original
LSV model. Hence, it should be fairly simple to cast them
in the tagged systems as well. We consider causality as a
relation between tags of different signals that is in between
the null relation among events of different signals in our no-
tion of asynchronous systems and the existence of reactions
that impose strong equality constraints among tags of dif-
ferent signals. The intent is, for example, to state that “the
2nd occurrence of x depends on the 3rd occurrence of b”.
Define N0 =def N ∪ {0}. Define a dependency to be a map:
δ = V 7→ N0. We denote by Tdep the set of all dependencies,
and we take Tdep as our tag structure. Thus an event has
the form e = (v, n, δ, x), with the following interpretation:
event e has v as associated variable, it is ranked n among
the events with variable v, and it depends on the event of
variable w that is ranked δ(w). The special case δ(w) = 0
is interpreted as the absence of dependency. We take the
convention that, for e = (v, n, δ, x) an event, δ(v) = n − 1.
Thus, on σ(v), the set of dependencies reproduces the rank-
ing. Tdep is equipped with the partial order defined by δ ≤ δ′

iff ∀v : δ(v) ≤ δ′(v). Then we define the unification map t
for this case (note that v=≤):

δ t δ′ =def max(δ, δ′). (5)

With this definition, behaviours become labelled preorders
as explained next. For σ a behaviour, and e, e′ two events
of σ, write:

e′ →σ e iff

 e = (v, n, δ, x)
e′ = (v′, n′, δ′, x′)

δ(v′) = n′
(6)

Note that when n′ > 0 the condition δ(v′) = n′ makes
this dependency effective. Definition (6) makes σ a labeled
directed graph. Denote by �σ the transitive and reflexive
closure of →σ. It is a preorder 1.

Earliest execution times. To capture the earliest execu-
tion times of concurrent systems take Tdate =def R+, the set
of non-negative real numbers. Thus a tag τ ∈ Tdate assigns
a date, and we define

τ t τ ′ =def max(τ, τ ′).

Hence, t is here a total function. Composing two systems
has the effect that the two components wait for the latest
date of occurrence for each shared variable. For example,
assume that variable v is an output of P and an input of
Q in P ‖Q. Then the earliest possible date of every event
of variable v in Q is by convention 0, whereas each event
associated to v has a certain date of production in P . In
the parallel composition P ‖Q, the dates of production by
P prevail.

Compound tags. As discussed in the next sections, differ-
ent tags can be combined by using the product of tag sets.
This combination results into a compound, heterogeneous
tag. For instance, one can consider synchronous systems
that are timed and enhanced with causalities. Then, such
systems can be “desynchronized”, meaning that their reac-
tion tag is erased, but their causality and time tags are kept.

3. HETEROGENEOUS SYSTEMS
In this section, we first define the algebra of tag structures.

Then, we formally define heterogeneous systems based on
this algebra. Heterogeneous systems are obtained via the
parallel composition of heterogeneous components by means
of communication media with appropriate tagged structures.
We first define heterogeneous parallel composition for two
components. Since this composition lacks associativity, the
definition of composition for three or more subsystems is
non trivial. To define general heterogeneous composition
we resort to the use of morphisms in the tag algebra and a
result on pullbacks from category theory.

3.1 The Algebra of Tag Structures
Tag structures will be denoted either explicitly by a triple

(T ,≤,v) = (set, partial order, unification order), or simply
by the symbol T if the other items are understood.

Morphisms. Given two tag structures T , T ′, call mor-
phism a total map ρ : T 7→ T ′ which is increasing for

1 We insist: “preorder”, not “partial order”—this should
not be a surprise, since the superposition of two partial or-
ders generally yields a preorder.

223

S12

T1

ρ12

ρ′12

T2
ρ23

S23
ρ′23

T3

ρ31

S31

ρ′31

Figure 1: Morphism triangle.

both orders ≤ and v. Morphisms compose. Morphisms
satisfy ρ(τ1 t τ2) = ρ(τ1) t′ ρ(τ2). Thus, morphisms pre-
serve and possibly increase unifiability as they make more
pairs of behaviours unifiable under parallel composition. As
usual, T and T ′ are called isomorphic when there exist
two morphisms ρ : T 7→ T ′ and ρ′ : T ′ 7→ T , such that
ρ′ ◦ ρ = IdT and ρ ◦ ρ′ = IdT ′ , where ◦ denotes the com-
position of functions. We do not distinguish isomorphic tag
structures. Morphisms induce a preorder on tag structures:

T ′ � T iff there exists a morphism ρ : T 7→ T ′.

