
The Role of Back-Pressure in Implementing

Latency-Insensitive Systems

Luca P. Carloni

Department of Computer Science
Columbia University in the City of New York, New York, NY

Abstract

Back-pressure is a logical mechanism to control the flow of information on a communication channel
of a latency-insensitive system (LIS) while guaranteeing that no packet is lost. Back-pressure is
necessary for building open LISs and it represents an interesting design alternative also for closed
LISs because it makes possible to realize highly modular implementations with more predictable
features in terms of design overhead (area, power). In discussing the role of back-pressure, we
revisit the logic of the necessary building blocks, and explain the impact of the system topology
on the system performance.

Keywords: Latency-Insensitive Design, GALS, marked graphs, systems-on-chip (SOC),
correct-by-construction methods.

1 Introduction

The theory of latency-insensitive design is the foundation of a correct-by-
construction methodology to design complex digital systems by assembling
pre-designed modules [8,9]. The modules interact by exchanging data on a
communication architecture that is made of point-to-point lossless FIFO chan-
nels and works based on a latency-insensitive protocol. The protocol guaran-
tees a correct system behaves independently from the latencies of the com-
munication channels. An important application of the theory is the latency-
insensitive design methodology to build gigascale systems-on-chip (SOCs) with
nanometer technologies [7]. Here latency-insensitive design provides various

1 Email: luca@cs.columbia.edu

Electronic Notes in Theoretical Computer Science 146 (2006) 61–80

1571-0661/$ – see front matter © 2006 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.05.036

mailto:luca@cs.columbia.edu
http://www.elsevier.com/locate/entcs

Relay
station

Relay
station

Relay
station

Relay
station

Relay
station

Relay
station

Pearl 1

Shell 1

Pearl 4

Shell 4

Pearl 2

Shell 2

Pearl 5

Shell 5

Pearl 3

Shell 3

Figure 1. Shell encapsulation, relay station insertion and channel back-pressure.

practical advantages: (1) it simplifies the reuse of pre-designed and pre-verified
intellectual property (IP) cores, that, as long as they are stallable, can be inter-
faced with the communication protocol without changing their internal struc-
ture, (2) it enables the a-posteriori automatic pipelining of long wires through
the insertion of any number of sequential repeaters (relay stations), and (3) it
facilitates the exploration of communication versus computation trade-offs up
to late stages of the design process. Furthermore, latency-insensitive design
does not require engineers to undertake a revolution in their practices: since it
is based on the synchronous paradigm [1], it represents a theoretically sound
framework from which to develop a new class of design flows for nanometer
design through the use of traditional CAD tools.

Figure 1 illustrates the typical structure of a LIS implementation together
with its main “characters”. In this simple example five pre-designed modules
(the pearls or cores) are encapsulated within as many interface logic blocks (the
shells) and communicate by means of eight point-to-point channels. Some of
the channels have been pipelined through the insertion of six relay stations.
The data travelling on the channels of a LIS are distinguished in true packet or
void packets. The packets are processed by shell/core pairs according to AND-
causality rule: if a new true packet is available on each input channel then
the core consumes a packet from each channel, thereby updating its internal
state and producing a new true packet on each output channel; instead, the
absence of a true packet (and, correspondingly, the presence of a void packet)
on a single input channel is enough to force the shell to (1) stall the core, (2)
store those true packets that are possibly present on the other channels in its
input queues for later use, and (3) emit a void packet on each output channel.

In the particular implementation of Figure 1, each channel presents a
counter-flow signal (represented by the dashed arrow) that is necessary to

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–8062

implement back-pressure. Back-pressure is a logic mechanism thereby on a
given channel the down-link shell can request the up-link shell to temporarily
stop its production of true packets [7]. The reason for this request is that
the buffering capability of a shell in terms of input queues is finite. Hence, in
order to avoid loss of true packets while being forced to stall its core for many
consecutive cycles, a shell has ultimately to activate back-pressure on the in-
put channels corresponding to those queues that are getting full. The cause
of many consecutive stalling cycles is either back-pressure coming from out-
put channels or the sustained lack of alignment of corresponding true packets
across input channels (or, possibly, a combination of the two).

Since infinite-length queues are not physically realizable, one could argue
that back-pressure is always an essential implementation feature of any LIS.
However, this is not necessarily the case. In fact, in order to derive the final
implementation of a LIS, designers may sometime have a choice on whether
to use back-pressure or an alternative implementation style that still does not
require infinite queues. The existence of this choice depends on the nature of
the system under design, i.e. whether the system is open or closed. Further,
when the choice is present, the final decision must be taken after considering
the interplay between the computational structure of the system and the dif-
ferent design overheads introduced by the alternative solutions. In the rest of
the paper we further discuss this question and we explain under which condi-
tions this choice does not impact the system performance. While doing so we
revisit a reference implementation of LIS based on back-pressure.

2 The Building Blocks of a Latency-Insensitive System
with Back-Pressure

Regardless of the particular implementation style, a latency-insensitive
system is made of shells encapsulating cores, channels connecting shells, and
relay stations pipelining channels. In this section we revisit a reference im-
plementation with back-pressure (first presented in [7]) and we provide more
details on the logic of these building blocks.

