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Abstract We present a novel methodology for the de-
sign of interoperable Wireless Sensor Networks (WSN). The
methodology is based on the principles of Platform Based
Design (PBD). PBD is a meet-in-the-middle approach where
the top-down refinement of a design specification meets with
bottom-up characterizations of possible alternative imple-
mentations. The design space exploration is performed based
on estimates of the performance of the candidate solutions
so that the overall design process is considerably sped up
as expensive re-designs are avoided and design re-use is fa-
vored. PBD is based on the rigorous definition of appropriate
abstraction layers that are effective in shielding the drudgery
of implementation details while allowing the important in-
formation to be taken into account. If each layer is formally
specified, formal verification, refinement and synthesis are
all possible. Yet while the overarching approach is general,
the layers of abstraction and the accompanying tools can be
(and in general, are) application dependent.

In this paper, we present three abstraction layers for WSNs
and the tools that “bridge” these layers. We present a case
study that show how the methodology covers all the aspects
of the design process, from conceptual description to imple-
mentation.
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1. Introduction

Ad-hoc wireless sensor networks have the definite potential
to change the operational models of traditional businesses
in several application domains, such as the building industry
[1], power delivery [2], and environmental control [3]. Sensor
networks are already the essential backbone of the “ambient
intelligence” paradigm, which envisions smart environments
aiding humans to perform their daily tasks in a non-intrusive
way [4].

This revolution has not escaped the attention of both
academia and industry and has led to a flurry of activities
such as the exploration of new applications and the develop-
ment of new radio architectures, low-power wireless sensor
nodes, low-date rate wireless protocols, and ad-hoc multi-
hop routing algorithms. The creation of forms of interop-
erability between the myriad of hardware components and
software protocols is essential for the full potential of these
technologies to be achieved. In this context, a number of
new wireless standards such as 802.15.4 [5] and Zigbee [6]
are under development. Yet, it is our belief that these efforts
created in a bottom-up fashion do not fully address the es-
sential question of how to allow interoperability across the
many sensor network operational models that are bound to
emerge. In fact, different operational scenarios lead to dif-
ferent requirements, and hence different implementations,
in terms of data throughput and latency, quality-of-service,
use of computation and communication resources, and net-
work heterogeneity. These requirements ultimately result in
different solutions in terms of network topology, protocols,
computational platforms, and air interfaces.
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Fig. 1 The platform based design approach

To support true interoperability between different applica-
tions as well as between different implementation platforms
and ensure scalability of sensor network technology, we ad-
vocate the use of a rigorous design methodology based on
a set of appropriate abstraction layers. The proposed ap-
proach is an application of Platform Based Design (PBD)
[8, 9]. PBD is a “meet-in-the-middle” design methodology,
where system constraints are refined top-down, while im-
plementation characteristics including performances such as
delay and power consumption are abstracted bottom-up (see
Fig. 1). The two parts are essential for selecting a good im-
plementation via a design exploration phase that meets the
constraints while estimating the performance of the candi-
date implementations. PBD relies on a clear identification
of layers of abstraction, on a modeling strategy that captures
uniformly functionality and architecture of the design, and on
tools that map two contiguous layers, verify that the selected
architectures satisfy constraints, and identify drawbacks and
strengths of the design.

In this paper, we specialize the general PBD methodology
to the WSN case. This methodology is based on three ab-
straction layers and the relative supporting tools. The top and
the bottom layers have been introduced before; the interme-
diate layer is novel. The first layer is an application interface
called Sensor Network Service Platform (SNSP) [7]. The
SNSP defines a set of services available to the end user to
specify the target application formally without dealing with
the details of a particular network implementation. While the
SNSP description suffices to capture the interaction between
controllers, sensors and actuators, it is a purely functional
description, which does not prescribe how and where each
of these functions will be implemented. Hence, information
such as communication protocols, energy, delay, cost, and
memory size, are not available.

The second abstraction layer called Sensor Network Ad-
hoc Protocol Platform (SNAPP) is presented here for the
first time. The SNAPP defines a library of communication
protocols and the interfaces that these protocols offer to the
SNSP.

Once the communication protocol is selected, it must be
implemented on a set of physical nodes. A description of
the actual hardware platform is given by the Sensor Network
Implementation Platform (SNIP).

Following the PBD paradigm, the process of mapping
the SNSP description into a SNAPP instance and eventually
into a SNIP instance goes through a set of steps. First, we
need to ensure that the selected topology and communication
protocol is capable of supporting the sensing, actuation and
communication requirements implied by the application.

Once we derived the constraints on sensing, actuation
and communication, we derive an abstraction of the physical
layer properties of the proposed hardware platform (candi-
date SNIP instance), the bottom-up part of PBD, and select
an adequate topology and communication protocol among
the ones available in the SNAPP. Finally, we synthesize the
parameters of the protocol so that that the given constraints
are satisfied and energy consumption optimized.

Tools that help bridging between two different layers of
abstraction can be built for particular domain of applications.
In this paper, we focus on monitoring functions in an indus-
trial plant. We first present Rialto,1 a framework that takes
the application described using the SNSP and derives a set of
constraints for a SNAPP instance and then, a parametrized
protocol SERAN [35], proposed by the research group of
the authors for industrial applications, that provides a semi-
automatic approach to protocol generation for this class of
applications.

2. The abstraction layers

The definition of sockets in the Internet has made the use
of communication services independent from the underlying
protocol stack, the communication media and the various
possible operating systems. In order to introduce a similar
abstraction layer, we follow the approach first proposed in
[7]. A properly defined application interface captures all the
possible services that can be used by any sensor network
application and supported by any sensor network platform.

2.1. The sensor network service platform

To perform its functionality, a controller (algorithm) has to
be able to read and modify the state of the environment.
In a WSN, controllers do so by relying on communication
and coordination among a set of distinct elements that are
distributed in the environment in order to complete three dif-
ferent types of functions: sensing, control and actuation. The

1 Rialto is a famous Venetian bridge that links the two sides of the
Canal Grande, hence the name of the tool that bridges two sides of an
intellectual channel.

Springer



Mobile Netw Appl (2006) 11:469–485 471

role of the Sensor Network Services Platform (SNSP) is to
provide a logical abstraction for these communication and
coordination functions. The SNSP decomposes and refines
the interaction among controllers and between controllers
and the environment into a set of interactions between con-
trolling, sensing, and actuating functions. Hence, the services
that the SNSP offers to the application are used directly
by the controllers whenever they interact among each other
or with the environment. This approach abstracts away the
specific details of the communication mechanisms (routing
strategies, MAC protocols, physical channel characteristics)
thereby making possible for the application designer to fo-
cus on the task of developing the control algorithms for the
WSN application.

