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Abstract

In Deep Sub-Micron (DSM) designs, performance will depend
critically on the latency of long wires. We propose a new syn-
thesis methodology for synchronous systems that makes the de-
sign functionally insensitive to the latency of long wires. Given a
synchronous specification of a design, we generate a functionally
equivalent synchronous implementation that can tolerate arbitrary
communication latency between latches. By using latches we can
break a long wire in short segments which can be traversed while
meeting a single clock cycle constraint. The overall goal is to ob-
tain a design that is robust with respect to delays of long wires,
in a shorter time by reducing the multiple iterations between log-
ical and physical design, and with performance that is optimized
with respect to the speed of the single components of the design.
In this paper we describe the details of the proposed methodology
as well as report on the latency insensitive design of PDLX, an
out-of-order microprocessor with speculative-execution.

1 Introduction

The advent of deep sub-micron (DSM) process technologies,
0.13µ and below, has generated a flurry of predictions on the ef-
fects of the inevitable dominance of wire delays on chip design.
Although there is a certain amount of disagreement between the
various studies on interconnect latencies in future design genera-
tions [9, 10], there is unanimity that the delay of a ”long” wire will
play a dominant role in logic synthesis and optimization. Recent
advances on interconnect optimization techniques (such as inter-
connect topology optimization, optimal buffer insertion and sizing,
optimal wire-sizing) can help to reduce interconnect delays signifi-
cantly [8], but they are not able to reverse the trend of growing gap
between device and interconnect performance [7]. In the current
standard-cell design methodology, logic synthesis is performed us-
ing delay estimates for library modules that are parameterized to
account for loading factors and transition (or slew) rates. As the
delay of long wires become larger relative to gate delays, these es-
timates become increasingly sensitive to layout. Attempts have
already been made to account for layout effects by performing
floor-planning and wire-planning on register-transfer level (RTL)
descriptions [25]. Such an approach requires extreme precaution

in deriving constraints for synthesis tools, since any wire whose
delay approaches a single clock may cause a failure to meet the
timing constraints.

In this paper, we propose an alternative synthesis methodology
that produces designs functionally insensitive to the latency of long
wires. Given a synchronous design consisting of several communi-
cating modules, automatic synthesis techniques are used to gener-
ate a functionally equivalent synchronous implementation that can
tolerate arbitrary communication latency between modules. The
overall goal it to achieve a robust design implementation that has
as high a throughput as possible. As a preliminary assumption,
each module must satisfy thestallability property, meaning that it
can be stalled for an arbitrary amount of clock cycles without los-
ing its internal state. In our implementation, the modules of the
design communicate over channels, using a standard protocol that
is insensitive to latency. This protocol allows a channel to run a
number of clock cycles ahead of or behind other channels. The
resulting system is guaranteedby constructionto be functionally
equivalent to it. The system maintains the appearance of a fully
synchronous system despite the non uniform latencies along com-
munication channels of the actual implementation.

The methodology is presented in Section 2 and discussed with
respect to previous work in Section 3. In Section 4, we summarize
the theory of latency insensitive protocols. In Section 5, we address
some issues related to latency insensitive protocol implementation.
In Section 6 we report on performance evaluation of the latency-
insensitive methodology for a fairly complex prototype system.

2 The Methodology

The proposed methodology is based on the automatic synthesis
of a communication architectureimplementing alatency insensi-
tive communication protocol. It consists in a succession of five
basic steps:

1. The designer starts with a completely synchronous specifica-
tion of the system and with a collection ofmodules, which
can be either acquired asintellectual property (IP) coresfrom
a (internal or external) third-party or can be specified as “syn-
thesizable” code using a hardware description language such
as VERILOG or VHDL.
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2. Communicating modules are connected by means ofchan-
nelsas illustrated in Figure 1. Each channel operates using
a latency-insensitive communication protocol and is made up
of wires and logic blocks calledrelay stations. The wires of
a channel are laid out together and share physical characteris-
tics. The relay stations consist of latches together with logic
gates implementing the functionality related to the latency-
insensitive communication protocol.