Channels and Back-Pressure. Channels are point-to-point unidirec-
tional links that connect a source shell/core pair to a sink shell/core pair.
Data are transmitted on a channel by means of packets: a packet consists of
a variable number of fields. In a basic reference implementation, a packet is
made of two fields: payload, which contains the transmitted data, and void
flag, which is a one-bit signal that, if set to 1, denotes that no data are present
in the packet (void packet). If a packet does contain “meaningful” payload
data (i.e., void is set to 0) it is called a true packet. In an implementation

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–80 63

Stop
Reg

dataIn dataOut

stopIn

stopOut

voidOut
voidIn

Main
Reg

inDemuxCtrl outMuxCtrlstallRegs
m

ux

Aux
Reg

Main
Void

Aux
Void

m
ux

m
ux

m
ux

FSM

m
ux

m
ux

Figure 2. Schematic circuit diagram of a relay station.

with back-pressure, a stop flag signal travels on a channel in backward dir-
ection from the sink to the source. In practical hardware design, a channel
can be implemented as a set of wires: as many wires as they are necessary to
encode the data to transmit plus two additional wires for the void flag and the
stop flag respectively. Channels can be pipelined as much as they need to be
by distributing a finite number of relay stations on them. Besides providing a
systematic method to perform wire pipelining, the insertion of relay stations
on a channel creates a sort of distributed queue. Further, the control logic of
the queue is also distributed as it is implemented by the back-pressure mechan-
ism, which is inherently modular. Due to the increasingly distributed nature
of SOCs [41], distributed queues represent a design solution more promising
than having long, centralized communication queues located next to each IP
core module.

Relay Stations. A diagram for a possible RTL circuit implementation
of a relay station was presented in [7,11]. Figure 2 contains a more detailed
description of this implementation. This circuit targets single-clock synchron-
ous integrated circuits: at each clock cycle t a relay station takes a packet
packetInt and a stop flag stopInt as inputs and emits a packet packetOutt+1

and a stop flag stopOutt+1 as outputs. Packet packetInt contains the payload
dataInt and the void flag voidInt. Packet packetOutt+1 has the same struc-
ture with payload dataOutt+1 and void flag dataOutt+1. Stop flag signals

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–8064

Processing Stalling

WriteAuxReadAux

sIn’ + vIn / 000

sIn’ / 000

sIn / 100

sIn * vIn’ / 000

sIn / 101

sIn’ / 101

sIn / 010

sIn’ / 010

output encoding: [inDemuxCtrl outMuxCtrl stallRegs]

Figure 3. State-transition diagram for the FSM controlling a relay station.

stopInt and stopInt+1 support the back-pressure mechanism. A key property
of a relay station is that no combinational path must exist between its inputs
and its outputs. Consequently, it takes a clock cycle also for the stop flag sig-
nals to propagate across the relay station in backward direction. Since a LIS
is made of lossless channels, we must avoid losing data during the one cycle
that is necessary to propagate the stop signal. This fact, combined with the
goal of supporting a best-case maximum communication throughput (equal
to one), implies that a relay station must have double storage capacity. Com-
pared with a simple edge-triggered flip-flop, which can be similarly used to
pipeline channels without backpressure, a relay station presents the character-
istic twofold buffering capability (together with the necessary control logic):
a secondary (or auxiliary) register is coupled to a main register.

As illustrated in Figure 2, three internal signals control the flow of data
across a relay station: inDemuxCtrl, stallRegs, and outMuxCtrl. When set
to 1, signal stallRegs makes sure that the packets stored in both the main and
the auxiliary registers are not overwritten. When stallRegs is equal to 0, in-
stead, either the main or the auxiliary registers are updated with the incoming
packet based on the value of signal inDemuxCtrl. Signal outMuxCtrl con-
trols the output multiplexer in order to decided whether the output channel

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–80 65

is driven by the main registers or the auxiliary registers.

Figure 3 contains the state transition diagram of a finite state machine
(FSM) representing a possible detailed specification of the control logic of
the relay station that refines the one sketched in [7,11]. The FSM has 2 in-
put signals (stopIn, voidIn), 3 output signals (inDemuxCtrl, outMuxCtrl,
stallRegs), and 4 states (Processing, WriteAux, Stalling, ReadAux). Out-
put signals outMuxCtrl and stallRegs depend only on the FSM present state
while output signal inDemuxCtrl depends both on the FSM present state
and the input signal stopIn. Hence, outMuxCtrl and stallRegs are “Moore-
type outputs” while inDemuxCtrl is a “Mealy-type output”. However, notice
that, as it is required, there are no combinational paths from the primary in-
puts to the primary outputs of the relay station because the outputs of the
input multiplexers are sampled by either the main registers or the auxiliary
registers. Notice that if the FSM is in the Processing state and voidInt = 1, it
remains in the processing state regardless of the value of stopInt. The given
FSM description doesn’t include the logic to process the value of stopOutt+1,
which is simply equal to the value of stopInt, unless the relay station is in
the Processing state and voidInt = 1: in this case stopOutt+1 is set equal to
0. Finally, notice the following characteristic of the latency-insensitive pro-
tocol implemented by this relay station: if the stopIn signal is kept high by a
down-link module (either a relay station or a shell) for only one clock cycle,
then the relay station does not really stall (i.e. no packet is kept on the
output port for more than one cycle). Conversely, the relay station knows
that the down-link module is correctly sampling the packet present on its
output port at a given time t when the following logic condition is satisfied:(
stopInt = 0

) ∨ (
stopInt = 1 ∧ stopInt−1 = 0

)
.