In particular, as illustrated in 2 the SNSP is a collection
of data processing functions (e.g. aggregation) and I/O func-
tions (sensing, actuation) that cooperate in order provide the
following services:

� query service (QS) used by controllers to get information
from other components;

� command service (CS) used by controllers to set the state
of other components;

� timing/synchronization service (TSS) used by components
to agree on a common time;

� location service (LS) used by components to learn their
location;

� concept repository service (CRS) which maintains a map
of the capabilities of the deployed system and it is used
by all the components to maintain a common consistent
definition of the concepts that they agreed upon during the
network operation.

The CSR is quite novel in the WSN community, but is
deemed essential if a true ad-hoc realization of the net-
work is to be obtained. The repository includes definitions
of relevant global concepts such as the attributes that can
be queried (e.g. temperature, pressure), or the regions that
define the scope of the names used for addressing. It further
allows collecting information about the capabilities of the
system (i.e. which services it provides and at which qual-
ity and cost) and provides the application with a sufficiently
accurate description. The repository is dynamically updated
during the network operations. Access to the SNSP services
is provided to the application through a set of primitives,
combined in the application interface (AI). The AI prim-
itives can also make available to the application the rele-
vant parameters that define the quality and the cost of the
services.

2.2. The sensor network implementation platform

The Sensor Network Implementation Platform (SNIP) is
a network of interconnected physical nodes that imple-

Fig. 2 The sensor network service platform

ment the logical functions of the application and the SNSP.
A physical node is a collection of physical resources
such as:

� clocks and energy sources;
� processing units, memory, communication, and I/O de-

vices;
� sensor and actuator devices.

In particular, the main physical parameters of a node are:

� list of sensors and actuators attached to node;
� memory available for the application;
� clock frequency range;
� clock accuracy and stability;
� level of available energy;
� cost of computation (energy);
� cost of communication (energy);
� transmission rate (range).

2.3. The sensor network ad-hoc protocol platform

To choose the architecture of the SNIP and to map the func-
tional specification of the system onto it are critical steps in
sensor network design. To facilitate the process we created
an intermediate level of abstraction called Sensor Network
Ad-hoc Protocol Platform (SNAPP). The SNAPP is com-
posed by a library of MAC and routing protocols that offer
to the SNSP guarantees on latency, error rate, sensing re-
quirements. These protocols are “parametrized protocols”,
meaning that their structure is specified, but their working
point is determined by a set of parameters. The value of these
parameters is obtained as the solution of a constrained op-
timization problem, where the constraints are derived from
the latency, error rate, sensing requirements of the applica-
tion while the cost function is the energy consumption. The
energy consumption is estimated based on an abstraction of
the physical properties of the candidate hardware platform.
The synthesis of these parameters represents the meet-in-
the-middle phase of the PBD methodology when applied to
the WSN domain.
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Fig. 3 Manufacturing cell

3. Industrial monitoring

To illustrate the proposed methodology, we study the applica-
tion of WSN to the monitoring an automotive manufacturing
plant.

In industrial automation control, sensors are deployed on
the robots of a production line to monitor their state and pre-
vent costly damage. Since these sensors are typically wired,
the plant is characterized by a large amount of cables. Be-
sides high maintenance and deployment costs, this solution
also has a reverse impact on flexibility (the addition of new
sensors and reconfiguration implies stopping the production
line) and safety (human operators may trip on cables).

As illustrated in Fig.3, a typical manufacturing cell is an
area within the manufacturing plant where several robots
cooperatively work on the same production piece. Different
types of sensors and actuators are deployed all over the cell
and the behavior of these components is decided by a con-
trol routine running in the Process Loop Controller (PLC),
a computer usually placed in the proximity of the cell. In
particular, dedicated sensors report to the PLC the vibration
and temperature patterns for each of the robots. The control
routine evaluates the sensed data and takes decisions on the
next action to preserve the proper working conditions. The
control routine typically presents a high level of computa-
tional complexity, but a limited number of possible outcome
decisions (i.e. move the robot up, or down, or switch it off).
If the PLC notices that a particular robot shows high val-
ues of either the vibrations or the temperature parameter, it
determines that the robot needs maintenance. Consequently,
the PLC sends a command message to all the actuators to
switch the robots off so that a human operator can perform
the required maintenance before the robot creates expensive
damage to the production line.

4. Rialto

In this section, we provide a summary of the basic steps
of Rialto [34] a tool that targets WSN industrial control
applications.

Fig. 4 Example of rialto model

To facilitate the presentation of Rialto, we first focus
only on a subsystem of the industrial application presented
in Section 3. This subsystem contains only two robots
(Fig. 4).

Rialto supports only the subset of the services of the SNSP
that is relevant for the chosen industrial domain, specifically:
the query service, the command service and the concept
repository service. Rialto allows the end user to specify a
loose notion of the system topology in the concept repository
service and to describe the control algorithm in terms of log-
ical components, queries and commands. This description is
independent from the particular communication infrastruc-
ture or hardware platform. The tool captures these specifica-
tions in a formal way and performs a state space exploration
to analyze all the possible scenarios that the application may
lead to. As a result of this exploration, it produces a set of de-
sign constraints that the communication links and hardware
infrastructure must satisfy to ensure correct functionality of
the network.

Once we derived the constraints on sensing, actuation and
communication, and we have an abstraction of the candidate
SNIP instance, we are ready to start the selection of an ade-
quate SNAPP instance and synthesize the relative parameters
to support the application.

4.1. Application description: Rialto model

In the Rialto model, applications are described in terms of
logical components that communicate via queries and com-
mands. Queries are requests for data and, as a consequence,
each query is followed by a corresponding response. Com-
mands are used to set some parameters or trigger some ac-
tions and do not necessarily need a response. The set of
logical components, communication links, and queries and
commands is called the Rialto Model (see Fig 4). The basic
building blocks of the Rialto Model are actors and communi-
cation media. Actors use communication media to exchange
tokens.
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Tokens are the abstraction of queries and commands. A
query is the formalization of the intuitive notion of data re-
quest such as: “sense vibrations from time Ti to time Tf with
a sampling rate of X [samples/sec] and return to me the av-
erage within L seconds with a message error rate of 10−3”.
Consequently, a query is composed of various fields whose
parameter values define its content. One of these fields is the
“attribute” that defines the quantity to be sensed (i.e. temper-
ature, humidity, vibration, etc.), another one defines the re-
quired sampling rate, another one the time scope of the query
(in the above example Ti and Tf), and so on. A command is
the formalization of the intuitive notion of triggering an ac-
tuation such as: “switch the robot off from time Ti to time
Tf ; the command has to reach destination within L seconds
and with a message error rate of X [samples/sec]”. Similarly
to the query, the content of the command is specified using
multiple fields. This approach offers a very intuitive way of
describing the application while relieving the control algo-
rithm designer of the burden of dealing with the physical
network implementation.

