A Methodology for Correct-by-Construction Latency Insensitive Design

Luca P. Carlori Kenneth L. McMillarf Alexander SaldanHa

Alberto L. Sangiovanni-Vincentelli

T University of California at Berkeley ¥ Cadence Berkeley Laboratories
Berkeley, CA 94720-1772 Berkeley, CA 94704-1103
{lcarloni,alberto}@ic.eecs.berkeley.edu {mcmillan,saldanha}@cadence.com
Abstract in deriving constraints for synthesis tools, since any wire whose

delay approaches a single clock may cause a failure to meet the
In Deep Sub-Micron (DSM) designs, performance will depetiching constraints.

critically on the latency of long wires. We propose a new syn-In this paper, we propose an alternative synthesis methodology
thesis methodology for synchronous systems that makes thetld#-produces designs functionally insensitive to the latency of long
sign functionally insensitive to the latency of long wires. Givenwires. Given a synchronous design consisting of several communi-
synchronous specification of a design, we generate a functionafiting modules, automatic synthesis techniques are used to gener-
equivalent synchronous implementation that can tolerate arbitraaye a functionally equivalent synchronous implementation that can
communication latency between latches. By using latches we taierate arbitrary communication latency between modules. The
break a long wire in short segments which can be traversed whieerall goal it to achieve a robust design implementation that has
meeting a single clock cycle constraint. The overall goal is to obs high a throughput as possible. As a preliminary assumption,
tain a design that is robust with respect to delays of long wiresach module must satisfy tis¢allability property, meaning that it
in a shorter time by reducing the multiple iterations between logan be stalled for an arbitrary amount of clock cycles without los-
ical and physical design, and with performance that is optimizéay its internal state. In our implementation, the modules of the
with respect to the speed of the single components of the deséigsign communicate over channels, using a standard protocol that
In this paper we describe the details of the proposed methodoldglynsensitive to latency. This protocol allows a channel to run a
as well as report on the latency insensitive design of PDLX, aamber of clock cycles ahead of or behind other channels. The
out-of-order microprocessor with speculative-execution. resulting system is guarantebg constructiorto be functionally

equivalent to it. The system maintains the appearance of a fully

synchronous system despite the non uniform latencies along com-
1 Introduction munication channels of the actual implementation.

The methodology is presented in Section 2 and discussed with

The advent of deep sub-micron (DSM) process technologié@Spect to previous work in Section 3. In Section 4, we summarize
0.13p and below, has generated a flurry of predictions on the dpe theory of latency insensitive protocols. In Section 5, we address
fects of the inevitable dominance of wire de|ays on Ch|p desigﬁﬂme issues related to Iatency insensitive prOtOCOl implementation.
Although there is a certain amount of disagreement between tReéSection 6 we report on performance evaluation of the latency-
various studies on interconnect latencies in future design gendpgensitive methodology for a fairly complex prototype system.
tions [9, 10], there is unanimity that the delay of a "long” wire will
play a dominant role in logic synthesis and optimization. Recent
advances on interconnect optimization techniques (such as in#r- The Methodology
connect topology optimization, optimal buffer insertion and sizing,
optimal wire-sizing) can help to reduce interconnect delays signifi-The proposed methodology is based on the automatic synthesis
cantly [8], but they are not able to reverse the trend of growing gapa communication architecturenplementing datency insensi-
between device and interconnect performance [7]. In the currée communication protocol It consists in a succession of five
standard-cell design methodology, logic synthesis is performed basic steps:
ing delay estimates for library modules that are parameterized to
account for loading factors and transition (or slew) rates. As thel. The designer starts with a completely synchronous specifica-
delay of long wires become larger relative to gate delays, these es- tion of the system and with a collection afodules which
timates become increasingly sensitive to layout. Attempts have can be either acquired agellectual property (IP) coreBom
already been made to account for layout effects by performing a (internal or external) third-party or can be specified as “syn-
floor-planning and wire-planning on register-transfer level (RTL) thesizable” code using a hardware description language such
descriptions [25]. Such an approach requires extreme precaution as VERILOG or VHDL.

0-7803-5832-X /99/$10.00 ©1999 IEEE.