Examples. Take T = R+, T ′ = N with ./ being equality
and ≤ being the usual order. The integer part R+ 3 x 7→
bxc ∈ N is a morphism. More generally, sampling mecha-
nisms are morphisms. Finally, a useful type of morphism is
that of the canonical projections associated with products of
tag structures, defined as follows: (T1,≤1,v1)×(T2,≤2,v2)
=def (T1 × T2,≤1 × ≤2,v1 × v2).

Desynchronization. Given the tag structures T = Tsynch

and T ′ = Ttriv, the morphism ρ : T 7→ T ′ that maps each
tag τ ∈ T to the unique tag constituting T ′ is called the
desynchronization morphism.

Desynchronization is of great interest in practical appli-
cations and, generally , it corresponds to the operation of
making the synchronization constraints less stringent. Since
synchronization constraints are captured by a tag structure
that forces events to belong to reactions, desynchronization
corresponds to remove, at least partially, the reaction tags.
In the above definition this removal is complete and corre-
sponds to mapping the tag structure of a synchronous sys-
tem into the tag structure of an asynchronous system. In
an interesting case this mapping corresponds to the task of
deriving an asynchronous and very efficient (minimal over-
head) implementation for a synchronous specification, which
captures the behaviour of the system that we want to build.
In general, it is rare that this radical desynchronization has
the same behaviour of the specification. Hence, we are inter-
ested in the case where we can map the specification into a
partially desynchronized system. Distributed architectures
of practical interest have this characteristic.

Fibred product. For T1
ρ1−→ T ρ2←− T2 two morphisms,

define the fibred product :

T1 ρ1×ρ2 T2 =def { (τ1, τ2) ∈ T1 × T2 | ρ1(τ1) = ρ2(τ2)} (7)

also written T1 ×T T2. The fibred product is equipped with
the restriction of the product orders ≤1 × ≤2 and v1 × v2.
The map ρ : (τ1, τ2) ∈ T1 ρ1×ρ2 T2 7→ ρ1(τ1) ∈ T defines the
canonical morphism associated with this fibred product.

T ′

T1 ρ1×ρ2 T2

T

ρ′1

T1

ρ′2 T2

ρ1

ρ2

Figure 2: Pullback diagram for Lemma 1.

Examples. Note that T Id×Id T = T . A more interesting
case is when Ti = T ′i × T , i = 1, 2, and the two morphisms
are the projections πi : Ti 7→ T . Then, T1 ρ1×ρ2 T2 is the
product T ′1 × T × T ′2 .

Multiple fibred product. Formula (7) defines the fibred
product for two tag structures. How can we generalize it for
more than two? For instance, consider the “triangle” shown
in Fig. 1. This induces several fibred products. For instance:

(T1 ×S12 T2)×S23 (T3 ×S31 T1)
and

((T1 ×S12 T2)×S23 T3)×S31 T1.

Lemma 1 below related to ([11]–ch. 3, “pullback lemma”),
ensures that

these seemingly different fibred products
are in fact all isomorphic.

(8)

The same holds for every network of tags sets like in Fig. 1.
This fact is essential to the modeling of heterogeneous ar-
chitectures that we discuss in the next section.

The following lemma says that “the fibred product (7) de-
fines a pullback [11] in the category of tag structures”. This
result is essential in defining the heterogeneous composition
of more than two components.

Lemma 1. For any two morphisms ρi : Ti 7→ T , i = 1, 2,
let (T1 ρ1×ρ2 T2) be their fibred product and ρ the associated
canonical morphism. Then, for every two morphisms ρ′i :
T ′ 7→ Ti, i = 1, 2 such that ρ1 ◦ ρ′1 = ρ2 ◦ ρ′2, there exists a
unique morphism ρ′ : T ′ 7→ (T1 ρ1×ρ2 T2) such that ρi ◦ ρ′i =
ρ ◦ ρ′, for i = 1, 2.

Proof. First observe that pullbacks are defined in the
category of sets exactly by using formula (7). But objects
and morphisms in the category of tag structures induce ob-
jects and morphisms in the category of sets, by ignoring the
partial order structure and unification orders on tag sets
and related morphisms. This shows the existence of ρ′ as a
function satisfying the above factorizations. It remains to
see that ρ′ is in fact a morphism of tag structures, i.e., that
ρ′: 1/ is increasing, and 2/ commutes with the unification
order. This is immediate.

3.2 Heterogeneous Parallel Composition
In this section we define the composition of two tagged

systems P1 = (V1, T1, Σ1) and P2 = (V2, T2, Σ2) when T1 6=
T2.