A token has nine fields, and its structure is:

Token = (q, c, n, a, v, Ti, Tf , L , Q),

where:

� q ∈ {0, 1} specifies if it is a query or a command;
� c ∈ {0, 1 } specifies if it is a request or a response;
� n is the function to return for a query or the need for an

acknowledgment for a command;
� a is the attribute of the query or the type of actuation;
� v is the required sampling rate (for a query) or the intensity

of the actuation (for a command);
� Ti, Tf , are respectively the beginning and the end of the

scope of the query [7] (i.e. “Give me humidity data from
time Ti to time Tf”);

� L [sec] is the latency requirement;
� Q is the quality of service requirement (bit error rate).

There are three types of actors: Virtual Controller (VC),
Virtual Sensor (VS), and Virtual Actuator (VA).

A Virtual Controller (VC) contains the description of the
control algorithm for the given application. If the application
has more than one independent control algorithm, multiple
Virtual Controllers have to be specified. In our case study,
we have a single VC with an algorithm that needs informa-
tion on both temperature and vibrations to take its decisions.
The VC is only an abstraction of the control capabilities re-
quired by the application. This abstraction does not restrict
our design space to a centralized control solution. In fact,
in the physical implementation, the control algorithm de-
scribed in a single VC could be implemented in a distributed
fashion whenever it is convenient. Similarly, the functional-
ities of different Virtual Controllers could be implemented

Fig. 5 Example of RialtoNet

in the same physical component. Usually, designers already
have a good idea of where the physical controller, or con-
trollers, can be placed. Consequently, they can embed this
location information into the VC and limit the design space
exploration. The internal structure of a VC is a cyclic con-
trol routine. Figure 6 contains the pseudo-code of the VC
routine for the monitoring application of Fig. 4. The code
within the while(true) loop is called the control cycle. The
number of queries and commands that can be generated dur-
ing a control cycle must be limited. Consequently, no while
loop with a query or command inside is allowed within a
control cycle. This constraint is meant to avoid control cy-
cles of infinite duration. Anyway, this does not result in a
real restriction in the expressiveness offered to the algorithm
designer because in most of the WSN applications that we
analyzed, the control cycle can be expressed with less than
about 100 queries or commands. Furthermore, the user can
specify the time scope of the control cycle (how much time
between two consecutive executions). If such parameter is
not specified, we assume that the time scope is given by the
the lowest Ti and the highest Tf of the generated queries or
commands.

A Virtual Sensor (VS) represents a sensing area. This
abstraction is useful because designers know which are the
areas that need to be sensed (and can embed this notion in
the CRS), but they generally don’t know how many sensors
must be placed to cover that area and how they have to
placed. This abstraction offers the possibility to embed in
the application description a loose notion of topology that
can be exploited further down in the design flow when MAC
and routing algorithmshave to be tuned.

Similarly to the VC, there is not necessarily a one-to-one
relationship between virtual sensors and physical sensors.
The number and the type of physical sensors that will be
used to implement a virtual sensor is an implementation
choice.

A Virtual Actuator (VA) represents an actuation capability.
Similarly to the VS, the user describes the position of the VA,
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Fig. 6 VC for the case study

but the number and type of physical actuators that will be
selected to implement its functionality is an implementation
choice.

VA and VS are sequential threads of computation. They
read the queries/commands at their inputs, perform their
sensing/actuating task to satisfy those requests, and re-
turn data (if necessary) to the controller that sent the
query/command. They are composed of two main functions:
“Evaluate Inputs” and “Task”. The “Evaluate Inputs” func-
tion specifies how the read semantics of the actor, while the
“Task” function specifies how the actor fulfills the required
sensing/actuation task.

Actors communicate through bidirectional, lossless, un-
bounded FIFO channels. Each channel is characterized by
two separated queues, one for each direction. Connections

Fig. 7 VS and VA for the case study

are allowed only between a VC and a VA, and between a VC
and a VS.

The user is free to specify any type of read and write
semantics in the actors. For example, in our case study, the
VC performs a blocking read at each of its inputs (await
statement) before executing a corresponding atomic critical
section. Conversely, the Virtual Sensors and Virtual Actua-
tors of our example, perform a sensing task in a non-blocking
read fashion. A pseudo-code for the Virtual Actuators and
Virtual Sensors of our example is given in Fig. 7 (since in
this case the VA and the VS have the same non blocking
semantics, we report only the code for the VS).

Because of the large variety of applications that could be
implemented using a WSN, it is very difficult to propose a
single model of computation (MoC) that is able to offer the
right level of expressiveness and yet to set the ground for de-
veloping automatic synthesis algorithms. Furthermore, the
capabilities of the sensing and communication infrastructure
are not related to the read and write semantics of the appli-
cation. For example, the requirement that the link between
two components should allow for a maximum latency of L
seconds or that sensing should be performed at the rate of X
[samples/sec], is a consequence of the content of the query
and does not depend on the model of computation with which
the application is specified. With this in mind, we think that
the right approach is to allow designers to specify the se-
lected read and write semantics, while the communication
and sensing infrastructure should be derived independently.

4.2. Executing a rialto model: the RialtoNet

After the application is described, the description is trans-
lated into an internal representation called RialtoNet. Since
we want to generate a set of requirements to design a sens-
ing and communication infrastructure that is able to sat-
isfy every possible request of the controlling algorithms, we
need to evaluate all the various combinations of requests that
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Virtual Controllers could generate. The RialtoNet is created
precisely for an explicit exploration of all the possible com-
binations of queries and commands in a given application.

By analyzing the software code of every VC, we detect all
the possible combinations of conditional statements involv-
ing a request, and for each of them we create a new inde-
pendent component, called VC Branch (VCB). Each Virtual
Sensor is modified into a Virtual Sensor Skeleton (VSS) and
each Virtual Actuator into a Virtual Actuator Skeleton (VAS)
that are obtained from the original code modifying the read
and write semantics.

4.2.1. Generating the RialtoNet

We consider the case of analyzing the conditional branches
in a single control cycle of the VC. For each conditional
branch that involves the possibility of sending a request, we
consider both scenarios: the one in which the branch is taken,
and the one in which the branch is not taken. This analysis
generates all the possible combinations of queries and com-
mands within a single cycle. Each of these combinations
generates a VCB. A VCB is composed by a sequence of
“SEND” instructions that represent a possible combination.
Consequently, the VCB is an actor that is only able to send
a predetermined sequence of tokens (“source” actor). Since
in the control cycle of the original VC code there is only a
limited amount of queries and commands, also the number of
“SEND” instructions in a VCB is limited. Since in the exam-
ple of Fig. 6 there are two “if” statements, four VCBranches
are generated (see Fig. 8).

Notice that a VCB does not contain the informations on
read and write semantics specified in the original VC code.

Fig. 8 Virtual controller branches after branch separation

This is in line with our approach of considering only the re-
quirements on the sensing and communication infrastructure
that the WSN must support.

The VSS and VAS are sequential threads of computation.
Similarly to the VCB, the VSS and VAS do not inherit from
their originating actor the information regarding read and
write semantics. They are composed by a “Task” function
that is fired whenever their firing rules are satisfied. The
“Task” code is inherited from their generating VS or VA.
The firing rules are explained in the next section. VSS and
VAS have an internal variable called Progression Tag. As we
will show in the next section, this variable indicates the end
of the time scope of the last query or command that has been
served.