2. Communicating modules are connected by meanshah- 3 Related Work
nelsas illustrated in Figure 1. Each channel operates using
a latency-insensitive communication protocol and is made upThe adoption of DSM process technologies and the increasing
of wires and logic blocks callegktlay stations The wires of impact of interconnect delay are destined to exacerbatiéntireg-
a channel are laid out together and share physical charactetigsure problemthe designer is forced to iterate many times be-
tics. The relay stations consist of latches together with logiween synthesis and layout, because the two steps are performed
gates implementing the functionality related to the latencindependently and synthesis uses statistical delay models which
insensitive communication protocol. badly estimate the post-layout wire load capacitance [7, 19].
) o _ In [10] Sylvester and Keutzer discuss the impact of DSM ge-
3. Each module is encapsulated within a logic block caleell ,etries on the future of design automation methodologies and
playing the role of interface towards the communication 8gyision that future integrated circuits will be implemented hier-
chitecture. archically with large macro-blocks of approximatelyG@ 10K
gates. They conclude that traditional standard-cell design flow will
be still used for the design of such macro-blocks, becdimse
5. A post-layout optimization step is performed to insert the neterconnect delay will be smalk(25%) in block of 50K gates”.
essary number of relay stations into each “critical channeThese results are obtained from the analysis of detailed ASIC de-
to ensure that the cycle time is mehénnel segmentatipn sign data, such as average wire-lengths and average net fan-out.
Some iterations may be required, but they are limited to ealdlowever, one must observe that the timing closure problem arises
channel separately, while logic and layout of all modules rethen the delay of the critical path in the design is excessive, and,
main untouched. therefore, it is by nature a worst-case problem and not an average-
case problem. Most of the solutions proposed in literature so far
The essential point in this methodology is the orthogonalizatieall for tighter interaction between synthesis and physical design.
of concerns between behavior and communication. Since the cgmsynthesis-driven methodology that optimizes for interconnect
munication mechanism is automatically synthesized (as descrilgethy rather than gate delay during logic synthesis is presented
later in this paper both relay stations and shells can be built with[14]. Unfortunately, the approach produces a large amount of
no intervention of the designer based only on the theory of lagic duplication, which may lead to expensive area overheads.
tency insensitive protocols), the designer can focus on the chait€orplanning, technology mapping and gate placement are com-
of the modules that make up the functionality of the implemenined in [27], where, after placement has been completed, the criti-
tation without worrying about synchronization and latency of thgal paths are reduced one at a time to meet the timing requirements.

4. The layout is obtained using standatdce & routetools.

overall design. Since to fix one critical path may generate new ones, this approach
is unable to solveby constructionthe convergence problem. A
o S1 3 S3 c7 series of layout-driven approaches suggest to fix the layout by ex-
| | wm] M3 tracting accurate physical informations which are used to guide
4 different types of logic optimization, such as gate-resizing [16],

fanout optimization [18], buffer insertion [28] and logic resynthe-

e sis [22].
S2 | | M4 | LCB All these approaches represent remedies to the effects of bad
2y M2 B estimations made during logic synthesis and do not seem able to
|—> e - scale well with the shrinking of process geometries. Following the

old adage thaan ounce of prevention is worth a pound of cuxe

. . L believe that the time for a radical paradi hift i hing.
Figure 1: Shell Encapsulation and Communication Channels. paradigm Shift S approaching

Communication design does not have any impact on the desgiii Latency Insensitive vs. Asynchronous Design

and implementation of the modules provided that the modules and] N)) o

the relay stations share a fundamental propesgience(see Sec- The Iatency msensnllve design methodologyl|s clearly reminis-
tion 4). Requiring that an arbitrary module is patient at the ong&nt of many ideas which have been proposed in the asynchronous
is quite strong. This is the reason why we encapsulate the mod@g§ign community during the past three decades [11]. In particu-
with an appropriate shell that has the task of making the modiﬂ‘é the idea of a de_S|gn methodology which is inherently modular
look patient. Such shells can be automatically generated for igilready present in the work dvlacromodular Computer Sys-
modules if the output of the module is latched and each moduld§g'sby Clark and Molnar [5, 6]. To separate the design of these
stallable[4]. “Stallability” means that a module can stall for an arodules by the design of the system and make the entire pro-
bitrary amount of clock cycles without losing its internal state arf@SS amenable to automation, the modules must be implemented

the overall state of the system and is much weaker than patlenc®s delay-insensitiveeircuits [24, 26]. A delay-insensitive circuit
is designed to operate correctly regardless of the delays on its

10Observe that most hardware systems can be easily made stallable: for inst: ; ;
consider any sequential logic block together witjated clockmechanism, or a aGaTeS and wires (unbounded delay model) [32]. However, it has

Moore finite state machine with an extra input, that can force it to stay in the currgﬁ.en'prover'1 that a_ImOSt no useful dela}/'insensni‘ve circuits can be
state while emitting a “flag signal”. built if one is restricted to a class of simple logic gates [2, 23].