Given a morphism ρ : T 7→ T ′ and a behaviour σ ∈
V 7→ N 7→ (T × D), replacing τ by ρ(τ) in σ defines a
new behaviour having T ′ as tag structure. This behaviour
is denoted as σρ, or (with some abuse of notation) as σ ◦ ρ.

224

P2, T2 P3, T3

P1, T1

S31

S23

S12

Figure 3: A graphical notation for heterogeneous sys-
tems.

Performing this for every behaviour of a tagged system P
with tag structure T yields the tagged system

Pρ, also denoted by PT ′ . (9)

Assume two morphisms T1
ρ1−→ T ρ2←− T2. Write: σ1 ρ1./ρ2 σ2

iff σ1 ◦ ρ1 ./ σ2 ◦ ρ2. For (σ1, σ2) a pair satisfying σ1 ρ1./ρ2 σ2,
define

σ1 ρ1tρ2 σ2 (10)

as being the set of events (v, n, (τ1, τ2), x) such that ρ1(τ1) =
ρ2(τ2) =def τ and the followings hold:

1. if v ∈ Vi, i ∈ {1, 2}, then (v, n, τi, x) is an event of σi.

2. (v, n, τ, x) is an event of σ1 ◦ ρ1 tσ2 ◦ ρ2.

We are now ready to define the heterogeneous conjunction
of Σ1 and Σ2 by:

Σ1 ρ1∧ρ2 Σ2 =def {σ1 ρ1tρ2 σ2 |σ1 ρ1./ρ2 σ2 } (11)

Finally, the heterogeneous parallel composition of P1 and P2

is defined as

P1 (ρ1‖ρ2) P2 = (V1 ∪ V2 , T1 ρ1×ρ2 T2 , Σ1 ρ1∧ρ2 Σ2) (12)

For convenience, when morphisms ρ1 and ρ2 are understood,
we prefer the following notation instead of (12), where T is

such that T1
ρ1−→ T ρ2←− T2:

P1 ‖T P2 (13)

Examples: GALS and hybrid timed/yntimed sys-
tems. (The reader is referred to Section 2.4 for the below
mentioned tag structures.)

For GALS, take T1 = T2 = Tsynch, where Tsynch = N
is the tag structure of synchronous systems, and consider
P1 ‖Ttriv P2, where T = Ttriv is the tag structure of asyn-
chronous ones.

To model a synchronous system P = (V, Tsynch, Σ) inter-
acting with its asynchronous environment A = (W, Ttriv, Σ′),
take the heterogeneous composition P ‖Ttriv A.

To model the composition of timed systems with untimed
systems, consider the heterogeneous system P ‖Tsynch Q,
where P = (V, Tsynch × Tdate, Σ) is a synchronous timed sys-
tem while Q = (W, Tsynch, Σ′) is a synchronous but untimed
system.

3.3 Heterogeneous Systems and Architectures
So far we only defined heterogeneous parallel composition

of two components. To capture more complex architectures
we need to define it for a heterogeneous network of com-
ponents. Fact (8) will be instrumental in doing this. The

expression

P1 ‖S12 P2 ‖S23 P3 ‖S31 P1, (14)

where the repeated symbol P1 refers to the same component,
gives raise to several possible interpretations. We give only
two of them:

(P1 ‖S12 P2) ‖S23 (P3 ‖S31 P1)
and

((P1 ‖S12 P2) ‖S23 P3) ‖S31 P1.
(15)

Thanks to Fact (8), the two interpretations yield isomorphic
tagged systems, i.e., tagged systems that are equal up to an
isomorphism between their tag structures. This property is
a restricted form of associativity 2. It ensures that expression
(14) is well defined.

Fig. 3 proposes a graphical notation for heterogeneous sys-
tems. In this figure, pair (P1, T1) specifies that the corre-
sponding box refers to system P1 having tag structure T1.
The label S12 sitting aside the link between (P1, T1) and
(P2, T2) denotes a tag structure such that S12 � Ti, i = 1, 2.
The presence of this label indicates that these two systems
are composed via P1 ‖S12 P2. In general, the components of
the considered system are indexed by some set I (in Fig. 3,
I = {1, 2, 3}). Collect the tag structures of the different
communication media into the matrix S =def (Sij)(i,j)∈I×I .
The heterogeneous architecture shown in Fig. 3 is denoted
by

P = ‖S,i∈I Pi, or simply P = ‖i∈I Pi, (16)

if S is understood. For P as in (16), a tag structure T is
called P-consistent iff T � Sij for every pair (i, j). Given a
P-consistent tag structure T , denote by

PT (17)

the homogeneous tagged system having the same set of vari-
ables as P, tag structure T , and a set of behaviours obtained
by mapping all tags to T . This is well defined since, for every
j, Ti � Sij � T .