Shell Encapsulation. Given a particular core module M , an instance
of a shell module can be automatically synthesized as a wrapper to encapsu-
late M and interface it with the channels so that their combination becomes
a patient system, i.e., informally, a system that “understands” the latency-
insensitive protocol. The theory of latency-insensitive design guarantees that
the only necessary precondition is that M be stallable [9]: at each clock cycle
the internal computation of the core must be fired only if all inputs have ar-
rived. In other words, the computation of M can occur at a given clock cycle
only when the corresponding true packet has arrived on each input channel.
The absence of a true packet is explicitly expressed by the arrival of a void
packet, i.e. a packet with the void flag set to 1. Guaranteeing this input
synchronization is the first task of the shell of a core module and it is strictly
combined with core stalling. The shell stalls the core either because a true
packet is missing on an input channel or because there is at least one output

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–8066

Figure 4. Shell encapsulation: making an IP core patient.

channel where the down-link (sink) shell has been keeping high the stop flag
for two or more consecutive cycles (via back-pressure). While stalling the core,
the shell needs to perform input buffering and output propagation. With input
buffering the shell avoids losing those true packets that have regularly arrived
on a given channel (and that cannot be processed by the core yet) by storing
them in a dedicated queue. Output propagation, instead, is the mechanism
to guarantee that a true packet is kept for as long as necessary on the output
port of a channel that has requested so via back-pressure. On the other hand,
during core stalling the shell must use the void flag to invalidate the packet on
each output port of a channel that has not made such request. Not doing so
would potentially lead to a computational error due to multiple sampling of
the same packet. As it implements the protocol outlined above, the combin-
ation shell-core operates according to an AND-causality semantics [23], like a
transition of an ordinary marked graph [17] or an actor of a homogeneous syn-
chronous data flow [31]. These models of computation present several useful
properties, including the possibility of computing efficiently and exactly the
performance of the overall system.

Figure 4 shows the conceptual diagram of a RTL implementation of a
shell encapsulating a core module with two input channels and two output

core (pearl)

ch
an

n
el 4

dOut

vOut

sIn

dOut

vOut

sIn

ch
an

n
el 3

2

dIn

vIn

sOut

ch
an

n
el

dIn

vIn

sOut

ch
an

n
el

 1

reg

MUX

clock

reg

reg
acyclic

combinational
logic

MUX
CTRL

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–80 67

channels. The control logic implements the various tasks described above.
The stalling/firing mechanism is simply obtained by gating the clock signal,
which controls the register of the core. 2 Notice that all the output signals are
properly latched: for the payload field of the output packets the shell relies on
the output latches of the stallable core module 3 while the auxiliary signals,
i.e. the void flags and stop flags, are latched by the shell itself. Finally, notice
the presence of by-passable queues on the input channels. The reasons to make
them by-passable is to guarantee that if a new set of incoming true packets
is available and no stalling requests came from the output channels then a
new set of outgoing true packets is produced in exactly one clock cycle, i.e.
without adding any cycle to the original latency of the core.

The design overhead due to shell encapsulation generally depends on the
size of the core. Naturally, the larger is the core, the smaller is the relative
impact of shell encapsulation. Further, to develop a library of optimized
shells is a feasible task because they can generally be reused across many
different core modules. In fact, the control logic of the shell remains the same
regardless of the internal complexity of the core and the number of shell queues
only depends on the core’s I/O interface. This important advantage of the
proposed latency-insensitive protocol not only simplifies the design of the shell
but it also guarantees its broad applicability: as long as the core module is
a stallable sequential circuit it is not necessary to know its internal structure
or behavior. In other words, latency-insensitive design can be applied to any
stallable “black-box” IP core.

3 Performance Analysis of Latency Insensitive Systems

No matter how many relay stations are introduced on the channels of
a latency-insensitive system, its functional correctness is guaranteed to be
preserved: the system may produce more void packets on the output channels
as well as exercise more back-pressure on the input channels but, nevertheless,
its processing activity progresses without deadlocking. Naturally, however,
the effectiveness of latency-insensitive design is strongly related to the ability
of maintaining a sufficient performance in the presence of increased channel
latencies.

Nominal versus Effective Clock Frequency. In order to correctly
evaluate the performance of a latency-insensitive system it is necessary to

2 Recall that clock gating is a common technique in low-power hardware design.
3 The core module of Figure 4 is a Moore finite state machine, but it could be replaced
by any stallable sequential module as long as it does not have any direct combinational
path from its inputs to its outputs. Hence, any arbitrarily complex pipelined circuit can be
similarly encapsulated within a shell.

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–8068

check how frequently it produces void packages at its output ports. Accord-
ingly, the throughput θ(S) of a latency-insensitive system S is defined as the
number of true packets produced by S in a given time interval. This of course
corresponds to the ratio of true packets over the sum of true packets plus void
packets (as observed at the system outputs during such interval) and it is a
number between zero and one. It follows that, given a nominal clock frequency
φ, the effective frequency of a latency-insensitive system S is

φeff (S) = φ · θ(S)

Throughput θ(S) depends on two factors: the internal structure of S and the
interaction with the environment E where S operates.

Origin of Void Packets. A latency-insensitive system S may receive
void packets at its primary inputs from the environment E in which it operates
as well as generate them itself. In the first case, obviously, E impacts the
throughput θ(S) of S. The second case is more interesting from a design
perspective because it sets a limit on the maximum throughput that S can
sustain regardless of the environment in which it operates. A properly designed
shell emits void packets on its output channels only as a result of being forced
to stall. In fact, when the system starts-up, each core, being a sequential
process, has its output registers initialized with a true packet. 4 Instead, the
generation of void packets inside system S is due to the presence of relay
stations. More precisely, each relay station introduces one void packet in
the system. The void packet corresponds to the initialization value 5 for
the storage element of the relay station. Then, based on the computation
structure of S some of these void packets may either leave the system after
a transitional phase or continue to cycle in it forever. In the latter case they
have a negative impact on θ(S).