To be able to build complex systems one must use more cofh- Latency Insensitive Protocols
plex components, which are “externally” delay insensitive, while
“internally” are designed by carefully verifying their timing and The proposed design methodology is based on the theday of
avoiding or tolerating metastability [13, 17, 26]. By slightly relaxtency insensitive protocqlsvhich has been recently presented in
ing the unbounded delay model and allowing “isochronic foks” literature [4]. This theory can be summarized as follows. A la-
practicalquasi-delay-insensitiveircuits can be built using simple tency insensitive protocol is a communication protocol governing
logic gates [3]. A further relaxation leads $peed independentthe exchange of information in a patient system. According to the
circuits, which operate correctly regardless of gate delays, whilegged-Signal Model [21] a system is a composition of processes
wire delays are assumed to be negligible [1, 12, 20]. Both quasbmmunicating by exchanging signals, i.e. sequences of events,
delay-insensitive and speed-independent circuits assume thatothe set of channels. A behavior of a system is unambiguously
designer is able to control wire delays, and, therefore, do not &escribed by the set of signals which are exchanged among its pro-
pear as interesting alternatives when moving to DSM implement&sses. Apatientsystem is a synchronous system whose func-
tions. Instead, a methodology based on assembling complex miehality only depends on the order of the events of each signals
ules which are “externally” delay-insensitive seems the right sand not on their exact timing. More specifically, a patient system
lution, on condition that the synthesis of such modules is not t@a collection of patient processes communicating by means of
cumbersome. However, it must be noted that asynchronous ‘qint-to-point” channels whose latency may be arbitrary. Nor-
proaches do not address the fundamental problem of latency, ipedly, at every cycldy, a generic patient proceBsreceives a new
cause an asynchronous design simply slows down to accommodlgf@mative evenbn each of its input channels and it emits infor-
the slowest component, e.g. the wires. mative events, which are the result of its internal computation up
to the previous cyclg_ 1, on its output channels. However, due to
While a delay insensitive system is based on the assumptigiiannel arbitrary latencies, it may happen that at dycestalling
that the delay between two subsequent events on a commungantdenoting the absence of an informative event) arrives on one
tion channel is completely arbitrary, in the case of a latency iBr more of its input channels. If this is the case, prod@gbeing
sensitive system this arbitrary delay isnaultiple of the clock patien) waits an arbitrary but finite amount of extra cycles until
period The key point is that this kind ofiiscretizationallows gl informative events (which were expectedidthave arrived on
us to leverage well-accepted design methodologies for the desi@iNnput channels. During this wail emits stalling events. Any
and validation of synchronous circuits. In fact, the basic diStin§equence of stalling cycles does not affect the internal stafe of
tion between any of the previous asynchronous design method@ife process is patient) as well as the overall state of the system
gies and the latency-insensitive one is essentially that a lateqge protocol guarantees that all processes awaiting data Brom
insensitive system is specified as a synchronous system. Nogifgeive instead a stalling event).
that we say “specified” because, from an implementation pointi)| channels in the system have unit latency then no stalling
of view a latency-insensitive communication protocol can algents are exchanged among its processes.Skebe a patient
be realized usindand-shaking signalingechniques (such as re-gystem with such a characteristic. Then, $gt; be another pa-
guest/acknowledge protocols), which are typically asynchroﬁougem system which is composed by exactly the same processes as
However, from a specification point of view, each module (as we{l_ . " \while having some channels with latency greater than one
as the overall system) is viewed as a synchronous system. Nowg ik cycle. Now, assume to apply to the two systems the same
specify a complex system as a collection of modules whose st@gi€arnal stimulus yielding two corresponding behavipes and
is updated collectively in one “zero-time” step is naturally simplgsta”_ If all stalling events are filtered away frofia;a, the result-
than specifying the same system as the interaction of many CQAY behavior is exactly equal es. The two behaviors are said
ponents whose state is updated following an intricate set of i“t%rency equivalent Further, if every behavior o&e; is latency
dependency relations. Furthermore, the synchronous specifica@_ia[]ivment to some behavior 8f (andvice versathen the two
allows us to slightly modify the traditional semi-custom desiggrocesses are said to be latency equivalent. It has been proven that,
methodology, by simply inserting a step to encapsulate each si}-patient processes, latency equivalence is compositional [4].
chronous module within a shell. Finally, the impact is very differ- 5 relay stationis a patient process communicating with two
ent also from a validation point of view because simulation is ”Q:thannelsq andc, such that ifs ands, are the signals associated
urally a less complex task for a synchronous circuit than an equi¥-the channels and(l,k,5),! < k denotes the sequence of infor-

