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problems. Conversely, the emergence of a growing number
of anomalies that are intractable with the established
paradigm leads a community of scientists and engineers to
start searching for a paradigm change. Eventually, after a
period of both resistance to change and proliferation of
competing approaches, a new paradigm emerges [1].

This paper is about the crisis of the paradigm of
synchrony in the design of integrated circuits and the
emergence of a new candidate for a paradigm that looks
ahead at the shift toward the engineering of systems on
chips (SoCs). The crisis started around the turn of the
century with the anomalies caused by global wire delays
(the Wire Problem) [2]. It continues to date with the
resistance to change those practices and methods that have
been so successful for realizing chips with tens of millions
of transistors but are ineffective for future billion-
transistor SoC platforms. Latency-insensitive design
(LID) is a methodology that was originally developed to
address the Wire Problem, while preserving as much as
possible the advantages of the synchronous assumption in
register-transfer level (RTL) design. As | revisit LID and
related works, I show how its principles are informing the
transition from RTL design to system-level design (SLD).

II. THE SYNCHRONOUS PARADIGM

The synchronous design paradigm, or simply synchronous
paradigm, is ubiquitous in electrical engineering and computer
science [3]. It is the basis of digital integrated circuit design, it
is used in building discrete-time dynamical control systems,
and it is the foundation of programming languages and design
environments for real-time embedded systems [4]. With the
synchronous paradigm, a complex system is represented as a
collection of interacting concurrent components whose state is
updated collectively in one instantaneous step. The system
consists of a composition of sequential functional processes
and evolves through a sequence of atomic reactions. At each
reaction all processes, simultaneously, read the values of their
input variables and use them, together with the values of their
state variables, to compute new values for both their state and
output variables. Between two successive reactions the
communication of the computed values across the processes
occurs via broadcasting.

The synchronous hypothesis is precisely the idea that
at each reaction the computation phase (within the
functional modules) and the communication phase
(transferring the computed values across modules) occur
in sequence without any overlap between them. Each of
the two phases can be thought as instantaneous with
respect to the other. Indeed, in the synchronous
paradigm, “time” progresses in lock step, one reaction
after the other. Measuring time is confined to the concept
of a virtual, or logical, clock, whose ticking indexes the
totally ordered sequence of reactions. Each index is
denoted as a timestamp. The set of timestamps coincides
with the set of natural numbers.

The power of the synchronous paradigm lies essen-
tially in its simplicity. It is an intuitive, but formal,
model of computation that offers many advantages as it:
1) simplifies the modeling of deterministic concurrent
systems; 2) enables the incremental design of complex
systems in a modular and hierarchical fashion; 3) facilitates
the design process by separating functionality from the
notion of time; 4) encourages abstraction and reuse by
leading to design specifications that are independent from
the details of a particular implementation technology; and
5) eases the development of design automation tools for
specification, validation, and synthesis.

In summary, to use the words of Benveniste et al, “the
paradigm of synchrony has emerged as an engineer-friendly
design method based on mathematically sound tools” [3].

A. Synchronous Paradigm and Hardware Design

In digital hardware design, methodologies and tools
based on the synchronous paradigm have made it possible
to turn the progress of Moore’s Law [5] into generations of
integrated circuits (IC), each generation more powerful
and more complex. To build these ICs, engineers assemble
a myriad of transistors whose concurrent operations are
tightly controlled by the beat of a master clock signal (the
physical, or real, clock). Transistors and logic gates,
however, are abstracted away during most stages of the
design process. Since the mid-1980s, the core of the design
effort occurs at the RTL of abstraction, where designers
use hardware-description languages (HDLs), like Verilog
or VHDL, to write circuit specifications. These specifica-
tions are processed by computer-aided design (CAD) tools,
which automatically generate the circuit implementations
through logic and physical synthesis [6].