4 This follows directly from the fact that, a LIS is derived from a correct strict system
where every process is a strict process and no stalling events are present [9].
5 Since a relay station is a “design correction” that is extraneous to the original system
specification, its initialization value must remain transparent to the cores (while visible to
other relay stations and shells) in order to make sure that it does not corrupt their in-
ternal state. In other words, the simplest way to insert additional stateful repeaters into
a sequential system without changing the internal logic of its components nor jeopardizing
the correctness of its overall functional behavior is to make sure that such repeaters are
initialized with values that will not get processed by the components that receive them.
With a latency-insensitive protocol this can be done systematically as relay stations intro-
duce void packets and shells make sure that the cores do not see them. Observe that the
initialization of relay stations cannot be generally handled with the same methods used for
retiming [32,48] because their insertion can occur in arbitrary number without the restric-
tions given by the retiming invariant rule (the number of storage elements that lie on any
feedback path of a synchronous circuit must remain constant through retiming) [37].

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–80 69

Maximum Sustainable Throughput. Since the structure of a LIS
S determines the maximum throughput that S can sustain regardless of the
environment E in which it operates, we are interested in defining the intrinsic
fundamental performance metric of S. We call this quantity the maximum
sustainable throughput because S effectively runs at this throughput unless E
forces it to slow down by either not providing enough true packets to process
or requiring it to wait via back-pressure. As discussed next, the behavior
of S can be analyzed by building a marked graph model MGS. In partic-
ular the maximum sustainable throughput of S can be precisely derived by
performing a static analysis on the structure of MGS based on the following
definition. The maximum sustainable throughput of a marked graph model
MGS is defined as

ϑ(MGS) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if MGS is acyclic;

min
{

1, 1
π(MGS)

}
if MGS is cyclic and

strongly connected;

min∀MGSCC∈MGS

{
ϑ(MGSCC)

}
otherwise.

where π(MGS) denotes the cycle time of MGS.

First, since an acyclic marked graph can sustain any rate of produc-
tion/consumption, it is reasonable to set its maximum sustainable through-
put equal to one by definition. 6 Second, when MGS is strongly connected
ϑ(MGS) is equal to the reciprocal of its cycle time that is determined by any
of its critical cycles. 7 Finally, when MGS is cyclic with multiple strongly
connected components (SCCs), then ϑ(MGS) is effectively determined by the
slowest among them. In fact, if a “slower” SCC feeds a “faster” one then
it implicitly reduces the throughput of the latter. Instead, if it is the faster
SCC that is positioned up-link with respect to the slower then the system is
not bounded and we have token accumulation in the place connecting the two
SCCs. In this case, we must interpret ϑ(MGS) as a design constraint for the
implementation of S, i.e. a constraint that designer must satisfy by either
“slowing down” the faster SCC or “speeding up” the slower (since infinite
queues cannot be realized).

6 This confirms the intuition because a marked graph without cycles represents a pipelined
system without feedback paths. Hence, for any possible initial marking there exists a finite
number K of steps after which all token vacancies (stalling events) originally in the system
have been ejected through its output ports and, as long as each input port continues to
receive a token at each step, each place in the system contains a token.
7 The relationship between the cycle time of a strongly-connected marked graph and the
cycle metric of its critical cycles is reported in several works including [6,35,36,38,40].

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–8070

Modeling Latency-Insensitive Systems with Marked Graphs. The
structure and behavior of a LIS implementation can be effectively captured
with a constructive modeling approach based on marked graphs. The ap-
proach is constructive in the sense that applies a one-to-one correspondences
between the building blocks of a LIS and some pre-defined marked graph
structures. To give a detailed description of how to model a LIS with marked
graphs goes beyond the scope of this paper and we refer to [12]. 8 However,
observe that a “classic LIS” implementation can be conveniently modeled with
marked graphs because at the protocol level it operates as a deterministic sys-
tem whose behavior is fully determined once void packets are distinguished
from true packets in the initial state. Naturally, it is possible to introduce
other latency-insensitive protocols in order to take advantage of the fact that
for some core modules it is not the case that each input channel must be
sampled at every clock cycle (as proposed in [42]). However, the correct design
of such protocols will require more information on the core’s internal structure
than what a “black-box” IP core gives and the analysis of their performance
will likely require to go beyond simple marked graphs and use instead more
powerful subclasses of Petri nets.

The constructive modeling approach based on marked-graph captures both
virtual implementations where shells have unlimited memory space to store
interface signals (infinite queues) as well as implementations that are based on
the combination of finite queues and back-pressure. In both cases, we can use
theoretical properties of marked graphs to prove that any LIS is live by con-
struction, to determine whether it is bounded or not, and to statically compute
its maximum sustainable throughput. For the case of infinite queues, these
models can be used to determine if the system’s throughput is high enough
to satisfy the performance requirement imposed by the environment as well
as to determine the minimum finite size of each queue in order to guaran-
tee correct operations (by computing the maximum number of tokens that
can be present on a given place during the operation of a bounded system).
Finally, the model allows us to derive a result with important practical con-
sequences: for any given LIS we can build a physical implementation based on
back-pressure and finite queues with length equal to two that offers the same
performances as a virtual implementation with infinite queues.

8 In [10] we presented a performance analysis of LISs based on ad-hoc formalism (called lis-
graphs, i.e. latency-insensitive system graphs). Since lis-graphs turned out to be equivalent
to marked graphs, in [12] we replaced them with marked graphs.

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–80 71

a

e’

c

d

b

S3

shell

S1

shell S4

shell

S2

shell

e
relay station

Figure 5. A non-strongly connected cyclic latency-insensitive system with a relay station inserted
between its SCCs.

relay station

a a’

c

d

b

S3

shell

S1

shell S4

shell

S2

shell

e

Figure 6. A non-strongly connected cyclic latency-insensitive system with a relay station inserted
within a SCC.