alent asynchronous one. In conclusion, the proposed methodolggyi e events o between thé-th clock cycle and thé-th one
can be implemented on top of the commonly-adopted standzatrﬁie-ns ands, are latency equivalent and for &l
cell design flow, while all previous asynchronous approaches force

the designer to use new tools and, more importatdlythink the I(1,(k—1),5) — I(Lks)

>
digital system in a completely different way ILkS) — I(L(K-1).5) ;

0 (4.1)
2 (4.2)

The following is an example of relay station behavior, where
denotes a stalling events and generic informative event:

2A bounded skew is allowed between the different branches of a net.
3But the communication bandwidth would be limited by the inverse of the S = l11213T T lglslgT T T 17T Iglglio ...
longest of the round trip times between pairs of communicating relay stations. S = Tlil2I3T TIaT T TlIslglyTlglglyg ...

Notice, that no further specification has been given on the signals

ands,, (for instance saying that is the input andy, is the output).

The definition of relay station simply involves a set of relations, packetin
i.e. a protocol, betwees ands, without any implementation de- ==
tail. Still, itis clear that each informative event received on channel = J\

packetOut

Gi is later emitted ort,, while the presence of a stalling event on
Co May induce a stalling event an in a later cycle. In fact, an Control
informative event takes at least one clock cycle to pass through a

relay station (minimum forward latency = 1), at most two informa- stopOut
tive events can arrive oy while no informative events are emitted

0N ¢, (internal storage capacity = 2), and, finally, one extra stalling

event onc, will “move” into ¢ in at least one cycle (minimum Figure 2: Relay Station Implementation
backward latency = 1). The double storage capacity of a relay

station permits, in the best case, to communicate with maximum .
i)) : : . At each clock cycle, the source module may either put a new true
throughput (equal to one): a practical confirmation of this fact is

given in Section 5, where an RTL implementation of a relay stati(g)r"iwket on the_channel or, |_n.case no output_ data are available to be
is discussed. sent, put a void packet on it; on the other side, at each clock cycle

Since relay stations are patient processes, their insertion in athe_sink module retrieves from the channel the incoming packet
Y P P ' r"fld, on the basis of the void field value, decides whether to dis-

tient system guarantees that the system remains patient. Furt a?_d it or to store it on its input channel queue for later use. As a

e e v v, Jrce e ight o b reay o s e pacel, 5035k
y Y- ' Edule might not be ready to receive it, for instance because its

8
methodology is patterned after the theory as follows: (1) we St?r{ ut queue is full. However, the latency insensitive protocol de-

giving an abstract specification of a digital system as collection Obnds a fully reliable communication among the modules, where

synchronous modules without making any assumption on the |J1% lossy communication link is allowed and all packets are prop-

tency of.the wires (WhiCh are grouped_in channels), then (2) Why delivered. Consequently, the sink module must have a way
automatically synthesize a corresponding layout, (3) we SC9M A interact with the channel (and ultimately with the correspond-

every wire whose latency is greater than the desired clock per| source module) to stop momentarily the communication flow

by d'St.”bUtmg on it the necessary amount of re_lay st_atlons and d avoid the loss of any packet. Therefore, we slightly relax our
we build the shell around the modules to obtain patient procesii
|
i

that interact with the appropriate relay stations. Obviously, the gﬁnition of a channel as unidirecti_ona], to allow a pit Of infqrma—
nal result will be satisfactory only to the exter;t that a su1’°ficie o ca]led the channelop flag moving in .the 0ppos¢e direction.
throughput can be maintained in the presence of increased lat @éyse_:ttmg the st(_)p flag equal to one during a certain clock cycle,

. - : sink module informs the channel that the next packet can not
of wires. However, this is a general problem that will have to tbe

. received and it must be held until the stop flag is reset. As the
faced in the design of large chips with DSM technologies, and "9hk module also the channel has a limited amount of buffering re-

specific to the Iatquy insensitive methodology. On the other haESUrces: a channel dealing with a sink module that requires a long
the latency insensitive methodology allows an easy early exp all period may fill up all its relay stations and being forced to

ration of latency/throughput tradeoffs as illustrated in Section 6.Send a stop flag to the source module so that the latter will put its
packet production on stall.