Every time a RialtoNet is generated, an extra actor called
“Sink” is created. The Sink has only input channels and, as
discussed in the next section, it is used to store the results of
a RialtoNet execution.

Actors in a RialtoNet communicate also through un-
bounded, unidirectional, lossless, FIFO channels. Each VCB
inherits the connections of its generating VC in the Rialto
Model. The direction of these connections is from the VCB
to the VSS or VAS. Each VSS and each VAS has an output
connection to the Sink. The RialtoNet for the case study is
shown in Fig. 5

4.2.2. Executing the RialtoNet:

In this Section we present the model of computation that
regulates the execution of the RialtoNet. Before describing
the read and write semantics, we need to introduce the END
Token, a particular token that is automatically produced in
the following two cases:

(1) From a VCB to all its output channels upon termination
of its sequence of “SEND” instructions (see Fig. 8)

(2) From a VSS or VAS to the Sink whenever the its execu-
tion is terminated.

Its structure can be interpreted as:

END = (q, 0, 0, 0, 0, null,∞, null, null)

The VCB follows a non-blocking write semantics. Since it
is a source actor, no reading semantics needs to be specified.
The Sink has a non-blocking read semantics. The VSS and
VAS have blocking read and non-blocking write semantics.
Since the blocking read rules for VSS and VAS are the same,
we explain them only for the case of the VSS.

(1) The VSS stalls its execution until all its input queues
have at least one token.

(2) Once that all the input queues are non empty, the VSS
evaluates the first token of each of the input queues.

Springer



476 Mobile Netw Appl (2006) 11:469–485

(3) If a VSS has END tokens in all its input queues, it sends
an END token to the Sink and stops executing.

(4) Otherwise, the VSS selects the token with lowest Tf . If
more than one token happens to have the same Tf and it is
the lowest, all of these tokens are selected. Consequently,
an END token is never consumed because it has ∞ in
its Tf field.

(5) The VSS fires its sensing task. The output of the sensing
task depends on the “a” and “v” fields of all the input
tokens whose Ti field is less than or equal to the Tf field
of the selected token. For example, in our case study
VSS has four input queues and the first tokens at those
queues are:
Input1:END
Input2:END
Input3:Q3 = (1,0, avg, vibration, 1000, t2, t2 + 10s, 1s,
e − 3)
Input4:Q4 = (1, 0, avg, temperature, 10, t2, t2 + 15s,
5s, e − 3)
The VSS selects Q3 because it has lowest Tf and it
advances its task until t2 + 10s. Requirements are gen-
erated for the interval (t2,t2 + 10s) such as:

(5) Sensing: vibrations at a rate of 1000 samples/sec and
temperature at a rate of 10 samples/sec.

� Communication: latency of 1s (the most restrictive
among the two) and message error rate of 10−3.

This is the set of requirements that the VS must satisfy
in order to serve all the possible queries within that time
scope.

The last action of a firing is the generation
of a requirement token. This token has the same
nine fields of the other tokens, but instead of ab-
stracting a query or a command, it embeds infor-
mation of the generated requirements. In our ex-
ample, the VSS generates a Requirement Token:
Out = (1, 0, [avg, avg], [vib, temp], [1000, 10], t2,
t2 + 10s, 1s, e − 3).
This token encodes the following requirements: “From
time t2 to time t2 + 10 seconds, the VS must be able to
sense vibration and temperature at a rate of respectively
1000 sam/sec and 10 sam/sec., and return the average.
Furthermore, it must be able to communicate with the
Virtual Controller with a latency of 1 sec and a message
error rate of 10−3”.
The VSS sends the Requirement Token to the Sink. Since
the Sink receives only Requirement tokens (and END
tokens which have a fixed structure), and it is the only
one receiving them, there is no need to distinguish this
token from the other types.

(6) The selected token (in our case Q3) is consumed,
meaning that it is removed from its input queue and
destroyed.

The Progression Tag update happens at every firing of the
sensing/actuating task. At the end of the firing, the progres-
sion tag of the VS/VA is set to the value of the Tf field of the
selected token.

Queries sent in the same VCB connection must have non
overlapping time scopes. This is to avoid the situation in
which, after advancing to serve a query, a VS would have to
backtrack to serve another query with different requirements.
Once the code for a VCB is generated, this condition can be
easily checked. If such a case is detected, the VCB code is
modified and every couple of overlapping queries is replaced
by three non overlapping queries. Queries emitted from the
same VC branch must have non decreasing Tf field. This is
to avoid the phenomenon of “sending a query to the past”.

The execution terminates when each VSS and each VAS
has sent an END token to the Sink.

4.2.3. Determinism

The RialtoNet semantics is based on a deterministic MoC:
there is only one possible behavior for the input and output
sequences of the actors.

Let T denote the set of all the finite and infinite sequence
of tokens, including the empty sequence (⊥). Consider the
prefix order ( ≤ ) such that s1, s2 ∈ T, s1 ≤ s2 if for all the
n ∈ N for which s1(n) is defined, s1(n) = s2(n). For instance,
if s1 = (a, b, c, d) and s2 = (a, b, c, d, e, f), then s1 ≤
s2. A simple extension of the prefix order is the pointwise
prefix order (�). Assume (a1, a2),(b1, b2) ∈ (T × T), the
pointwise prefix order is defined as: (a1, a2) � (b1, b2) if
a1 ≤ b1 and a2 ≤ b2. The set T N with the pointwise prefix
order (T N ,�) is a complete partial order (CPO) [32]. A
function F is monotonic with respect to (T N ,�) if for a, a′

∈ T N and a � a′, it follows F(a) � F(a′).
Similarly to the processes of a Kahn Process Networks

(KPN) [29, 30]. the VAS and VSS are monotonic. Mono-
tonicity is a property inherited from the blocking read mech-
anism and by the fact that the choice of the token to be
consumed is deterministic and based on the Tf field and not
on the order of arrival of the candidate tokens. Furthermore,
since the input sequences are bounded by the total number
of queries/commands declared in the VCB, the VAS and
VSS are also continuous with respect to (T N ,�). The VCB
and the Sink are trivially continuous functions since they
are source and sink function. Since a RialtoNet is composed
of continuous functions under a complete partial order, it
converges to a least fixed point [29]. Consequently, the least
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fixed point is the only behavior and the model is deterministic
[32].

4.2.4. Deadlock free

Another important property of the RialtoNet execution is
that it does not deadlock. Deadlock may happen only
if a VSS or VAS waits in vain for a token that will
never arrive. The introduction of the END token is tai-
lored to avoid this problem. The idea of introducing the
END query to resolve unwanted deadlocks can be seen
as a particular case of the “null” message introduced by
Misra in [33] when dealing with asynchronous parallel
simulations.