3. Each module is encapsulated within a logic block calledshell,
playing the role of interface towards the communication ar-
chitecture.

4. The layout is obtained using standardplace & routetools.

5. A post-layout optimization step is performed to insert the nec-
essary number of relay stations into each “critical channel”
to ensure that the cycle time is met (channel segmentation).
Some iterations may be required, but they are limited to each
channel separately, while logic and layout of all modules re-
main untouched.

The essential point in this methodology is the orthogonalization
of concerns between behavior and communication. Since the com-
munication mechanism is automatically synthesized (as described
later in this paper both relay stations and shells can be built with
no intervention of the designer based only on the theory of la-
tency insensitive protocols), the designer can focus on the choice
of the modules that make up the functionality of the implemen-
tation without worrying about synchronization and latency of the
overall design.
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Figure 1: Shell Encapsulation and Communication Channels.

Communication design does not have any impact on the design
and implementation of the modules provided that the modules and
the relay stations share a fundamental property,patience(see Sec-
tion 4). Requiring that an arbitrary module is patient at the onset
is quite strong. This is the reason why we encapsulate the modules
with an appropriate shell that has the task of making the module
look patient. Such shells can be automatically generated for all
modules if the output of the module is latched and each module is
stallable[4]. “Stallability” means that a module can stall for an ar-
bitrary amount of clock cycles without losing its internal state and
the overall state of the system and is much weaker than patience1.

1Observe that most hardware systems can be easily made stallable: for instance,
consider any sequential logic block together with agated clockmechanism, or a
Moore finite state machine with an extra input, that can force it to stay in the current
state while emitting a “flag signal”.

3 Related Work

The adoption of DSM process technologies and the increasing
impact of interconnect delay are destined to exacerbate thetiming-
closure problem: the designer is forced to iterate many times be-
tween synthesis and layout, because the two steps are performed
independently and synthesis uses statistical delay models which
badly estimate the post-layout wire load capacitance [7, 19].

In [10] Sylvester and Keutzer discuss the impact of DSM ge-
ometries on the future of design automation methodologies and
envision that future integrated circuits will be implemented hier-
archically with large macro-blocks of approximately 50K to 100K
gates. They conclude that traditional standard-cell design flow will
be still used for the design of such macro-blocks, because“in-
terconnect delay will be small (≤ 25%) in block of50K gates”.
These results are obtained from the analysis of detailed ASIC de-
sign data, such as average wire-lengths and average net fan-out.
However, one must observe that the timing closure problem arises
when the delay of the critical path in the design is excessive, and,
therefore, it is by nature a worst-case problem and not an average-
case problem. Most of the solutions proposed in literature so far
call for tighter interaction between synthesis and physical design.
A synthesis-driven methodology that optimizes for interconnect
delay rather than gate delay during logic synthesis is presented
in [14]. Unfortunately, the approach produces a large amount of
logic duplication, which may lead to expensive area overheads.
Floorplanning, technology mapping and gate placement are com-
bined in [27], where, after placement has been completed, the criti-
cal paths are reduced one at a time to meet the timing requirements.
Since to fix one critical path may generate new ones, this approach
is unable to solveby constructionthe convergence problem. A
series of layout-driven approaches suggest to fix the layout by ex-
tracting accurate physical informations which are used to guide
different types of logic optimization, such as gate-resizing [16],
fanout optimization [18], buffer insertion [28] and logic resynthe-
sis [22].

All these approaches represent remedies to the effects of bad
estimations made during logic synthesis and do not seem able to
scale well with the shrinking of process geometries. Following the
old adage thatan ounce of prevention is worth a pound of cure, we
believe that the time for a radical paradigm shift is approaching.