4 Discussion

We provide here a qualitative analysis on some key aspects that should be
considered while implementing a latency-insensitive system.

The Role of System Topology. As discussed in Section 3, the max-
imum sustainable throughput ϑ(MGS) and, ultimately, the performance of a
latency-insensitive system S essentially depends on where (and in which num-
ber) the relay stations have been inserted. In this regard, we only need to
analyze the computational structure of the system, which is captured by its
corresponding marked graph model. We have four main scenarios:

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–8072

(i) MGS is an acyclic graph. 9 The insertion of relay stations on any channel
of MGS does not have impact on ϑ(MGS). Some void packets are ob-
served at the output ports of the system, thereby forcing the correspond-
ing true packets to arrive with some clock cycles of additional latency,
but, eventually, the system reaches a steady state and no more void pack-
ets are observed. Also, no unbounded token accumulation occurs within
the system. Queues of finite length are necessary in those shells that have
multiple input channels and at least one of these channels receives some
void packets. These channels, however, can be identified based on the
location of the relay stations and the overall topology of ϑ(MGS).

(ii) MGS is a cyclic graph with several strongly connected components (SCCs)
and the relay stations are inserted between them. To analyze this scenario
without loss of generality it is sufficient to consider the case of a LIS with
only two SCCs as illustrated in Figure 5. The insertion of relay stations
on any channel connecting two distinct SCCs of MGS does not have any
impact on the maximum sustainable throughput ϑ(MGS) either. This
fact may appear counterintuitive. After all the down-link SCC Sdown is a
cyclic system and the shell s4 of Sdown, when receives a void packet from
the pipelined channel, reacts producing a void packet that propagates
within Sdown. However, shell s4 is also the shell that “retires” this void
packet after it has completed a cycle around Sdown.

(iii) MGS is a single strongly connected component. The insertion of relay
stations on any channel of MGS has always a negative impact on the
maximum sustainable throughput ϑ(MGS). The impact, which varies
depending on the structure of the cycles of MGS, can be exactly calcu-
lated by computing the cycle time of MGS. No unbounded token accu-
mulation occurs within the system whether the implementation is based
on back-pressure or not. Unbounded token accumulation, however, can
occur at the boundary between the system and the environment in which
it operates.

(iv) MGS is a cyclic graph with several strongly connected components and the
relay stations are inserted within some of them. For each distinct SCC
this case boils down to the previous case and the corresponding max-
imum sustainable throughput can be calculated exactly. The interaction

9 Strictly speaking, if we implement an acyclic LIS using back-pressure, the final imple-
mentation cannot be acyclic (and this is reflected by its finite-queue marked graph model).
In this case, however, it turns out that if we equalize the number of relay stations on
all the pairs of reconvergent feedforward paths, then there is no throughput degradation.
Casu and Macchiarulo made this observation in [13] where they call such optimization path
equalization.

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–80 73

between the SCCs, however, needs to be managed carefully because this
is the case where unbounded token accumulation can occur inside the
system depending on the relative values of the maximum sustainable
throughput of its SCCs. If a SCC Sup lies in an up-link position with re-
spect to another SCC Sdown and ϑ(Sup) > ϑ(Sdown) then unbounded token
accumulation is guaranteed to happen. For instance, Figure 5 illustrates
a LIS where this scenario occurs since ϑ(Sup) = 1 while ϑ(Sdown) = 2

3
.

In order to avoid unbounded token accumulation it is necessary either
to implement back-pressure or to slow-down the faster SCC. The general
trade-offs between these two alternatives is discussed next.

The Role of Back-Pressure. The choice of whether to use a back-
pressure mechanism in completing the physical implementation of a latency-
insensitive system S that operates within an environment E is not straight-
forward. The result reported at the end of Section 3 guarantees that this
choice does not affect the maximum sustainable throughput ϑ(S) of the sys-
tem. In other words, as long as the environment is always capable of providing
new true packets and does not generate ever stalling requests, back-pressure
is not a factor on determining the system performance. On the other hand,
back-pressure is a factor in guaranteeing that any specification of a latency-
insensitive system S can be physically implemented under any possible config-
uration of channel pipelining. In fact, a back-pressure mechanism can always
replace the need for (unfeasible) infinite-length queues in providing a correct,
physical, system implementation that runs at the same throughput and does
not experience any queue overflow. Back-pressure, however, comes with the
assumption that the operational environment is ready to stall whenever the
system sends back a stalling event. In this regard, the completion of a physical
implementation generally boils down to a choice between two alternatives in
order to handle the token accumulation problem:

(i) use back-pressure and reduce dynamically the token production rate of
the environment E to match the maximum sustainable throughput of S;

(ii) do not use back-pressure and reduce statically the token production rate
of E by running E with a nominal clock frequency φ(E) that matches
the effective clock frequency φeff (S) of S.

This choice, however, may be restricted when S is an open system, i.e. a
system that must be designed without being able to control also the design
of the other systems that constitute its operational environment E. In this
case, if E is latency-insensitive then back-pressure must be used, while if E is
not latency-insensitive then the final design of S will be good only for those
environments running at the effective clock frequency of S.

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–8074

When S is a closed system, instead, the above decision is only influenced
by considerations on the area and power overhead of the alternative solutions
(since their performance is the same). We know that in an implementation
with back-pressure it is sufficient to size the lengths of all the shell input
queues to be equal to two. Therefore, back-pressure enables the creation of
a very modular design. Furthermore, the area impact of each shell can be
easily estimated from the information on the number of input channels of the
corresponding core. In addition, it is necessary to account for the additional
wires implementing the back-pressure signal and the double storage space
within each relay station. The alternative is not to use back-pressure, thereby
removing these additional wires and deploying a unit-capacity stateful repeater
in the place of each relay station. However, in this case, it is necessary to
equalize the throughput values of each SCC component in the system to avoid
unbounded accumulation. Furthermore each input queue of every shell in the
system must be sized ad hoc and its finite length may vary sensibly. 10

This is another reason why it is important to make an attempt for a balanced
design, i.e. a design where communication and computation latencies are well
balanced.