5 The Implementation of the Protocol 52 Relay Stations

In_this Section,_wg present a latency insens_itive communicatio.q:igure 2 illustrates a possible relay station implementation
architecture consisting of channels, relay stations, and shells byilted on the following specification, which refines the abstract no-

according to our methodology. tion given in Section 4:
“At each clock cyclet it takes a packepacketlit! and a stop
51 Channels signalstoplid™! as inputs and it emits a packeacketOutt! and

a stop signabtopOut™ as outputs:stopOut™ is always equal

Channels are point-to-point unidirectional links between ta stoplr, while, according to the value of the internal variable
sourcemodule and ainkmodule. Data are transmitted on a charstalling = stoplrd A stopld~—1! the relay station decides whether
nel by means opackets a packet consists of a variable number db set packetOut™! equal to packetlh (case: stalling = 0) or
fields. Here, we consider only two basic fielgmyloadcontains to stall by keepingpacketOut™! equal topacketOut and saving
the transmitted data angbid is a one bit flag which, if set to 1, packetlf value into an auxiliary register (casstalling’ = 1)".
denotes that no data are present in the paclat (packeL If a Figure 3 illustrates two modulegietch Unit and Instruction
packet does contain “meaningful” payload data (i.e., void is set@ache communicating using two channedgldress Channednd
0) we will call it atrue packet A channel is made of wires andData Channel Both channels have been partitioned in 4 segments
relay stations. The number of relay stations in a channel is finiig the insertion of 3 relay stations and, as a consequence, the lower
and represents the buffering capability of the channel. bound on the latency of each channel has become 4 clock cycles.

—VW]—’ R |— SimWave 317.€ ‘ ‘ Thu Jul 23 14:07:49 1998
I
ﬁ’e:'f'h Address Channet Insgaucchion IRelySaon P ok |

i] e] i] i |

I R | ‘

—

=

Data Channel

=
’_I

00000044

Figure 3: Channels betwe&etch UnitandInstruction Cache

n%fmwnpmmi

T

00000046 [0000004

N L

1
|

1

i

T
=

0000004a

F

Figure 4 reports a snapshot of the waveforms obtained by sim
lating a VERILOG RTL description of thedddress Channehere,
the source module is théetch Unitproducing a sequence of ad-
addresses are reported as hexadecimal numbers.
Beside the system clock having periggl k equal to 1@s one I 3
can see 8 waveforms which, going from top to bottom, correspond
R2.stopln R1.packetOut Rl.stopln RO.packetOut RO.stopin | ooom; |
FU.packetOutFU .stopin | | |
At time t = 75ns the sink module setR2.stoplnequal to one ‘ ‘ ‘
R2 stalls one cycle by maintaining2. packetOut= h'44 for two
cycles while storindRl. packetOut= h'45 on a aukxiliary set of reg-
isters. In the meantime, the stop signal is propagat@&i.stopin
can finally receiveR2. packetOut= h'44, it resetsR2.stoplnsuch
that at the following clock cycl&® may seR2.packetOut=h'45. |usswao
In the meantime, the two consecutive high values of the stop signal
for each station while guaranteeing that no packets are lost. Noticé ™ «e. P P LT ST
that a characteristic of this implementation of the protocol is that
tion does not really stall: in Figure 4 this can be observed for the
sequence of clock cycles startingtat 165s This factis Simply ¢ ets the incoming packets from the input channels, filters
a positive bi-product of the fact that the storing capacity of a relay away the void packets and extracts the input valuesMor

dresses for Memory Blockvhich represents the sink module. The

respectively to the following signals of Figure 8. packetOut

and keeps it equal to one for two clock cycles. As a consequenggmw_m%

When, after two clock cycles, at timte= 105ns, the sink module

propagate back through the channel, provoking a stall of one cycle

when astoplnsignal is kept high for only one cycle, the relay sta- Figure 4: Waveforms oAddress Channel
station is doublé. from the payload fields of the true packets.

2. when all input values are available for the next computation,
5.3 Shells it passes them tM and fires the computation;

As introduced in Section 2, given a particular modMe an 3, it gets the results of the computation frd
instance of a shell can be automatically synthesized as a wrapper to
encapsulat® and interface it with the channels so thibecomes 4. if no output channel has previously raised a stop flag, it routes
a patient process. To do so the only necessary condition idthat the result into the output channels;
be stallable.