4. CORRECT DEPLOYMENT
In this section we apply our framework to the formaliza-

tion of the practically important—but generally informal—
requirement of “correct deployment”.

4.1 Preserving Semantics: Formalization
The situation is illustrated in Fig. 4. Diagram (a) depicts

a homogeneous specification P1 ‖P2, where P1 = (V1, T , Σ1)
and P2 = (V2, T , Σ2) possess identical tag structure T . Let
W =def V1 ∩ V2 be the set of shared variables of P1 and P2.
To prepare for deployment, we wish to distinguish the shared
variables when seen from P1 or P2. Formally, let W1 and W2

be two distinct copies of W , rename each shared variable w
of P1 by w1 ∈ W1, and similarly for P2. This renaming is
modeled by the “identity” channel with tag structure T , im-
plementing w1 = w2 for each w ∈W : Id = (W1]W2, T , Σ),
where Σ is the set of behaviours such that, for each w ∈W ,
the signals associated with w1 and w2 are equal—the ho-
mogeneous system P1 ‖ Id ‖P2 is depicted in Diagram (b).

2 Full fledged associativity cannot be considered, however:
the first expression of (15) implicitly assumes for S31 that
S31 � T3 and S31 � T1; on the other hand, the second ex-
pression of (15) requires the strictly weaker conditions that
S31 � ((T1 ×S12 T2)×S23 T3) and S31 � T1.

225

P1, T P2, TId , TP1, T P2, T

P1, T P2, T

(a)

(c)

(b)

M, TM

Figure 4: A specification and its actual deployment: (a) specification, (b) same but with an explicit “identity” channel,
(c) the deployment over a (possibly heterogeneous) communication medium with tag family T.

When deploying the specification, the identity channel is re-
placed by a communication medium M, which is a (possibly
heterogeneous) tagged system as in (16). Two semantics can
be considered:

the specification semantics : S = P1 ‖ Id ‖P2

the deployment semantics : D = P1 ‖M ‖P2
(18)

where the latter involve morphisms since Pi, i = 1, 2 on the
one hand, and M on the other hand, possess in general differ-
ent tag structures. In addition, M may be a heterogeneous
system like in (16).

Definition 1. P1 ‖M ‖P2 simulates P1 ‖ Id ‖P2, written

P1 ‖M ‖P2
<≡ P1 ‖ Id ‖P2,

iff each pair of behaviours unifiable in the deployment is also
unifiable in the specification, i.e. when ∀(σ1, σ2) ∈ Σ1 ×Σ2,
(i) ⇒ (ii) holds, where:

(i) ∃σ′ ∈ ΣD s.t. projV1
(σ′) = σ1 and projV2

(σ′) = σ2

(ii) ∃σ ∈ ΣS s.t. projV1
(σ) = σ1 and projV2

(σ) = σ2

P1 ‖M ‖P2 is semantics preserving with respect to P1 ‖ Id ‖P2,
written

P1 ‖M ‖P2 ≡ P1 ‖ Id ‖P2 (19)

iff P1 ‖M ‖P2
<≡ P1 ‖ Id ‖P2 and P1 ‖M ‖P2

>≡ P1 ‖ Id ‖P2

hold.

For T ′ ≺ T and ρ : T 7→ T ′, the heterogeneous parallel
composition P1 ‖T ′ P2 can be seen as a particular case of
deployment: we simply write

P1 ‖T ′ P2 ≡ P1 ‖P2 (20)

iff P1 ‖ (Id , T ′) ‖P2 ≡ P1 ‖ Id ‖P2 holds (note the heteroge-
neous parallel composition on the left hand side).

4.2 General Results on Correct Deployment

Analyzing requirement (20) Here we investigate condi-
tions ensuring (20). See (9) for the notation PT ′ used in the
following theorem:

Theorem 1. The pair (P1, P2) satisfies condition (20) if
it satisfies the following two conditions:

∀i ∈ {1, 2} : (Pi)T ′ is in bijection with Pi (21)

(P1 ‖ P2)T ′ = (P1)T ′ ‖ (P2)T ′ (22)

Comment. The primary application of this general theo-
rem is when P and Q are synchronous systems, and T ′ =
Ttriv is the tag structure for asynchrony. This formalizes
GALS deployment. Thus, Theorem 1 provides sufficient
conditions to ensure correct GALS deployment.