5 Related Work

Circuit modeling with Petri nets and marked graphs. The col-
lection edited by Yakovlev et al. offers a summary of the state of the art in
the application of Petri nets to the design of digital systems and circuits [50].
Ramchandani was the first to apply timed Petri nets to the analysis of asyn-
chronous concurrent systems [39]. Williams proposed two types of marked
graphs, called respectively dependency graphs and folded graphs, as a special-
ized model targeting the efficient computation of the exact throughput and
latency for deterministic self-timed pipelines [49]. Similar approaches were
proposed by Greenstreet and Steiglitz to analyze self-timed pipelines [21] and
Thiele to analyze self-timed processor arrays [46]. Nielsen and Kishinevsky
used unfolding and timing simulation to determine the cycle time and critical
cycle of concurrent systems that can be represented as “timed signal graphs”,
an extension of marked graphs [36]. In order to model asynchronous circuits
Burns introduced event-rule systems that are equivalent to marked graphs and
defined the cycle period of an asynchronous system as the asymptotic average
time separation between consecutive occurrences of the same event [5,6]. In
his thesis [6], Burns discusses the problem of computing the minimum cycle

10 The study of optimal strategies to statically balance φ(E) and φeff (S) while deriving a
good floor-planning for S is a matter for further investigation.

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–80 75

period and explains the connection between this problem and linear program-
ming (LP). This connection was originally observed by Magott who formulated
a LP problem with |T | + 1 variables and |P | constraints and solved it with
a general-purpose polynomial algorithm [33]. Alternative formulations of this
LP problem have been proposed and their relationships were discussed in [51].
Burns provides a specialized algorithm that exploits the particular structure
of this LP problem to solve it in a low-order polynomial time.

The cycle time of a timed marked graph is a concept similar to the max-
imum profit-to-time ratio, for which Lawler provides an O(|V | · |A| · logB)
algorithm where V is the set of vertices of G, A is the set of arcs, and B is
a variable related to the desired precision of the results [30]. As discussed
in [19], the maximum cycle mean problem is a special case of the maximum
profit-to-time ratio problem. In 1978 Karp published an elegant theorem for
calculating the maximum cycle mean together with a companion algorithm of
complexity O(|V | · |A|) [28]. Since then, several other algorithms have been
proposed to solve the maximum cycle mean problem as surveyed in [19,24].
Relationships with the dual optimization problems, i.e. finding the minimum
cycle mean and the minimum cost-to-time ratio, are discussed in [19].

Being ordinary Petri nets where each place has exactly one input transition
and exactly one output transition, marked graphs are a model of computation
equivalent to homogeneous synchronous data flows [31]. Synchronous data
flows are a restricted version of data flow models of computation originally
pioneered by Dennis [20] and are closely related to the computation graphs
proposed by Karp and Miller in [29].

Works related to latency-insensitive design. Casu and Macchiarulo
have proposed an alternative implementation for the building blocks of a
latency-insensitive system that applies to the particular case when the com-
putation of each core module can be scheduled statically [14]. Their imple-
mentation consists of building a shell circuit that stalls its core according to a
periodic scheduling sequence, which is stored in a local shift register. Hence,
such shell does not need to read the values of void signals and stop signals and
these, therefore, can be removed. Also, since in this particular case there is
no need for back-pressure, relay stations are replaced by normal unit-capacity
stateful repeaters such as edge-triggered flip-flops. Naturally this implement-
ation works only with closed systems.

Building on their previous work on the Polychrony design environment [22,45,47],
Talpin and Le Guernic presented a process algebraic theory of behavioral type
systems and applied it to the synthesis of latency-insensitive protocols. They
showed that the synthesis of component wrappers can be optimized using the
behavioral information carried by interface-type descriptions to yield minim-

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–8076

ized stalls and maximized throughput [44].

Latency-insensitive design has been adopted as the mode of operation for
the components of “×pipes”, a scalable and high-performance network-on-chip
(NOC) architecture for both homogeneous and heterogeneous multi-processor
SOCs that has been co-developed by researchers at Stanford University and
the University of Bologna [2,3,18,43].

In the context of applying latency-insensitive design to the construction
of NOCs Singh and Theobald have proposed “generalized latency-insensitive
systems” with the extensions to: communication architecture with arbitrary
topologies (i.e. beyond point-to-point channels), multi-clock systems, and
“more flexible synchronous modules” where each input channel is not neces-
sarily sampled at every clock cycle [42].

Hassoun and Alpert adopted the concept of relay stations as the basic
synchronization elements in their approach to achieve simultaneous routing
and buffer insertion for GALS architectures in SOC design [25,26].

Chelcea and Nowick have developed a library of robust interface circuits
that makes it possible to extend the idea of latency-insensitive protocols
to designs with mixed-timing domains (synchronous, asynchronous, multiple
clocks) [15,16]. The library contains several low-latency, high-throughput,
FIFO queues as well as two new mixed-timing relay stations. These circuits
were designed using a modular approach: they defined a set of basic inter-
faces, both synchronous and asynchronous, that can be assembled to obtain
a FIFO that meets the desired timing assumptions on both the senders’ and
receivers’ end. Thus, the design of a mixed-timing FIFO is reduced to reusing
and assembling a few pre-designed components. One of the important contri-
butions of this work is precisely the novel design of relay stations for mixed
asynchronous/synchronous interfaces.