3.1 Latency Insensitive vs. Asynchronous Design

The latency insensitive design methodology is clearly reminis-
cent of many ideas which have been proposed in the asynchronous
design community during the past three decades [11]. In particu-
lar, the idea of a design methodology which is inherently modular
is already present in the work onMacromodular Computer Sys-
temsby Clark and Molnar [5, 6]. To separate the design of these
modules by the design of the system and make the entire pro-
cess amenable to automation, the modules must be implemented
asdelay-insensitivecircuits [24, 26]. A delay-insensitive circuit
is designed to operate correctly regardless of the delays on its
gates and wires (unbounded delay model) [32]. However, it has
been proven that almost no useful delay-insensitive circuits can be
built if one is restricted to a class of simple logic gates [2, 23].



To be able to build complex systems one must use more com-
plex components, which are “externally” delay insensitive, while
“internally” are designed by carefully verifying their timing and
avoiding or tolerating metastability [13, 17, 26]. By slightly relax-
ing the unbounded delay model and allowing “isochronic forks”2,
practicalquasi-delay-insensitivecircuits can be built using simple
logic gates [3]. A further relaxation leads tospeed independent
circuits, which operate correctly regardless of gate delays, while
wire delays are assumed to be negligible [1, 12, 20]. Both quasi-
delay-insensitive and speed-independent circuits assume that the
designer is able to control wire delays, and, therefore, do not ap-
pear as interesting alternatives when moving to DSM implementa-
tions. Instead, a methodology based on assembling complex mod-
ules which are “externally” delay-insensitive seems the right so-
lution, on condition that the synthesis of such modules is not too
cumbersome. However, it must be noted that asynchronous ap-
proaches do not address the fundamental problem of latency, be-
cause an asynchronous design simply slows down to accommodate
the slowest component, e.g. the wires.

While a delay insensitive system is based on the assumption
that the delay between two subsequent events on a communica-
tion channel is completely arbitrary, in the case of a latency in-
sensitive system this arbitrary delay is amultiple of the clock
period. The key point is that this kind ofdiscretizationallows
us to leverage well-accepted design methodologies for the design
and validation of synchronous circuits. In fact, the basic distinc-
tion between any of the previous asynchronous design methodolo-
gies and the latency-insensitive one is essentially that a latency
insensitive system is specified as a synchronous system. Notice
that we say “specified” because, from an implementation point
of view a latency-insensitive communication protocol can also
be realized usinghand-shaking signalingtechniques (such as re-
quest/acknowledge protocols), which are typically asynchronous3.
However, from a specification point of view, each module (as well
as the overall system) is viewed as a synchronous system. Now, to
specify a complex system as a collection of modules whose state
is updated collectively in one “zero-time” step is naturally simpler
than specifying the same system as the interaction of many com-
ponents whose state is updated following an intricate set of inter-
dependency relations. Furthermore, the synchronous specification
allows us to slightly modify the traditional semi-custom design
methodology, by simply inserting a step to encapsulate each syn-
chronous module within a shell. Finally, the impact is very differ-
ent also from a validation point of view because simulation is nat-
urally a less complex task for a synchronous circuit than an equiv-
alent asynchronous one. In conclusion, the proposed methodology
can be implemented on top of the commonly-adopted standard-
cell design flow, while all previous asynchronous approaches force
the designer to use new tools and, more importantly,to think the
digital system in a completely different way.

2A bounded skew is allowed between the different branches of a net.
3But the communication bandwidth would be limited by the inverse of the

longest of the round trip times between pairs of communicating relay stations.