Proof. It is a mild variation of the proof of Theorem 1
of [5]. The detailed proof with the present framework will
be found in the extended version [4] of this paper. �

Corollary 1. Let P1 and P2 be synchronous systems
whose behaviours are equipped with some equivalence rela-
tion ∼, and assume that P1 and P2 are closed with respect
to ∼. Then, the pair (P1, P2) satisfies condition (19) if it
satisfies the following two conditions:

∀i ∈ {1, 2} : (Pi)T ′ is in bijection with Pi/∼ (23)

(P1 ‖ P2)T ′ = (P1)T ′ ‖ (P2)T ′ (24)

where Pi/∼ is the quotient of Pi modulo ∼.

Comment. This result is of particular interest when ∼ is
the equivalence modulo stuttering, defined in [5].

Proof. A mild variation of the proof of Corollary 1 of [5].
A detailed proof will be found in [4].

Analyzing requirement (19). Here we investigate condi-
tions ensuring (19). Using notation (16), decompose the
communication medium as M = ‖T,i∈I Mi. Let TM be
a (P1 ‖M ‖P2)-consistent tag structure, and let T be the
common tag structure of Pi, for i = 1, 2. Note that T �
TM. The following theorem complements Theorem 1 and
its corollary:

Theorem 2. Triple (P1,M, P2) satisfies condition (19)
if it satisfies the following two conditions:

P1 ‖TM P2 ≡ P1 ‖P2 (25)

M is in bijection with MTM , and MTM = (Id , TM) (26)

where MTM is defined in (17) and equality in (26) means
that the two systems possess identical sets of behaviours when
restricted to the variables of P1 or P2 and local variables of
M being hidden.

Comment. Theorem 2 is a “separation theorem”: con-
dition (25) does (almost) not involve the communication
medium, since only the greatest lower tag structure TM and
associated morphism ρ : T 7→ TM play a role. On the other
hand, condition (26) involves only the medium, not the ap-
plication. Note that condition (25) is handled by Theorem
1 or Corollary 1.

226

hw hr

hb
sustain

periodic bus

encode scan and decode

xw

mb

xr

xmw = xw

Figure 5: The Ltta-protocol.

Proof. First, note that, by using the renaming conven-
tion of (18), condition (25) rewrites P1 ‖TM (Id , TM) ‖TM P2

≡ P1 ‖ Id ‖P2. Thus

P1 ‖TM MTM ‖TM P2 ≡ P1 ‖ Id ‖P2 (27)

follows, by the second statement of (26). Next, it is always
true that P1 ‖M ‖P2 simulates P1 ‖TM MTM ‖TM P2, i.e.,

P1 ‖M ‖P2
<≡ P1 ‖TM MTM ‖TM P2, (28)

Recall Definition 1 of semantics preserving. Then, (27,28)
and the first statement of (26) together complete the proof.

5. DEPLOYING TIMED SYNCHRONOUS
SPECIFICATIONS OVER Ltta

Loosely Time-Triggered Architectures (Ltta) were intro-
duced in [6] as a less constrained version of H. Kopetz’
tta [14]. The reader is referred to references [6, 7] for the
motivations behind Ltta. In this section, we provide the
complete foundations for correct-by-construction deployment
over Ltta. This complements the partial analysis provided
in [6]. The reader may find that the analysis provided to
support Ltta looks straightforward. However one should
remember that, when this research goal was proposed in [8],
it was considered very hard to formally understand the en-
gineering practice. Hence, an intrinsic value of our approach
consists also of casting the problem into a framework where
the fundamental issues emerge with clarity.

5.1 TheLtta Architecture
The Ltta protocol is illustrated in Figure 5 where the

three watches indicate a different time (they are not syn-
chronized). We consider three devices, the writer, the bus,
and the reader, indicated by the superscripts (.)w, (.)b, and
(.)r, respectively. Each device is activated by its own, ap-
proximately periodic, clock. The different clocks are not
synchronized. In the following specification, the different
sequences written, fetched, or read, are indexed by the set
N = {1, 2, 3, . . . , n, . . . } of natural integers, and we reserve
the index 0 for the initial conditions, whenever needed. Set
N will serve to index the successive events of each individual
signal, exactly as in our model of Section 2.2.

The writer: At the time tw(n) of the n-th tick of his clock,
the writer generates a new value xw(n) it wants to commu-
nicate and stores it in its private output buffer. Thus at
any time t, the writer’s output buffer content mw is the
last value that was written into it, that is the one with the
largest index whose tick occurred before t:

mw(t) = xw(n) , where n = sup{n′ | tw(n′) < t} (29)

The bus: At the time tb(n) of its n-th clock tick, it fetches
the value in the writer’s output buffer and stores it, immedi-
ately after, in the reader’s input buffer. Thus, at any time t,
the reader’s input buffer content offered by the bus, denote
it by mb, is the last value that was written into it, i.e., the
one written at the latest bus clock tick preceding t:

mb(t) = mw(tb(n)) , where n = sup{n′ | tb(n′) < t} (30)

The reader: At the time tr(n) of its n-th clock tick, it
copies the value of its input buffer into its output variable
xr(n):

xr(n) = mb(tr(n)) (31)

The protocol defined by formulas (29,30,31) is called Ltta-
protocol.