At each clock cycle the module internal computation must . .
fired only if all inputs have arrived. Guaranteeing tihigut syn- lg Case StUdY- The PDLX MICTOpI’OCGSSOI’

chronizationis the first task of the shell of a module. The second . . .
task is calledoutput propagation at each clock cycle, if module To test our methodology, we performed a “latency insensitive

M has produced new output values and no output channel has JgSI9n" of an out-of-order microprocessor (PDLX) with specula-
viously raised a stop flag, then these output values can be tr Jye execution. Its instruction setis the same of the DLX micropro-

mitted generating new true packets; if any of these two conditiofgSSOr described in [15]. Its architecture is based on an extended
Version of theTomasulo’s Algorithnj31], which combines tradi-

is not verified, then the packet transmitted in the previous cycle X]) !
re-transmitted as a void packet. tlonal dynamic scheduling Wlth ha_rdyvare-based speculative exe-
. . cution. The data-path of PDLX is similar to the one of some of the
In summary a shell for modubd performs the following actions .)
cyclically: most advanced microprocessor available on the market today.
Figure 5 illustrates a simplified block diagram of the PDLX ar-
“Recall that the primary reason for this double capacity is the need of avoidfﬁB'teCture: thePC Unit sends the current value of tmreram

losing data while spending one cycle to propagate the stop signal. Counter (PC)to thelnstruction Cacheand theFetch Unit After

PC > M
INSTRUCTION
UNIT FETCH Cp
— - CACHE 11
UNIT
1
I 09

DECODE
UNIT

'

REGISTER
o | EXECUTION
FILE -—

Figure 5: PDLX Microprocessor Block Diagram : top level view. Figure 6: Effective Throughput vs. PDLX implementations

receiving the corresponding instruction, tRetch Unitcouples it ent PDLX implementations running at different speeds. Figure 6
with the PC value and sends it to tBecode Unit Once instruc- illustrates the results obtained running three different assembler
tion decoding is completed, the result arrives tofxecution Unit programs: the effective instruction throughput is reported on the
which performs the execution phase working with Beta Cache Yy-axis, while each discrete point on theaxis corresponds to a
and theRegister File If the result of the execution is @fanch different PDLX implementation with a different fixed amount of
taker!, then the branch target address is sent toRf@eUnit latency on some channels. We focused on two specific channels
In our implementation, the 7 units correspond to 7 modul€8 Figure 5: channdl, between th&xecution Unitand theData
made patient by adding an appropriate shell. Obviously, this dedcheand channeC, between thd=etch Unitand thelnstruction
composition of the hardware implementing the PDLX, is not tfeache We assumed that the wires grouped in these two chan-
only possible, let alone the best one. Still, while reasonably simpl€/s represent the critical path of the PDLX design and that, after
it presents interesting challenges to the realization of the propo§€8menting them (by inserting relay stations), we could afford to
latency insensitive communication architecture. In particular, thise the clock frequency appropriately. We varied the latency on
Fetch Unitshell merges two separate channels (likely they hatfee two channels as follows: going from left to right on thaxis,
different latencies), and each time lr&nch takehis executed a the 18 data-points represent 18 implementation cases which can be

“feedback path” is activated between tBgecution Unitand the 9grouped inthree subsets in correspondence to latency Jajdes
PC Unit C, equal respectively 10,0, 2 clock cycles. Each of these subsets

We performed a high-level cycle-accurate design of PDLX kﬁp.ntains 6 data-points correspon@ing to Iatency.vahbeﬁ)r Co i
usingBONeS DESIGNER [29]. We first designed the PDLX mod-390ing from 0 to 5 clock cycles. Finally, for eac_h implementation
ules illustrated in Figure 5, keeping in mind only the followinG@Se: We set the system clock cyclefagx = min{La, Lo} + 1.
informal rule to make the process stallablet each clock cycle he plot illustrates how_dlfferent PDI__X implementations perform
the execution process of a module can always be frozen withd{fler the same data stimulus, showing that the throughput values
affecting its internal state Then, we designed the latency inser® cons!stent across different benchmarks. _A" mplgment_atmns
sitive protocol library, containing as building blocks relay statiorfd functionally equivalent by construction, being obtained simply
and shells. Finally, we encapsulated each module in a shell &¥F"anging the number of relay stations on the channels and with
we obtained the final system. To test our design, we took soffe N€ed of re-designing any PDLX module. The insertion of re-
simple numericaC programs (permutations, binary search,) lay stations can be made at late stages in the design process, after