4.2.5. Conservative advancement

The proposed blocking read mechanism forces the VSS and
VAS to have a conservative advancement behavior. This
means that before firing their sensing/actuating task, they
need to wait for all their input queues to have a token, and
when they advance they do it only up to the lowest Tf . In this
way we can capture all possible evolutions in the behavior
of an application without being forced to store subsequent
stages of it for the purposed of rollback.

Consider what could happen in the interaction between
VCB1,VCB3 and VS1 in our case study. Figure 9 illustrate
a scenario where these actors exchange two particular se-
quences of queries (the definition of the queries is given
in Fig. 6). Assume that the VS1 does not perform the pro-
posed blocking read. In this case VS1 would serve Q4 from
VCB3 and advance its task to the Progression Tag value
t2 + 15s before evaluating Q3 from VCB1. As a result, since
Q3 has higher sampling rate requirement than Q4, in or-
der to correctly serve Q3, VS1 would have to go back to
t2, void its latest execution and serve Q3. This simple ex-
ample shows that the blocking read mechanism is a clean
way to capture all the scenarios without the need of sup-
porting rollback. The correctness of the specification cap-
turing is a consequence of the determinism of the proposed
MoC.

Fig. 9 Example of conservative advancement

4.2.6. RialtoNet vs. Rialto model

The END query and the blocking read mechanism are only
used to ensure the determinism of the execution of the Rial-
toNet. They are not specific to the application described in
the Rialto Model and they need not be implemented in the
final system implementation. On the other hand, they make it
possible to derive precise requirements on the performance
properties of the communication links as well as the number
and type of sensors that have to be used. In other words, Ri-
altoNet is an efficient model to gather sufficient information
for the design of the sensing and communication architecture
because the characteristics of the computation of the control
algorithms are abstracted away.

4.3. Requirement generation

Once the program has terminated, the Sink actor contains
the evolution of the sensing modalities, latency and bit
error rate requirements over the time scopes of all the
Virtual Sensors and Virtual Actuator. This information is
captured as a set of traces from which we derive the re-
quirements that the communication and sensing infrastruc-
ture must satisfy to ensure correct functionality of the
application.

For the subsystem of Fig. 4 with only two robots, the
execution of the Rialto model produces the traces of Fig.
10. Consequently, to satisfy the application requirements,
we need to place within a VS area a number of sensors that
is sufficient to sample vibrations at 10 samples per second
and temperature at 10 samples per second. Furthermore, the
communication infrastructure needs to be able to report data
to the controller with a latency requirement of 5 seconds with
a packet error rate of 10−3.

For the overall system of five robots illustrated in Fig-
ure 3, the design requirements are [35]: an end-to-end delay
of 10 seconds, a packet error rate around the 2 σ distri-
bution, and a sampling rate of 10 samples per second for
both temperature and vibration. The information on the po-

Fig. 10 Requirements for the case study
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sition of the sensing areas is also used to create a first “loose
notion” of WSN topology. Specifically, each virtual sensor
represents a cluster of sensors in the final implementation.
take this cluster topology, substitute the clusters with an ade-
quate number of nodes per cluster and create a more refined
topology.

5. Bridging SNAPP and SNIP

In this section, we present two protocols that are currently
part of our framework and their interface to the application.

An important and usually non trivial step in the top-
down refinement process associated with the move from
one layer of abstraction to the next consists in analyzing
application requirements on the end-to-end (E2E) delay and
translating them into a hop-to-hop (H2H) delay which is
simpler to handle and of direct impact to the protocol de-
sign. The ability of performing this refinement is subject
to the capability of characterizing the interaction among
the different layers of the protocol solution using a math-
ematical framework. The mathematical framework allows
us to capture the requirements of the design functional-
ity and performance as a constrained optimization problem.
The solution to this problem provides the parameters to de-
rive the final protocol implementation. Once the trade-off
equations are derived and solved as an optimization prob-
lem, all the protocol parameters are automatically synthe-
sized. The formalism and the capability of offering end-to-
end guarantees instead of local guarantees is what distin-
guish our approach from the previous protocol design for
WSNs.

The use of parameterized protocols allows us to effec-
tively restrict the large design space to a few parameters. In
addition, since the protocols are developed with a specific
mathematical model in mind, we can easily gouge the ef-
fects of changing these parameters on the overall network
performance. This predictive ability prevents the need for
extensive simulation and allows for the ease of comparison
with other protocols.

Furthermore, the ability to obtain quick performance es-
timates is vital for conducting an effective design space ex-
ploration. Since the protocol itself is constructed by the de-
signer, our approach does not discount the value of designer
intuition. We believe that a system-level design technique
which depends entirely upon automated synthesis and does
not allow the designer any “hooks” into the design process
will not be successful. Designer experience is invaluable in
domains such as WSNs that push the limits of current tech-
nology. However, when we couple designer intuition with
mathematical models, we can gain a deeper understanding
of system behavior.

With the continued scaling of Moore’ s Law and advances
in MEMS fabrication, the cost of individual nodes is expected
to drop in the years to come. This will allow high density
WSN deployments. Since in most applications a long net-
work lifetime is required and energy constraints are usually
tight, high density WSNs are attractive. A high node density
allows the WSN to turn off multiple nodes while still remain-
ing operational. On the other hand, designing protocols for
such a scenario becomes an interesting challenge due to the
collision problems that arise from having a high density of
nodes with a limited number of communication channels.

With this in mind we set out to design the Routing and
MAC layers of the protocol stack that leverages high node
density to offer robustness and optimize for energy con-
sumption. Although these protocol solutions have different
characteristics to accommodate different scenarios, they are
all characterized by a mathematical model that exposes their
guarantees on end-to-end delay and packet loss. The deci-
sion of which of these protocols is to be chosen depends on
the topology and the characteristics of the specific applica-
tion. For example, in case of a cyclic control routine, as in
our application domain, we developed two protocols, one for
the case of homogeneous layout topologies where nodes are
uniformly placed at random in a small space, and another
that is tailored to clustered topologies as in our case study.

In the next subsections we give a brief description of these
protocols, and we show how the synthesis of the protocol
parameters is performed for our industrial example.

5.1. Randomized protocol for homogeneous topologies

In [24], we presented an example of a randomized proto-
col designed according to this methodology. The proposed
protocol is based on the joint optimization of a random-
ized routing protocol, a MAC protocol, and a duty cy-
cling one that allow for performance and reliability while
leveraging node density. The solution offers the following
services:

(1) End-to-End (E2E) delay guarantee. The two sigma dis-
tribution of the E2E packet delay between a node and the
controller must stay within τ seconds: P[E2E ≤ τ ] ≥
0.96.

(2) Error Rate guarantee Each packet must reach the desti-
nation probability at least �: P[correct] ≥ �.

The behavior of a node can be explained considering the
state machine of Figure 11.