4 Latency Insensitive Protocols

The proposed design methodology is based on the theory ofla-
tency insensitive protocols, which has been recently presented in
literature [4]. This theory can be summarized as follows. A la-
tency insensitive protocol is a communication protocol governing
the exchange of information in a patient system. According to the
Tagged-Signal Model [21] a system is a composition of processes
communicating by exchanging signals, i.e. sequences of events,
on a set of channels. A behavior of a system is unambiguously
described by the set of signals which are exchanged among its pro-
cesses. Apatient system is a synchronous system whose func-
tionality only depends on the order of the events of each signals
and not on their exact timing. More specifically, a patient system
is a collection of patient processes communicating by means of
“point-to-point” channels whose latency may be arbitrary. Nor-
mally, at every cycletk, a generic patient processPi receives a new
informative eventon each of its input channels and it emits infor-
mative events, which are the result of its internal computation up
to the previous cycletk−1, on its output channels. However, due to
channel arbitrary latencies, it may happen that at cycletk astalling
event(denoting the absence of an informative event) arrives on one
or more of its input channels. If this is the case, processPi (being
patient) waits an arbitrary but finite amount of extra cycles until
all informative events (which were expected attk) have arrived on
all input channels. During this wait,Pi emits stalling events. Any
sequence of stalling cycles does not affect the internal state ofPi

(the process is patient) as well as the overall state of the system
(the protocol guarantees that all processes awaiting data fromPi

receive instead a stalling event).
If all channels in the system have unit latency then no stalling

events are exchanged among its processes. LetSre f be a patient
system with such a characteristic. Then, letSstall be another pa-
tient system which is composed by exactly the same processes as
Sre f , while having some channels with latency greater than one
clock cycle. Now, assume to apply to the two systems the same
external stimulus yielding two corresponding behaviorsβre f and
βstall. If all stalling events are filtered away fromβstall, the result-
ing behavior is exactly equal toβre f . The two behaviors are said
latency equivalent. Further, if every behavior ofSre f is latency
equivalent to some behavior ofSstall (andvice versa) then the two
processes are said to be latency equivalent. It has been proven that,
for patient processes, latency equivalence is compositional [4].

A relay station is a patient process communicating with two
channelsci andco such that ifsi andso are the signals associated
to the channels andI (l ,k,si), l ≤ k denotes the sequence of infor-
mative events ofsi between thel -th clock cycle and thek-th one,
thensi andso are latency equivalent and for allk

I (1,(k−1),si) − I (1,k,so) ≥ 0 (4.1)

I (1,k,si) − I (1,(k−1),so) ≤ 2 (4.2)

The following is an example of relay station behavior, whereτ
denotes a stalling events andιi a generic informative event:

si = ι1 ι2 ι3 τ τ ι4 ι5 ι6 τ τ τ ι7 τ ι8 ι9 ι10 . . .
so = τ ι1 ι2 ι3 τ τ ι4 τ τ τ ι5 ι6 ι7 τ ι8 ι9 ι10 . . .



Notice, that no further specification has been given on the signalssi

andso, (for instance saying thatsi is the input andso is the output).
The definition of relay station simply involves a set of relations,
i.e. a protocol, betweensi andso without any implementation de-
tail. Still, it is clear that each informative event received on channel
ci is later emitted onco, while the presence of a stalling event on
co may induce a stalling event onci in a later cycle. In fact, an
informative event takes at least one clock cycle to pass through a
relay station (minimum forward latency = 1), at most two informa-
tive events can arrive onci while no informative events are emitted
onco (internal storage capacity = 2), and, finally, one extra stalling
event onco will “move” into ci in at least one cycle (minimum
backward latency = 1). The double storage capacity of a relay
station permits, in the best case, to communicate with maximum
throughput (equal to one): a practical confirmation of this fact is
given in Section 5, where an RTL implementation of a relay station
is discussed.

Since relay stations are patient processes, their insertion in a pa-
tient system guarantees that the system remains patient. Further,
since they have minimum latencies equal to one, they can be repet-
itively inserted on a channel to increase its latency. Therefore, the
methodology is patterned after the theory as follows: (1) we start
giving an abstract specification of a digital system as collection of
synchronous modules without making any assumption on the la-
tency of the wires (which are grouped in channels), then (2) we
automatically synthesize a corresponding layout, (3) we segment
every wire whose latency is greater than the desired clock period
by distributing on it the necessary amount of relay stations and (4)
we build the shell around the modules to obtain patient processes
that interact with the appropriate relay stations. Obviously, the fi-
nal result will be satisfactory only to the extent that a sufficient
throughput can be maintained in the presence of increased latency
of wires. However, this is a general problem that will have to be
faced in the design of large chips with DSM technologies, and not
specific to the latency insensitive methodology. On the other hand,
the latency insensitive methodology allows an easy early explo-
ration of latency/throughput tradeoffs as illustrated in Section 6.