The work of Jacobson et al. on “synchronous interlocked pipelines” [27]
contains several commonalities with latency-insensitive design. The authors
share some of the motivations (e.g., the dominance of interconnect delay in
nanometer design) while they put a strong emphasis on the need to develop
power-aware techniques that perform computation only on demand. Further,
the underlying philosophy—the goal of finding “a middle ground in tech-
niques that can provide the benefits of asynchronous properties in a synchron-
ous context”—parallels the main motivation of the latency-insensitive design
methodology [7] and the strategy towards this goal partially relies on sim-
ilar techniques such as using clock-gating to implement fine-grained stalling
and performing pipelined stalling in the backward direction (pipelined back-
pressure). An important difference between the two approaches lies at the
implementation level, particularly in the circuitry used to make the stages of

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–80 77

the synchronous pipeline. A relay station presents an “auxiliary register” in
parallel to each “stage register” in order to avoid losing data during the single
cycle necessary for the back-pressure stalling signal to cross the stage. In [27],
instead, there is no insertion of parallel extra registers and the loss of data is
avoided by using every other register in series. As a consequence, Jacobson
et al. report that the maximum occupancy of the pipeline, when no stalling
has occurred, is of N/2 data items, where N is the number of (serial) stage
registers. This is equivalent to the occupancy of an analogous pipeline with
N relay stations, where, however, the flow throughput is 1 instead of 0.5.

Finally Borgatti et al. have proposed a reconfigurable on-chip communic-
ation network that consists of a multi-context, programmable crossbar im-
plemented using a matrix of modified Flash-EEPROM devices [4]. In order
to improve the speed of the programmable interconnet, they combined the
concept of elastic interconnect [34] with a newly-designed communication pro-
tocol. This operates similarly to a latency-insensitive system with backpres-
sure as it guarantees lossless communication through the use of a congestion
signal, which propagates in opposite direction with respect to the flow of data
and control.

References

[1] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and R. de Simone. The
synchronous language twelve years later. Proceedings of the IEEE, 91(1):64–83, January 2003.

[2] D. Bertozzi and L. Benini. ×pipes: A network-on-chip architecture for gigascale systems-on-
chip. IEEE Circuits and Systems Magazine, 4(2):18–31, 2004.

[3] D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and G. De Micheli.
NoC synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE
Transactions on Parallel and Distributed Systems, 16(2):113–129, February 2005.

[4] M. Borgatti, C. Auricchio, R. Pelliconi, R. Canegallo, C. Gazzina, A. Tosoni, and P. Rolandi. A
multi-context 6.4Gb/s/channel on-chip communication network using 0.18µm flash-EEPROM
switches and elastic interconnects. In ISSCC Digest of Technical Papers, February 2003.

[5] S. M. Burns and A. J. Martin. Performance analysis and optimization of asynchronous circuits.
In Advanced Research in VLSI, pages 71–86. MIT Press, 1991.

[6] Steven M. Burns. Performance Analysis and Optimization of Asynchronous Circuits. PhD
thesis, California Institute of Technology, 1991.

[7] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vincentelli. A methodology
for “correct-by-construction” latency insensitive design. In Proceedings International
Conference on Computer-Aided Design, pages 309–315, San Jose, CA, November 1999. IEEE.

[8] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Latency insensitive protocols.
In N. Halbwachs and D. Peled, editors, Proceedings of the 11th International Conference on
Computer-Aided Verification, volume 1633, pages 123–133, Trento, Italy, July 1999. Springer
Verlag.

[9] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory of latency-insensitive
design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
20(9):1059–1076, September 2001.

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–8078

[10] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Performance analysis and optimization of
latency insensitive systems. In Proceedings of the Design Automation Conference, pages 361–
367, Los Angeles, CA, June 2000. IEEE.

[11] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Coping with latency in SOC design. IEEE
Micro, 22(5):24–35, Sep-Oct 2002.

[12] Luca P. Carloni. Latency-Insensitive Design. PhD thesis, University of California Berkeley,
Electronics Research Laboratory, College of Engineering, Berkeley, CA 94720, August 2004.
Memorandum No. UCB/ERL M04/29.

[13] M. R. Casu and L. Macchiarulo. Issues in implementing latency insensitive protocols. In Proc.
of the Conf. on Design, Automation and Test in Europe, February 2004.

[14] M. R. Casu and L. Macchiarulo. A new approach to latency insensitive design. In Proc. of the
Design Automation Conf., pages 576–581, June 2004.

[15] T. Chelcea and S. Nowick. Robust interfaces for mixed-timing systems with application to
latency-insensitive protocols. In Proc. of the Design Automation Conf., pages 21–26, 2001.

[16] T. Chelcea and S. Nowick. Robust interfaces for mixed-timing systems. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 12(8):857–873, August 2004.

[17] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked directed graphs. Journal of
Computer and System Science, pages 511–523, 1971.

[18] M. Dall’Osso, G. Biccari, L. Giovannini, D. Bertozzi, and L. Benini. ×pipes: a latency
insensitive parameterized network-on-chip architecture for multi-processor SoCs. In Proc. Intl.
Conf. on Computer Design, pages 536–541, October 2003.

[19] A. Dasdan and R. K. Gupta. Faster maximum and minimum mean cycle algorithms for
system-performance analysis. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 17(10):889–899, October 1998.

[20] J. B. Dennis. First version of a data flow procedure language. In Programming Symposium,
volume 19 of Lecture Notes in Computer Science, pages 362–376, Berlin, 1974. Springer Verlag.