5.2 A Formal Tagged System Model ofLtta

In this section, we study the preservation of semantics for
multiple-channels, multiple-clocked synchronous systems.

The problem. The situation is illustrated on Fig. 6. In this
figure, we show two multiple-clocked synchronous systems
P and Q. The original model of communication is that of
synchronous broadcast, in which tag is reaction index; this
is shown in (a) and in (b) by making the identity channel
explicit. The actual deployment is by means of the Ltta bus
with its associated buffers, in which tag is physical time, this
is shown in (c). In diagram (c) we show also the different
tag structures involved in the Ltta medium. In the sequel,
we shall denote by L the tagged system model of Ltta.

Since the trivial tag structure Ttriv associated to full asyn-
chrony satisfies Ttriv � Tsynch and Ttriv � Ttta and no other
“known” tag structure satisfies these two conditions, Ttriv
is a natural candidate for a L-consistent tag structure. In-
formally, switching from logical time to physical time, and
then back to logical time, destroys synchronization informa-
tion. It is therefore non trivial that Ltta deployment can
preserve semantics.

The tagged system Lw→r. More precisely, our specifica-
tion is P ‖Q, with ‖ the synchronous parallel composition.
The set of shared variables is VP ∩ VQ. For convenience we
shall distinguish the instance of v ∈ VP ∩VQ that is attached
to P by calling it vP , and similarly for vQ. Since the physical
communication through Ltta medium takes time, it makes
sense assuming that, for each individual shared variable,
communication is directed, i.e., for every pair (vP , vQ), one
of the two is an output and the other is an input. Suppose
that vP is an output of P , then the parallel composition can
be re-interpreted as the directed assignment vQ := vP . This
assignment can thus be seen as an instance of the generic
single-channel communication r := w, where symbols r and
w refer to reader and writer, respectively. We denote this
ideal single-channel communication model by Idw→r. Its ac-
tual deployment over Ltta is denoted by Lw→r. The latter
decomposes as:

Lw→r = Pw ‖Pb ‖P r. (32)

As the reader will see, (32) is a heterogeneous parallel com-
position, since the components of this parallel composition
possess different tag structures. These components are:

Pw is the writer buffer: The writer buffer is a hybrid
synchronous/timed tagged system, described as follows.

227

P1, T P2, TId , TP1, T P2, T

P1, T P2, T

bus, Tb

buf1, T × Tb

(a) (b)

buf2, T × Tb
(c)

T

Tb

T

Tb

Figure 6: Ltta deployment depicted as in Fig. 4, with the conventions of Fig. 3. In all diagrams, T = Tsynch = N
captures logical time and Tb = Ttta = R+ models physical time from time-triggered systems, as introduced in Section 2.4.

• tag structure: T w = Tsynch × Ttta = logical time ×
physical time of tta. The former carries the syn-
chronous semantics with its successive reactions, whereas
the latter carries the timed semantics.

• Variables: the writer has a single variable w. The
logical clock (in the synchronous sense) of w is a sub-
clock of the activation clock of Pw.

• Behaviours:

σ(w)(k) = ((mk, tmk), xk),

where tm = λwm + ϕw

where (λw, ϕw) = (period, phase) of the writer buffer
periodic clock. In (33), mk is the index of the reaction
σ(w)(k) belongs to, where m = 1, 2, . . . counts the
reactions of the buffer—the map k 7→ mk is strictly
increasing. Then, tm is the physical date of the m-th
reaction of the buffer.

P r is the reader buffer: Same comments as for the writer
buffer.

• tag structure: T r = Tsynch × Ttta = logical time ×
physical time of tta.

• Variables: the reader has a single variable r

• Behaviours:

σ(r)(`) = ((p`, tp`), x`), where tp = λrp + ϕr

where (λr, ϕr) = (period, phase) of the reader buffer
periodic clock.

Pb is the bus: The bus is a purely timed system, described
as follows. For e = (τ, x) a pair (tag, value), we denote by
x[e] the value carried by e.

• tag structure: T b = Ttta = physical time of tta.

• Variables: the bus has three variables w, ξ, r, where ξ
is local.