5 The Implementation of the Protocol

In this Section, we present a latency insensitive communication
architecture consisting of channels, relay stations, and shells built
according to our methodology.

5.1 Channels

Channels are point-to-point unidirectional links between a
sourcemodule and asinkmodule. Data are transmitted on a chan-
nel by means ofpackets: a packet consists of a variable number of
fields. Here, we consider only two basic fields:payloadcontains
the transmitted data andvoid is a one bit flag which, if set to 1,
denotes that no data are present in the packet (void packet). If a
packet does contain “meaningful” payload data (i.e., void is set to
0) we will call it a true packet. A channel is made of wires and
relay stations. The number of relay stations in a channel is finite
and represents the buffering capability of the channel.
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Figure 2: Relay Station Implementation

At each clock cycle, the source module may either put a new true
packet on the channel or, in case no output data are available to be
sent, put a void packet on it; on the other side, at each clock cycle
the sink module retrieves from the channel the incoming packet
and, on the basis of the void field value, decides whether to dis-
card it or to store it on its input channel queue for later use. As a
source module might not be ready to send a true packet, so a sink
module might not be ready to receive it, for instance because its
input queue is full. However, the latency insensitive protocol de-
mands a fully reliable communication among the modules, where
no lossy communication link is allowed and all packets are prop-
erly delivered. Consequently, the sink module must have a way
to interact with the channel (and ultimately with the correspond-
ing source module) to stop momentarily the communication flow
and avoid the loss of any packet. Therefore, we slightly relax our
definition of a channel as unidirectional, to allow a bit of informa-
tion, called the channelstop flag, moving in the opposite direction.
By setting the stop flag equal to one during a certain clock cycle,
the sink module informs the channel that the next packet can not
be received and it must be held until the stop flag is reset. As the
sink module also the channel has a limited amount of buffering re-
sources: a channel dealing with a sink module that requires a long
stall period may fill up all its relay stations and being forced to
send a stop flag to the source module so that the latter will put its
packet production on stall.

5.2 Relay Stations

Figure 2 illustrates a possible relay station implementation
based on the following specification, which refines the abstract no-
tion given in Section 4:

“At each clock cyclet it takes a packetpacketInt+1 and a stop
signalstopInt+1 as inputs and it emits a packetpacketOutt+1 and
a stop signalstopOutt+1 as outputs:stopOutt+1 is always equal
to stopInt , while, according to the value of the internal variable
stallingt = stopInt ∧ stopInt−1 the relay station decides whether
to set packetOutt+1 equal to packetInt (case: stallingt = 0) or
to stall by keepingpacketOutt+1 equal topacketOutt and saving
packetInt value into an auxiliary register (case:stallingt = 1)”.

Figure 3 illustrates two modules,Fetch Unit and Instruction
Cache, communicating using two channelsAddress Channeland
Data Channel. Both channels have been partitioned in 4 segments
by the insertion of 3 relay stations and, as a consequence, the lower
bound on the latency of each channel has become 4 clock cycles.
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Figure 3: Channels betweenFetch UnitandInstruction Cache

Figure 4 reports a snapshot of the waveforms obtained by simu-
lating a VERILOG RTL description of theAddress Channel: here,
the source module is theFetch Unitproducing a sequence of ad-
dresses for aMemory Blockwhich represents the sink module. The
addresses are reported as hexadecimal numbers.