and we generated the corresponding DLX assembler code by ugﬁaailed information can be extracted from the physical layout, to

bLXCC, a publicly available DLX compiler [30]. Then, we Ioadedlﬁx those channels whose latency is longer than the desired clock

the assembler into the PDLstruction Cacheand we executed SYC!€-
it, while logging every read/write access to thata Cache Fi-
nally, we compared the “log file” with the one obtained executing
the same assembler code on the DLX simulatoxsim to verify 7/ Conclusions and Future Work
that the functional behavior was indeed the same.

For each program execution, we computed the total numbeiWe proposed a new‘correct-by-construction” synthesis
of clock cyclesT necessary to complete the execution of the astethodology for designing very large digital systems by assem-
sembler code: this number is equallte- S+ P, wherel is the bling IP functional modules. The modules communicate by ex-
number of instruction which have been committ&ds the num- changing data on communication channels according to an appro-
ber of cycles lost due to a stall within the execution unit, &d priate protocol, which guarantees a correct system behavior inde-
is the number of cycles lost due to pipeline latency. Since tpendently from channel latencies. As a consequence, a robust im-
PDLX is a single-issue multiprocessor, the instruction throughppiementation is achieved in a shorter time by reducing the multiple
T =1/T is a quantity less than or equal to one. This quantity céerations between logical and physical design. We developed a set
be multiplied by the system clock frequency to obtain #fiec- of RTL libraries for a specific latency insensitive protocol and we
tive instruction throughput E= (1/T) * fc .k, which allows us used them to design a latency insensitive implementation of PDLX,
to compare the execution of the same assembler code on diféer-out-of-order microprocessor with speculative execution. There

are several avenues for further investigations: (1) application[18] John L. Hennessy and David A. PattersGoemputer Architecture: A
other designs, particularly in the multimedia domain, (2) study of
the impact of our approach on other design metrics such as gn& S. Hojat and P. Villarrubia. An Integrated Placement and Synthe-
and, especially, power, (3) extension of the theorgpeculation
insensitiveprotocols.

Acknowledgments

(17]

The authors would like to thank Luciano Lavagno and Patri?lfg]
Scaglia for their support and useful discussions.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

(19]

P. Beerel and T.H.-Y. Meng. Automatic gate-level synthesis of
speed-independent circuits. Amoc. International Conf. Computer- 20]
Aided Design (ICCAD)pages 581-587. IEEE Computer Societ£
Press, November 1992.

Janusz A. Brzozowski and Jo C. Ebergen. On the delay-sensitivity
of gate networks.|[EEE Transactions on Computer$1(11):1349— [21]
1360, November 1992.

Steven M. Burns.Performance Analysis and Optimization of Asyn-
chronous Circuits PhD thesis, California Institute of Technology,
1991. [22]

L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Latency Insensitive Protocols. Iroc. of the 11th Intl. Conf. on
Computer-Aided Verification (N. Halbwachs and D. Peled editors[)zs]
pages 123-133. LNCS 1633, Springer, July 1999.

Wesley A. Clark. Macromodular computer systemsAFIPS Con-
ference Proceedings: 1967 Spring Joint Computer Confererate o4
ume 30, pages 335-336, Atlantic City, NJ, 1967. Academic Pressl.]

Wesley A. Clark and Charles E. Molnar. The promise of macro-
modular systems. IDigest of Papers of the Six Annual IEEE Com-
puter Society International Conferengeages 309-312, San Fran-
cisco, CA, 1972. IEEE Press. [25]

J. Cong. Challenges and Opportunities for Design Innovations in
Nanometer Technologies. BRC Design Sciences Concept Pape
December 1997.

J. Cong, L. He, K.Y. Khoo, C.K. Koh, and Z. Pan. Interconnect
Design for Deep Submicron ICs. Proc. Intl. Conf. on Computer-
Aided Designpages 478-585. IEEE, November 1997.]

D. Matzke. Will Physical Scalability Sabotage Performance Gains?
IEEE Computer8(9):37—39, September 1997.

. 28
D. Sylvester and K. Keutzer. Getting to the Bottom of Deep Sul[)-]
micron. InProc. Intl. Conf. on Computer-Aided Desighdovember
1998.