• Behaviours:

σ(w)(k) = (tw
k , xk)

σ(ξ)(n) = (tξ
n, x[σ(w)(kn)]),

where kn = max{k | tw
k < tξ

n}
σ(r)(n) = (tr

` , x[σ(ξ)(n`)]),
where n` = max{n | tξ

n < tr
`}

and tξ
n = λbn + ϕb, (λb, ϕb) = (period, phase) of the

bus periodic clock.

5.3 Conditions for Correct-by-Construction
Deployment overLtta

Formal modeling of deployment. We consider the two
synchronous systems P and Q. For v ∈ VP ∩ VQ a shared
variable, we write vP (resp. vQ) when referring to its in-
stance in P (resp. Q). Then, outP denotes the set of outputs
of P .

The specification semantics S. It is given by

P ‖
(
‖v∈outP∩VQ

Id vP→vQ

)
‖

(
‖v∈VP∩outQ

Id vQ→vP

)
︸ ︷︷ ︸

Id: a bundle of directed synchronous identity channels

‖ Q

Here S is a (purely) synchronous system.

The deployment semantics D. It is given by

P ‖
(
‖v∈outP∩VQ

L vP→vQ

)
‖

(
‖v∈VP∩outQ

L vQ→vP

)
︸ ︷︷ ︸

L: a bundle of directed Ltta channels

‖ Q

Here, D is a hybrid system consisting of two synchronous
systems P and Q communicating via synchronous/timed
system L. This model is somewhat cheated. It implicitly
assumes that a bundle of Ltta channels is indeed avail-
able, meaning that a new bus should be assigned to each
peer communication. In practice, only one bus is available
and the different peer communications are multiplexed. But
this time-division multiplexing is easily handled by a proper
choice of the pair (period, phase).

Preserving semantics. We shall use the general results of
Section 4. Our communication medium is L, it is a heteroge-
neous tagged system that is a mix of timed/synchronous and
purely timed system. On the other hand, the application
for deployment is purely synchronous. Therefore, the triv-
ial tag set Ttriv is the natural candidate for a D-consistent

228

tag structure. Using Theorem 2, we derive the following
sufficient conditions for the Ltta deployment to preserve
semantics:

P1 ‖Ttriv P2 ≡ P1 ‖P2 (33)

L is in bijection with LTtriv , and LTtriv = (Id , Ttriv) (34)

Condition (33) involves only the robustness of deploying the
pair (P1, P2) over a GALS architecture, it does not depend
on Ltta. Condition (34) involves only Ltta, not the con-
sidered application. Since condition (33) has already been
addressed elsewhere [2, 3, 16], we focus on (34).

To this end, recall the following result from [6], we rephrase
it slightly differently for convenience:

Theorem 3 ([6]). Assume the following condition for
the respective periods of the writing/bus/reading systems:

λw ≥ λb , and

⌊
λw

λb

⌋
≥ λr

λb
, (35)

where, for x a real, bxc denotes the largest integer ≤ x.
Then, the reader misses no data sent by the writer. For-
mally, there exists a strictly increasing sequence kn, n =
1, 2, . . . of integers such that, for each n: xr

kn
= xw

n and
∀k : kn ≤ k < kn+1 ⇒ xr

k = xr
kn

.

(In fact, a stronger result is proved in [6], allowing for slight
drifts and jitter with respect to strict periodicity.) Now,
the problem of “excessive sampling” at the reader can be
compensated for by associating a boolean alternating flag
to the data sent, so that switching of this flag marks, to the
receiver, the successive instants kn where correct sampling
should occur. Note that the kn sequence is not periodic
in general. The original presentation of the protocol in [6]
involved this flag from the beginning. We show here that its
very reason is to enforce condition (34).

6. CONCLUSION
We developed a compositional theory of heterogeneous re-

active systems. Logical time, physical time of various kinds,
causalities, scheduling constraints, the simple local ordering
of events of each individual signal as well as their combina-
tion, can be captured by our approach. We also developed a
behavioural theory of heterogeneous architectures. We use
it to formally study the process of deployment. This the-
ory is rich enough to support general theorems about the
correctness of deployment. This framework makes it rela-
tively straightforward to study formally the correctness of
the design principles in use at Airbus, based on the Ltta
architecture.

Our models are denotational; they deal only with “traces”,
not with “agents” or “machines”. Therefore, their useful-
ness in an automated design flow is questionable. Their
value is mostly in providing a mathematical machinery to
prove theorems about the correctness of particular methods
and to develop solid foundations to design. We are about to
extend the approach to an agent-based framework so that
tools could be developed effectively to generate correct de-
ployments.

7. REFERENCES
[1] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic,

V. Kumar, I. Lee, P. Mishra, G. J. Pappas and O. Sokolsky.
Hierarchical Modeling and Analysis of Embedded Systems.
Proc. of the IEEE, 91(1), 11–28, Jan. 2003.