Beside the system clock having periodTCLK equal to 10ns, one
can see 8 waveforms which, going from top to bottom, correspond
respectively to the following signals of Figure 3:R2.packetOut,
R2.stopIn, R1.packetOut, R1.stopIn, R0.packetOut, R0.stopIn,
FU.packetOut, FU.stopIn.

At time t = 75ns the sink module setsR2.stopInequal to one
and keeps it equal to one for two clock cycles. As a consequence,
R2 stalls one cycle by maintainingR2.packetOut= h′44 for two
cycles while storingR1.packetOut= h′45 on a auxiliary set of reg-
isters. In the meantime, the stop signal is propagated toR1.stopIn.
When, after two clock cycles, at timet = 105ns, the sink module
can finally receiveR2.packetOut= h′44, it resetsR2.stopInsuch
that at the following clock cycleR2 may setR2.packetOut= h′45.
In the meantime, the two consecutive high values of the stop signal
propagate back through the channel, provoking a stall of one cycle
for each station while guaranteeing that no packets are lost. Notice
that a characteristic of this implementation of the protocol is that
when astopInsignal is kept high for only one cycle, the relay sta-
tion does not really stall: in Figure 4 this can be observed for the
sequence of clock cycles starting att = 165ns. This fact is simply
a positive bi-product of the fact that the storing capacity of a relay
station is double4.

5.3 Shells

As introduced in Section 2, given a particular moduleM, an
instance of a shell can be automatically synthesized as a wrapper to
encapsulateM and interface it with the channels so thatM becomes
a patient process. To do so the only necessary condition is thatM
be stallable.

At each clock cycle the module internal computation must be
fired only if all inputs have arrived. Guaranteeing thisinput syn-
chronizationis the first task of the shell of a module. The second
task is calledoutput propagation: at each clock cycle, if module
M has produced new output values and no output channel has pre-
viously raised a stop flag, then these output values can be trans-
mitted generating new true packets; if any of these two conditions
is not verified, then the packet transmitted in the previous cycle is
re-transmitted as a void packet.

In summary a shell for moduleM performs the following actions
cyclically:

4Recall that the primary reason for this double capacity is the need of avoiding
losing data while spending one cycle to propagate the stop signal.
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Figure 4: Waveforms onAddress Channel

1. it gets the incoming packets from the input channels, filters
away the void packets and extracts the input values forM
from the payload fields of the true packets.

2. when all input values are available for the next computation,
it passes them toM and fires the computation;

3. it gets the results of the computation fromM;

4. if no output channel has previously raised a stop flag, it routes
the result into the output channels;

6 Case Study: The PDLX Microprocessor

To test our methodology, we performed a “latency insensitive
design” of an out-of-order microprocessor (PDLX) with specula-
tive execution. Its instruction set is the same of the DLX micropro-
cessor, described in [15]. Its architecture is based on an extended
version of theTomasulo’s Algorithm[31], which combines tradi-
tional dynamic scheduling with hardware-based speculative exe-
cution. The data-path of PDLX is similar to the one of some of the
most advanced microprocessor available on the market today.

Figure 5 illustrates a simplified block diagram of the PDLX ar-
chitecture: thePC Unit sends the current value of theProgram
Counter (PC)to the Instruction Cacheand theFetch Unit. After
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receiving the corresponding instruction, theFetch Unitcouples it
with the PC value and sends it to theDecode Unit. Once instruc-
tion decoding is completed, the result arrives to theExecution Unit
which performs the execution phase working with theData Cache
and theRegister File. If the result of the execution is a “branch
taken”, then the branch target address is sent to thePC Unit.

In our implementation, the 7 units correspond to 7 modules
made patient by adding an appropriate shell. Obviously, this de-
composition of the hardware implementing the PDLX, is not the
only possible, let alone the best one. Still, while reasonably simple,
it presents interesting challenges to the realization of the proposed
latency insensitive communication architecture. In particular, the
Fetch Unit shell merges two separate channels (likely they have
different latencies), and each time a “branch taken” is executed a
“feedback path” is activated between theExecution Unitand the
PC Unit.