� SLEEP STATE: the node turn off its radio and starts a
grenade timer whose duration is an exponentially dis-
tributed random variable of intensity µ. When the timer
expires, the node goes to the WAKE UP state.
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Fig. 11 Randomized protocol

� WAKE UP STATE: the node turn its radio on and broadcasts
a message indicating its location and that it is ready to
receive (Beacon message). The node goes to the IDLE
LISTEN state.

� IDLE LISTEN STATE: the node starts a grenade timer of a
fixed duration that must be long enough to completely re-
ceive a packet. If a packet is received, the timer is discarded
and the node goes to the ACTIVE TX state. Otherwise if
the timer expires before any packet is received, the node
goes to the CALCULATE state.

� ACTIVE TX STATE: the node calculates the size of the
forwarding region (FwR). The FwR is the region between
the maximum and minimum distance (dmax, dmin) at which
the next hop must be. The node waits for the first beacon
coming from a node within the FwR and forwards the
packet to it. After the transmission is completed it goes to
the CALCULATE state.

� CALCULATE STATE: the node calculates the intensity pa-
rameter µ for the next sleeping time and generates an
exponentially distributed random variable of mean 1/µ.
After this the node goes back to the SLEEP state.
Consequently:

(1) the selection of the next hop is a random choice among
nodes of a calculated region

(2) the duty-cycling algorithm is randomized
(3) the MAC is random based and does not implement any

acknowledgment and retransmission scheme
(4) the working point of each node is determined by the size

of the FwR and the wake up intensity µ.

These parameters can be adaptively tuned in order to sat-
isfy delay and error rate constraints as well as to optimize for
power consumption [24]. We further introduce an initializa-
tion and network configuration protocol that allow for plug
and play of the described solution.

Fig. 12 Connectivity graph

5.2. SEmi-RANdom protocol for clustered topologies:
SERAN

For naturally clustered environments, as in our example,
we developed a semi-random protocol stack called SERAN,
which covers two layers of a classical protocol stack: rout-
ing and MAC. In this section, we present a brief overview
of SERAN, while we refer to [35] for a more detailed de-
scription and performance analysis. The case study of Fig.
3 represent a naturally clustered topology, where nodes are
deployed in clusters whose positions are known a priori.

5.2.1. Routing Algorithm

Routing over an unpredictable environment is notoriously a
hard task. High node density makes the problem easier to
solve. The idea is to have a set of nodes within transmission
range that could be candidate receivers; at least one of them
will offer a good link anytime a transmission is needed.

The routing solution of SERAN is based on a semi-
random scheme that reduces the overhead of purely random
approaches. In SERAN, the sender has knowledge of the
region to which the packet will be forwarded, but the actual
choice of forwarding node is made at random. This approach
is motivated by the fact that the clustered topology of the sen-
sor network for robots monitoring in a manufacturing cell is
known a priori.

A connective graph like the one reported in Fig. 12 can be
derived from the given cluster topology [35]. In the graph,
an arc between two clusters means that the nodes of the two
clusters are within transmission range. We further assume
that the nodes share the same communication channel. Then,
the first step of the SERAN routing algorithm consists of cal-
culating the shortest path from every cluster to the PLC and
generating the minimum spanning tree as shown in Fig. 12.

Assuming that a particular node in Cluster 1 must forward
a packet to the PLC, the proposed routing algorithm works
as follows:
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(1) the node that has the packet selects randomly a node in
Cluster 2 and forwards the packets to it;

(2) the chosen node determines its next hop by choosing a
node randomly in Cluster 4, and so on;

In other words, packets are forwarded to a randomly chosen
node within the next-hop cluster in the minimum spanning
tree leading to the PLC.

5.2.2. Hybrid MAC

The first priority for the design of our MAC is ensuring
robustness against topology changes. Since nodes failure is
a common phenomenon for WSN, we design a MAC that
is able to support the addition of new nodes for preserving
the high level of density required to ensure robustness. This
flexibility is usually obtained by using random based access
schemes. In the WSN domain, an interesting example of this
idea is presented in BMAC [37].

High density unfortunately introduces a large number of
collisions. This drawback becomes crucial in our case be-
cause we have only one channel that can be used for commu-
nication. To reduce collisions, a deterministic MAC is used.
A well-known deterministic approach is SMAC [36], where
the network is organized according to a clustered TDMA
scheme. Our MAC solution is based on a two-level semi-
random communication scheme. This offers robustness to
topology changes and node failures that is typical of a ran-
dom based MAC protocol and robustness to collision that is
typical of a deterministic MAC protocol

High Level MAC: The higher level regulates channel ac-
cess among clusters. A weighted TDMA scheme is used
such that at any point in time, only one cluster is transmit-
ting and only one cluster is receiving. During a TDMA cycle,
each cluster is allowed to transmit for a number of TDMA-
slots that is proportional to the amount of traffic it has to
forward. The introduction of this high level TDMA structure
has the goal of limiting interference between nodes transmit-
ting from different clusters. The time granularity of this level
is the TDMA-slot (see Fig. 13). After the two clusters ter-
minated their transmitting TDMA-slot, another TDMA-slot
(called the actuation slot) is reserved for the PLC. During
this slot, the PLC sends a message to the actuator of each
robot to continue operating or to switch the robot off.

Low Level MAC: The lower level regulates the communi-
cation between the nodes of the transmitting cluster and the
nodes of the receiving cluster within a single TDMA-slot. It
has to support the semi-random routing protocol presented
in V-B.1, and it has to offer flexibility for the introduction of
new nodes. This flexibility is obtained by having the trans-
mitting nodes access the channel in a p-persistent CSMA
fashion [38]. The random selection of the receiving node
is obtained by multi-casting the packet over all the nodes

Fig. 13 TDMA-Cycle representation

of the receiving cluster, and by having the receiving nodes
implement a random acknowledgment contention scheme to
prevent duplication of the packets. Calling CSMA-slot the
time granularity of this level (see Fig. 13), the protocol can
be summarized as follows:

(1) Each of the nodes of the transmitting cluster that has a
packet tries to multi-cast the packet to the nodes of the re-
ceiving cluster at the first CSMA-slot with probability p.

(2) At the receiving cluster, if a node receives more than one
packet, it detects a collision and discards all of them.
If it has successfully received a single packet, it starts
a back-off time Tack before transmitting an acknowl-
edgment. The back-off time Tack is a random variable
uniformly distributed between 0 and a maximum value
called Tackmax. If in the interval between 0 and Tack, it
hears an acknowledgment coming from another node of
the same cluster, the node discards the packet and does
not send the acknowledgment. In case of a collision
between two or more acknowledgments, the involved
nodes repeat the back-off procedure. At the end of the
CSMA-slot, if the contention is not resolved, all the re-
ceiving nodes discard the packet.

(3) At the transmitting node side, if no acknowledgment
is received (or if only colliding acknowledgments are
detected), the node assumes the packet transmission was
not successful and it multi-casts the packet at the next
CSMA-slot again with probability p. The procedure is
repeated until transmission succeeds.