Al Davis and Steven M. Nowick. Asynchronous circuit design[.zg]
Motivation, background, and methods. In Graham Birtwistle and
Al Davis, editors Asynchronous Digital Circuit Desigiworkshops

in Computing, pages 1-49. Springer-Verlag, 1995.

David L. Dill. Trace Theory for Automatic Hierarchical Verification[so]
of Speed-Independent CircuitACM Distinguished Dissertations.
MIT Press, 1989. (31]

Jo C. Ebergen. A formal approach to designing delay-insensitive
circuits. Distributed Computing5(3):107-119, 1991.
(32]

W. Gosti, A. Narayan, R.K. Brayton, and A. Sangiovanni*
Vincentelli. Wireplanning in Logic Synthesis. Froc. Intl. Conf.
on Computer-Aided Desigpages 26—-33. IEEE, November 1998.

Quantitative ApproachMorgan Kaufmann, San Mateo, CA, 1996.

sis Approach for Timing Closure of Power PC Microprocessors. In
Proc. Intl. Conf. on Computer Design. VLSI in Computers and Pro-
cessorspages 206-210. IEEE, October 1997.

M. B. Josephs and J. T. Udding. An overview of DI algebra. In
Proc. Hawaii International Conf. System Sciencedume |. IEEE
Computer Society Press, January 1993.

L.N. Kannan, P.R. Suaris, and H. Fang. A Methodology and Al-
gorithms for Post-Placement Delay Optimization. Rroc. of the
Design Automation Confpages 327-332, June 1994.

H. Kapadia and M. Horowitz. Using Partitioning to Help Conver-
gence in the Standard-Cell Design Automation MethodPrioc. of
the Design Automation Conpages 592-597, June 1999.

A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and
A. Yakovlev. Basic gate implementation of speed-independent cir-
cuits. InProc. ACM/IEEE Design Automation Conferengages
56-62, June 1994.

E. A. Lee and A. Sangiovanni-Vincentelli. A Framework for Com-
paring Models of ComputationlEEE Transactions on Computer-
Aided Design17(12):1217-1229, December 1998.

A. Lu, H. Eisenmann, G. Stenz G., and F.M. Johannes. Combining
Technology Mapping with Post-Placement Resynthesis for Perfor-
mance Optimization. IRroc. Intl. Conf. on Computer Design. VLSI
in Computers and Processoisages 616-621. IEEE, October 1998.

Alain J. Martin. The limitations to delay-insensitivity in asyn-
chronous circuits. In William J. Dally, editoAdvanced Research
in VLS|, pages 263-278. MIT Press, 1990.

Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger.
Synthesis of delay-insensitive modules. In Henry Fuchs, edié®5
Chapel Hill Conference on Very Large Scale Integratipages 67—

86. Computer Science Press, 1985.

R. H. J. M. Otten and R. K. Brayton. Planning for Performance. In
Proc. of the Design Automation Conflages 122-127, June 1998.

6] Fred U. Rosenberger, Charles E. Molnar, Thomas J. Chaney, and

Ting-Pien Fang. Q-modules: Internally clocked delay-insensitive
modules. IEEE Transactions on Computer€-37(9):1005-1018,
September 1988.

7] A. Salek, J. Lou, and M. Pedram. A DSM design flow: Putting

Floorplanning, Technology Mapping and Gate Placemente Together.
In Proc. of the Design Automation Corages 287—290, June 1998.

K. Sato, M. Kawarabayashi, H. Emura, and N. Maeda. Post-Layout
Optimization for Deep Submicron Design. Rroc. of the Design
Automation Conf.pages 740-745, June 1996.

S.J. Schaffer and W.W. LaRue. BONeS DESIGNER: a Graphical
Environment for Discrete-Event Modeling and SimulationMAS-
COTS '94. Proc. of the 2nd. Intl. Workshop on Modeling, Analysis,
and Simulation of Computer and Telecommunication Sysiesges
371-374, Los Alamitos - CA, February 1994. IEEE.

The DLX Software ftp://max.stanford.edu/pub/hennessy-patterson.software

R. M. Tomasulo. An Efficient Algorithm for Exploiting Multiple
Arithmetic Units. IBM Journal Research and Developmgeht: 25—
33, January 1967.

Jan Tijmen Udding. A formal model for defining and classifying
delay-insensitive circuits. Distributed Computing 1(4):197-204,
1986.

	Main Page
	ICCAD99
	Front Matter
	Table of Contents
	Session Index
	Author Index
	Call for Papers