We performed a high-level cycle-accurate design of PDLX by
usingBONeS DESIGNER [29]. We first designed the PDLX mod-
ules illustrated in Figure 5, keeping in mind only the following
informal rule to make the process stallable:At each clock cycle
the execution process of a module can always be frozen without
affecting its internal state. Then, we designed the latency insen-
sitive protocol library, containing as building blocks relay stations
and shells. Finally, we encapsulated each module in a shell and
we obtained the final system. To test our design, we took some
simple numericalC programs (permutations, binary search,. . . )
and we generated the corresponding DLX assembler code by using
DLXCC, a publicly available DLX compiler [30]. Then, we loaded
the assembler into the PDLXInstruction Cacheand we executed
it, while logging every read/write access to theData Cache. Fi-
nally, we compared the “log file” with the one obtained executing
the same assembler code on the DLX simulatorDLXSIM to verify
that the functional behavior was indeed the same.

For each program execution, we computed the total number
of clock cyclesT necessary to complete the execution of the as-
sembler code: this number is equal toI + S+ P, whereI is the
number of instruction which have been committed,S is the num-
ber of cycles lost due to a stall within the execution unit, andP
is the number of cycles lost due to pipeline latency. Since the
PDLX is a single-issue multiprocessor, the instruction throughput
T = I/T is a quantity less than or equal to one. This quantity can
be multiplied by the system clock frequency to obtain theeffec-
tive instruction throughput ET= (I/T) ∗ fCLK, which allows us
to compare the execution of the same assembler code on differ-
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Figure 6: Effective Throughput vs. PDLX implementations

ent PDLX implementations running at different speeds. Figure 6
illustrates the results obtained running three different assembler
programs: the effective instruction throughput is reported on the
y-axis, while each discrete point on thex-axis corresponds to a
different PDLX implementation with a different fixed amount of
latency on some channels. We focused on two specific channels
on Figure 5: channelCa between theExecution Unitand theData
Cacheand channelCb between theFetch Unitand theInstruction
Cache. We assumed that the wires grouped in these two chan-
nels represent the critical path of the PDLX design and that, after
segmenting them (by inserting relay stations), we could afford to
raise the clock frequency appropriately. We varied the latency on
the two channels as follows: going from left to right on thex-axis,
the 18 data-points represent 18 implementation cases which can be
grouped in three subsets in correspondence to latency valuesLa for
Ca equal respectively to 0,1,2 clock cycles. Each of these subsets
contains 6 data-points corresponding to latency valuesLb for Cb

going from 0 to 5 clock cycles. Finally, for each implementation
case, we set the system clock cycle asfCLK = min{La,Lb}+ 1.
The plot illustrates how different PDLX implementations perform
under the same data stimulus, showing that the throughput values
are consistent across different benchmarks. All implementations
are functionally equivalent by construction, being obtained simply
by changing the number of relay stations on the channels and with
no need of re-designing any PDLX module. The insertion of re-
lay stations can be made at late stages in the design process, after
detailed information can be extracted from the physical layout, to
“fix” those channels whose latency is longer than the desired clock
cycle.

7 Conclusions and Future Work

We proposed a new“correct-by-construction” synthesis
methodology for designing very large digital systems by assem-
bling IP functional modules. The modules communicate by ex-
changing data on communication channels according to an appro-
priate protocol, which guarantees a correct system behavior inde-
pendently from channel latencies. As a consequence, a robust im-
plementation is achieved in a shorter time by reducing the multiple
iterations between logical and physical design. We developed a set
of RTL libraries for a specific latency insensitive protocol and we
used them to design a latency insensitive implementation of PDLX,
an out-of-order microprocessor with speculative execution. There



are several avenues for further investigations: (1) application to
other designs, particularly in the multimedia domain, (2) study of
the impact of our approach on other design metrics such as area
and, especially, power, (3) extension of the theory tospeculation
insensitiveprotocols.
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