In this approach, nodes need to be aware only of the next-
hop cluster connectivity and do not need a neighbor list of
next hop nodes. We believe this is a great benefit because
cluster based connectivity is very stable, while neighbor lists
of nodes are usually time-varying (nodes may run out of
power and other nodes may be added) and their management
requires significant overhead.
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In [24], it is shown how a similar acknowledgment con-
tention scheme reduces significantly the packet duplication
effect. However, we still cannot guarantee that duplicate
packets are not generated. This may happen if a receiving
node does not hear the acknowledgment sent by another
node in the same cluster. Although these duplicate packets
are detected at the PLC, they still create an extra amount
of traffic in the network. In [35], we show how protocol
parameters can be optimized to reduce further this traffic
overhead.

Energy Minimization: In most of the proposed MAC al-
gorithms for WSNs, nodes are turned off to save energy
whenever their presence is not essential for the network to
be operational. Similar to this approach, our duty-cycling
algorithm leverages the MAC properties and does not re-
quire extra communication among nodes. During an entire
TDMA cycle, a node has to be awake only when it is in its
listening TDMA-slot or when it has a packet to send and it
is in its transmitting TDMA-slot. For the remainder of the
TDMA cycle, the node radio can be turned off.

5.2.3. Protocol parameters synthesis

The working point of the communication protocol is deter-
mined by tuning a set of parameters such as the TDMA
schedule, the duration of the TDMA-slot, and the channel
access probability p.

TDMA Schedule: Referring to Fig. 12, assume for now that
the average generated traffic at each cluster is the same. Ac-
cording to our shortest cluster path routing solution, packets
are transferred cluster-by-cluster along the shortest path until
they reach the PLC. Consequently, clusters close to the PLC,
have a higher traffic load since they need to forward packets
generated within the cluster as well as packets coming from
upstream clusters. In the example of Fig. 12, the average
traffic intensity that Cluster 4 experiences is three times the
traffic intensity experienced by Cluster 1. Consequently, we
can assign one transmitting TDMA-slot per TDMA-cycle
to Cluster 1, two transmitting TDMA-slots to Cluster 2 and
three transmitting TDMA-slot to Cluster 4. Similarly, on the
other path, the number of associated TDMA-slots per cluster
can be assigned. Therefore, assuming we have P paths and
calling Bi the number of clusters in the i − th path, we have a
total of

∑ P
i = 1 Bi(Bi + 1)/2 TDMA-slots per TDMA-cycle.

Once we decide the number of TDMA-slots per TDMA-
cycle for each cluster, we need to decide the scheduling
policy for transmitting and receiving. We consider an inter-
leaved schedule (Fig. 14). For each path, the first cluster to
transmit is the closest to the PLC (Cluster 4). Then Cluster
2 and Cluster 4 again. Then Cluster 1, 2 and 4, and similarly
on the other path. This scheduling is based on the idea that
evacuating the clusters closer to the PLC first, we minimize
the storage requirement throughout the network.

Fig. 14 Scheduling: clusters close to the Controller are evacuated first

TDMA-slot duration: Starting from the latency require-
ments outlined in the previous section, we want to determine
the duration of a TDMA-slot such that the latency require-
ments are satisfied and energy consumption minimized.

Call Dmax the latency requirement, P the number of paths,
Bi the number of clusters per path, and S the duration of the
TDMA-slot. The requirement on S is [35]:

S ≤ Smax = Dmax

max1,...,P Bi + ∑P
i=1 Bi (Bi + 1)/2

(1)

Since, as shown inn [35], the total energy consumption is a
monotonically decreasing function of S, the optimal TDMA-
slot duration is S = Smax. Using the number of our case study,
this means a TDMA-slot duration of Sopt = 1120ms.

Random access parameter: The random access parameter
p needs to be set such that all the nodes in the cluster are able
to forward their packets during a TDMA-slot. In [35], we
model the packet transmission process as a Discrete Time
Markov Chain [31]. Let τ k denote the expected number of
CSMA-slots that are needed to forward all the packets in the
cluster given that there are k packets at the beginning of the
TDMA-slot. Then, we have [35]:

τk =
k∑

j=1

1

cpj(1 − p) j−1
(2)

The sum in (2) is a convex function of p, hence for different
values of k there is an optimal value of p (that we refer to
as pk) that minimizes τ k. In our case the optimal parameter
is popt = 0.1348. Furthermore, in [35] we show how this
choice ensures a packet error rate below 1%. With these
parameters the communication protocols satisfies the given
constraints and reduces the energy consumption of almost
an order of magnitude when compared to the most common
protocol solutions for WSNs. Since k depends on the sensing
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rate requirements that we get from Rialto and the duration
of the TDMA-slot, we are now able to set all the parameters
to the optimal working point.

6. Mapping and implementation

After creating the network infrastructure, the final step
of the design flow consists in mapping the control-
ling algorithm onto the controller hardware platform, and
mapping the communication protocol onto the wireless
nodes.

In general, mapping functionality over a WSN is a diffi-
cult process. The main reason is that if the communication
infrastructure is not created based on a clear mathematical
model, and a clear set of guarantees on latency and packet
error rate, the verification of the final solution is difficult and
often replaced by a validation with time consuming simula-
tions. Furthermore, whenever the simulations do not show
the intended behavior, the design cycle has to go back to the
protocol design stage.

With our approach, most of this hassle is avoided and that
is because the network architecture generated using Rialto
and the synthesis of the protocol parameters of the SNAPP
instance is guaranteed by construction to be able to support
the application while being energy efficient. Consequently,
the mapping process is extremely simplified:

(1) The first step consists in mapping the controlling al-
gorithm into the hardware platform of the PLC. This
represents a classical embedded systems mapping prob-
lem (i.e. not specific of the WSN domain) and it can be
performed with classical mapping tools. Consequently,
we offer only some quick remarks on this step. Metropo-
lis [27] is a design environment that was developed to
support Platform Based Design. The advantage of using
Metropolis in our design flow is that it supports any type
of model of computation for the functional description.
This property allows us to implementing our philosophy
of leaving the user freedom to select the preferred model
of computation for describing the control routines. Fol-
lowing the PBD, after the control routine is specified, an
abstraction of the hardware platform of the PLC must be
provided in order to drive the mapping process.
In many industrial practices, the PLC comes already with
a software development environment. Although these
environments do not offer the same flexibility and formal
methodology of Metropolis, they are commonly used by
plant designers because they are user friendly and sold
by companies with good customer support. However,
we believe that a more formal approach to this problem
should be pursued since a bad mapping often leads to
suboptimal or faulty implementations.

(2) The second step is to map the communication protocol
on the physical nodes. Since the communication proto-
cols of the SNAPP are already described in a distributed
fashion, the parametrized code for each node can be eas-
ily developed using the software interface of the nodes.
Most often, this interface is given by TinyOS and the
parametrized code can be written using NesC.
The actual setting of the parameters of the nodes to de-
termine their working point is obtained using an initial-
ization algorithm that kicks in when the nodes and the
PLC are switched on and allows for self-adaptation of
the network to the optimal working conditions. Further-
more, to preserve the correct behavior of the communi-
cation infrastructure, network management algorithms
are automatically run on the network on a periodical
basis.