[21] M. R. Greenstreet and K. Steiglitz. Bubbles can make self-timed pipelines fast. Journal of
VLSI Signal Processing, 2(3):139–148, November 1990.

[22] P. Le Guernic, J. P. Talpin, and J. C. Le Lann. Polychrony for system design. Journal for
Circuits, Systems and Computers, 12(3):261–303, April 2003.

[23] J. Gunawardena. Causal automata. Theoretical Computer Science, 101(2):265–288, 1992.

[24] M. Hartmann and J. B. Orlin. Finding minimum cost to time ratio cycles with small integral
transit times. Networks, 23:567–574, 1993.

[25] S. Hassoun and C. J. Alpert. Optimal path routing in single and multiple clock domain
systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
22(11):1580–1588, November 2003.

[26] S. Hassoun, C. J. Alpert, and M. Thiagarajan. Optimal buffered routing path constructions
for single and multiple clock domain systems. In Proc. Intl. Conf. on Computer-Aided Design,
pages 247–253, 2002.

[27] H.M. Jacobson, P.N. Kudva, P. Bose, P.W. Cook, S.E. Schuster, E.G. Mercer, and C.J. Myers.
Synchronous interlocked pipelines. In 8th IEEE International Symposium on Asynchronous
Circuits and Systems, April 2002.

[28] R. M. Karp. A characterization of the minimum cycle mean in a digraph. Discrete Math.,
23:309–311, 1978.

[29] R. M. Karp and R. E. Miller. Properties of a model for parallel computations: Determinacy,
termination, queueing. SIAM Journal of Applied Mathematics, 14(6):309–311, November 1966.

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–80 79

[30] Eugene Lawler. Combinatorial Optimization: Networks and Matroids. Holt, Rhinehart and
Winston, 1976.

[31] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, September 1987.

[32] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. Algorithmica, 6:5–35, 1991.

[33] J. Magott. Performance evaluation of concurrent systems using Petri nets. Information
Processing Letters, 18(1):7–13, 1984.

[34] M. Mizuno, W. J. Dally, and H. Onishi. Elastic interconnects: Repeater-inserted long wiring
capable of compressing and decompressing data. In ISSCC Digest of Technical Papers, pages
346–347, February 2001.

[35] T. Murata. Petri Nets, marked graphs and circuit-system theory. Circuits and Systems,
11(2):2–12, June 1977.

[36] C. D. Nielsen and M. Kishinevsky. Performance analysis based on timing simulation. In Proc.
ACM/IEEE Design Automation Conference, pages 70–76, June 1994.

[37] M. C. Papaefthymiou. Understanding retiming through maximum average-weight cycles. In
ACM Symposium on Parallel Algorithms and Architectures, pages 338–348, 1991.

[38] C. V. Ramamoorthy and G. S. Ho. Performance evaluation of asynchronous concurrent systems
using Petri nets. IEEE Transactions on Software Engineering, 6(5):440–449, September 1980.

[39] C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri nets. Technical
Report Project MAC Tech. Rep. 120, Massachusetts Inst. of Tech., February 1974.

[40] R. Reiter. Scheduling parallel computations. Journal of the ACM, 15(4):309–311, October
1968.

[41] P. Saxena, N. Menezes, P. Cocchini, and D.A. Kirkpatrick. Repeater scaling and its impact
on CAD. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
23(4):451–462, April 2004.

[42] M. Singh and M. Theobald. Generalized latency-insensitive systems for single-clock and multi-
clock architectures. In Proc. of the Conf. on Design, Automation and Test in Europe, pages
21008–21013, February 2004.

[43] S. Stergiou, F. Angiolini, S. Carta, L. Raffo, and G. De Micheli D. Bertozzi. ×pipes lite:
A synthesis oriented design library for networks on chips. In Proc. of the Conf. on Design,
Automation and Test in Europe, pages 1188–1193, March 2005.

[44] J. P. Talpin and P. Le Guernic. An algebraic theory for behavioral modeling and protocol
synthesis in system design. Journal of Formal Methods in System Design, to appear in 2005.

[45] J. P. Talpin, P. Le Guernic, S. K. Shukla, R. Gupta, and F. Doucet. Formal refinement-checking
in a system-level design methodology. Fundamenta Informaticae, pages 243–273, July 2004.

[46] Lothar Thiele. On the analysis and optimization of self-timed processor arrays. Integration,
the VLSI Journal, 12(2):167–187, December 1991.

[47] The Polychrony Toolset. Developed at IRISA. Available at http://www.irisa.fr/
espresso/Polychrony/.

[48] H. Touati and R. K. Brayton. Computing the initial states of retimed circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits, pages 157–162, January 1993.

[49] Ted E. Williams. Latency and throughput tradeoffs in self-timed asynchronous pipelines and
rings. Technical Report CSL-TR-90-431, Stanford University, August 1990.

[50] Alex Yakovlev, Luis Gomes, and Luciano Lavagno (Eds.). Hardware Design and Petri Nets.
Kluwer Academic Publishers, 2000.

[51] T. Yamada and S. Kataoka. On some LP problems for performance evaluation of marked
graphs. IEEE Transactions on Automatic Control, 39(3):696–698, 1994.

L.P. Carloni / Electronic Notes in Theoretical Computer Science 146 (2006) 61–8080

http://www.irisa.fr/espresso/Polychrony/
http://www.irisa.fr/espresso/Polychrony/

	Introduction
	The Building Blocks of a Latency-Insensitive System with Back-Pressure
	Performance Analysis of Latency Insensitive Systems
	Discussion
	Related Work
	References