[2] A. Benveniste, B. Caillaud, and P. Le Guernic. From
synchrony to asynchrony. In J.C.M. Baeten and S. Mauw,
Eds., CONCUR’99, Concurrency Theory, 10th Intl.
Conference, LNCS 1664, pages 162–177. Springer, 1999.

[3] A. Benveniste, B. Caillaud, and P. Le Guernic.
Compositionality in dataflow synchronous languages:
specification & distributed code generation. Information
and Computation, 163, 125-171 (2000).

[4] A. Benveniste, B. Caillaud, L. P. Carloni, P. Caspi, and
A. L. Sangiovanni-Vincentelli. Composing Heterogeneous
Reactive Systems. Submitted to ACM Transactions in
Embedded Computing Systems.

[5] A. Benveniste, L. P. Carloni, P. Caspi, and A. L.
Sangiovanni-Vincentelli. Heterogeneous reactive systems
modeling and correct-by-construction deployment. In
R. Alur and I. Lee, Eds., Proc. of the 3rd. Intl. Conf. on
Embedded Software, EMSOFT’03, LNCS 2855, Springer,
2003.

[6] A. Benveniste, P. Caspi, P. Le Guernic, H. Marchand,
J-P. Talpin and S. Tripakis. A Protocol for Loosely
Time-Triggered Architectures. In A.
Sangiovanni-Vincentelli and J. Sifakis Eds., Proc. of the
2nd Intl. Workshop, EMSOFT 2002, LNCS vol. 2491,
252-265, Springer, 2002.

[7] G. Buttazzo. Scalable Applications for Energy-Aware
Processors. In A. Sangiovanni-Vincentelli and J. Sifakis
Eds., Proc. of the 2nd Intl. Workshop, EMSOFT’02,
LNCS vol. 2491, 153-165, Springer, 2002.

[8] P. Caspi. Embedded control: from asynchrony to
synchrony and back. In T.A. Henzinger and C.M. Kirsch
Eds., Proc. of 1st Int. Workshop on Embedded Software,
EMSOFT’01,, LNCS 2211, 80–96, Springer, 2001.

[9] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, J. Ludwig,
S. Neuendorffer, S. Sachs, and Y. Xiong. Taming
heterogeneity—The Ptolemy approach. Proc. of the IEEE,
91(1), 127–144, Jan. 2003.

[10] L. de Alfaro and T.A. Henzinger. Interface Theories for
Component-Based Design. In T.A. Henzinger and
C.M. Kirsch Eds., Proc. of 1st Int. Workshop on Embedded
Software, EMSOFT’01, LNCS 2211, Springer, 2001.

[11] R. Goldblatt. Topoi, the categorical analysis of logic.
Studies in logic and the foundations of mathematics, Vol.
98, North-Holland, 1984.

[12] E.A. Lee and Y. Xiong. System-Level Types for
Component-Based Design. In T.A. Henzinger and
C.M. Kirsch Eds., Proc. of 1st Int. Workshop on Embedded
Software, EMSOFT’01,, LNCS 2211, Springer, 2001.

[13] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Model-Integrated Development of Embedded Software.
Proc. of the IEEE, 91(1), 127–144, Jan. 2003.

[14] H. Kopetz. Real-Time Systems: Design Principles for
Distributed Embedded Applications. Kluwer Academic
Publishers. 1997. ISBN 0-7923-9894-7.

[15] E.A. Lee and A. Sangiovanni-Vincentelli. A Framework for
Comparing Models of Computation. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and
Systems, 17(12), 1217–1229, Dec. 1998.

[16] D. Potop-Butucaru, B. Caillaud and A. Benveniste.
Concurrency in Synchronous Systems. In Proc. of the 4th
Int. Conf. on Applications of Concurrency in System
Design (ACSD), Hamilton, Canada, June 2004.

229

	Introduction
	Tagged Systems
	The Original LSV Model
	Tagged Systems and Their (Homogeneous) Parallel Composition
	The Tagged System Model as an LSV Model?
	Modeling with Tags

	Heterogeneous Systems
	The Algebra of Tag Structures
	Heterogeneous Parallel Composition
	Heterogeneous Systems and Architectures

	Correct Deployment
	Preserving Semantics: Formalization
	General Results on Correct Deployment

	Deploying Timed Synchronous Specifications over Ltta
	The Ltta Architecture
	A Formal Tagged System Model of Ltta
	Conditions for Correct-by-Construction Deployment over Ltta

	Conclusion
	REFERENCES -9pt