7. Related work

Standards: A number of standards for open communica-
tion in sensor networks have been proposed. The most well-
known are the BACnet and LonWorks standards, developed
for building automation [1]. These standards are geared to-
ward well-defined application areas, and are built on top of
fairly well defined network structures. Hence, many of the
exciting new developments that are emerging from the wire-
less sensor network community cannot be accommodated
within these frameworks. At the same time, the application-
specific functionality of both BACnet and LonWorks can
easily be overlaid on top of the service-based model pro-
posed in this paper.

The approach that is closest to our approach is TinyDB
[10]. While TinyDB is also based on the Query/Command
paradigm, its main goal is to define the interface and an
implementation of a specific service, the query service, rather
than defining a universal service platform interface. Hence,
TinyDB does not include several auxiliary services that are
necessary in many sensor network applications.

There is a number of standards in the making at the ad-hoc
wireless network layer. The best known is Zigbee, advocated
by a consortium of companies [6]. ZigBee defines an open
standard for low-power wireless networking of monitoring
and control devices. It works in cooperation with the IEEE
802.15.4 standard, which focuses on the lower protocol lay-
ers (physical and MAC). Instead, ZigBee defines the upper
layers of the protocol stack, from network to application,
including application profiles. From our perspective, Zigbee
represents only one possible way to realize a network. The
services proposed in [7] can be easily deployed in and on top
of a Zigbee realization or alternative implementations such
as Bluetooth Scatternets.
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The research community has proposed several implemen-
tations for each of the services offered by the Sensor Network
Service Platform. Several attribute-based schemes that as-
sign, modify, or translate names have already been proposed
[11–13]. These schemes are different from the one used in
the Internet, where nodes are usually addressed individually
and are identified by a unique identifier called IP address.
DNS (Domain Name Server [13]) holds an association be-
tween names and IP addresses and upon request provides
a source node with the IP address of the destination host
before message delivery (early binding). INS [11] proposes
an overlay network of Intentional Naming Resolvers (INRs)
that associates attribute-based names with IP addresses and
binds them at message delivery time (late binding) rather
than at request resolution time. In INS, naming is done using
name-specifiers based on a set of attributes and their values.
Attribute-based naming is also proposed in [12] where name
matching, instead of being done by special-purpose network
elements, is distributed across the network and names are
associated with (attribute, value, operation) tuples, where
operation specifies the type of operation to be used for name
matching.

Networks of sensors (mostly wired) have further been
used in automation and manufacturing. A number of stan-
dards have been developed within the IEEE to deal with
different manufacturers.

More specifically, the IEEE 1451.2 [15] standardizes
both the key sensors (and actuators) parameters and their
interface with the units that read their measures (or set
their values). In particular, the standard defines the physical
interface between the Smart Transducer Interface Module
(STIM), which includes one or more transducers, and the
Transducer Electronic Data Sheet (TEDS) containing the
list of their relevant parameters, and the Network Capable
Application Processor (NCAP), which controls the access to
the STIM. IEEE 1451 was defined to improve the reusability
of the network and component solutions for sensor networks
within manufacturing plants. Although the initial targets
were wired networks, the applicability of its concepts
appeals to a wireless solution. IEEE 1451 presents already
the concept of logical components (e.g, a sensor identifies
a group of sensing devices rather than a single hardware
component). Nevertheless, the IEEE 1451 standards are
specifically targeted to the design of interfaces and they can
hardly be generalized to capture application characteristics.

Tools: Several tools to support the design of WSNs are
available. The most common design methodology for WSNs
starts with the description of the protocol specifications using
the NesC/TinyOS stack [16]. The NesC/TinyOS platform,
developed at U.C. Berkeley, leverages a “method call” model
of computation. It was designed to describe component-
based architectures using a simple event-based concurrency
model. This platform has then been enriched with a simu-

lation environment called TOSSIM [17]. Its success is also
related to the wide spreading of the hardware platforms of
the Mica family [18]. Remarkably, the combination of Mica
and TinyOS allowed for the development of many WSN
applications.

Alternatively, protocol solutions are simulated using en-
vironment such as OMNET + + [19] or VisualSense
[20] and then implemented in NesC/TinyOS. Omnet + +
is a discrete event simulator developed by Andras Varga at
the Technical University of Budapest. Although not specifi-
cally targeting the WSN domain, Omnet + + is widely
used within the communication community for protocol
simulations.

Visualsense is a modeling framework for WSN developed
as part of the Ptolemy project at U.C.Berkeley [21]. It is an
extension of a discrete-event model with an extra capability
of describing properties of the wireless connectivity. Visu-
alsense is a powerful tool to model and evaluate protocol
solutions under different scenarios. Although an effort to
move to a higher layer of abstraction is visible, especially
with Visualsense, the current design flows are too oriented
toward a bottom-up approach.

An attempt of raising the level of abstraction is presented
in [22], where a classification for node communication mech-
anisms is introduced to allow for a higher level description
of the network algorithms. In [23], a design methodology is
presented. That methodology is based on a bottom-up part
for the description of network algorithms, a top-down part to
describe the application, and a mapping process to deploy the
software code onto the nodes. The overall method fits with
the PBD paradigms advocated in this paper but leverages
different layers of abstraction. Our approach emphasizes the
control based nature of WSN applications and offers a clear
semantics and set of primitives to interpret timing issues at a
very high level, hence providing a clear level of abstraction
for the application designer. In [18, 25, 26], a description
of current efforts on hardware platforms is provided. Low
power design for the WSN domain has become a very active
research topic.

8. Conclusions

We presented a Platform-Based-Design methodology for
wireless sensor networks. First we identified the appropriate
layers of abstraction that forms the pillars of the methodol-
ogy: an application interface that allow the user to describe
the application independently from the network implemen-
tation (the Sensor Network Service Platform, SNSP), a plat-
form that is composed of a set of power aware communi-
cation protocols (SNAPP), and an abstraction that captures
the implementation architectures (the Sensor Network Im-
plementation Platform, SNIP).
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We presented an example of the proposed design flow in
an application of industrial control using wireless sensor net-
works. We introduced Rialto, a framework that helps trans-
lating the application description obtained using the SNSP
into requirements on the communication links and sensing
infrastructure that are the interface to the SNAPP. Starting
from these constraints and information on the system topol-
ogy, an adequate communication protocol among the ones
available in the SNAPP is selected. The working point of this
protocol is subsequently decided as the result of solving a
constrained optimization problem where the constraints are
given by the requirements generated by Rialto and the cost
function is obtained using an abstraction of the candidate
hardware platform.

Our future work will consist in further populating the
protocols of the SNAPP and in generalizing our mapping
strategy to diversify the supported application space.
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