Fig. 1(a) shows the block diagram of a sequential module,
i.e., the basic RTL building block for applying the
synchronous paradigm to IC design. The acyclic combina-
tional logic implements the functionality of the module
(typically a complex arithmetic or logic function) while the
registers (memory elements controlled by the clock) store
the values of the state and output variables over time. A
sequential module is the direct implementation of a finite
state machine (FSM),* which is the model of computation
used to specify control logic in IC design. Also, most
arithmetic data paths can be modeled as a cascade of
sequential modules. Using HDLs, designers write software
programs to specify the functionality of each module and
their (possibly hierarchical) composition.

ExampleA multiplier accumulator (MAC) is a common
g,igital circuit used to implement operations like
KXanP yan ki which are ubiquitous in signal processing.

!Specifically, the diagram of Fig. 1(a) shows the basic implementation
of a Moore FSM. Removing the output registers yields that of a Mealy
FSM [7].
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Fig. 1. (a) RTL diagram of a generic sequential module. (b) RTL block diagram of the MAC circuit. (c) Example of RTL traces for the MAC circuit.

Fig. 1(b) shows the RTL diagram of a pipelined implementa-
tion of a variation of a MAC circuit, which returns alternate
accumulated sums: x and y are the input values to be
multiplied, cis the output of the accumulator register that can
be preset to a given value why setting input z ¥4 1, and alis the
resulting sequence of alternate partial sums. The circuit is
designed as the composition of three sequential modules. Its
RTL behavior is captured by three equations with n2 IN
denoting the timestamp
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ap1 YaGp My
, if z,%0
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W, if z, %1

The table of Fig. 1(c) reports the traces for a fragment
of an RTL behavior spanning 11 clock periods. The circuit
performance is dictated by the clock frequency sustainable
by its slowest component, which in this case is likely to be
the multiplier. h

The key point in RTL design is the separation of the
design and validation of the functional behavior of the
system from the analysis and optimization of its perfor-
mance. The longest combinational path inside a module
(critical path) dictates the minimum clock period ; that
makes it operate correctly. Therefore, given a target clock
period ¢ for the clock signal, the task of designing a large
digital circuit can be decomposed in subtasks aimed at
designing smaller RTL modules such that ¢ G « for each
module i. The modules can be specified, simulated,
implemented, and verified independently from each other,
based only on the desired input/output (1/0) functionality
and the expected value of /. The separation of functional
design from performance analysis consists of the following:
a functionally correct design is obtained by simply
assembling all the modules, while its speed (i.e., clock
frequency) is determined by the slowest module. In other
words, once all modules are composed, the overall circuit
works correctly as far as it is running with a clock having a

period ¢  maxf¢;g. The effectiveness of this strategy
lies on the assumption that the delay of any path connecting
two modules (intermodule delay) is negligible compared to
the delay of the paths inside the slowest module in the
system (intramodule delay). This had been the case for the
first 30 years of progress of semiconductor technologies,
when the average intermodule delays were much smaller
than the delays of the logic gates.

The other advantages of the synchronous paradigm also
apply to hardware design. In particular: 1) the design of the
circuit as a deterministic concurrent system is simplified
(different modules of the same system can be designed
independently by different designers); 2) the RTL design is
inherently incremental and hierarchical (e.g., portions of
the circuit can be redesigned to improve their performance
without touching the rest of the system); 3) the RTL design
of a module is independent from the particular semicon-
ductor technology used to build the circuits; 4) prede-
signed RTL modules can be reused for different projects;
and 5) designers can take advantage of a rich offering of
commercial CAD tools for RTL specification, simulation,
synthesis, and validation.

B. Crisis of the Synchronous Paradigm for IC Design

The crisis of a paradigm begins with its blurring in the
attempt of dealing with a growing set of anomalies [1].

While strongly simplifying system specification, the
synchronous hypothesis leaves the problem of deriving a
correct and efficient implementation from it. The diffi-
culty of this problem grows dramatically when the physical
implementation has a distributed nature that poorly
matches the synchronous hypothesis. This has been
increasingly the case for IC design since the turn of the
century, with the progress of semiconductor manufactur-
ing toward nanometer technologies [8]. These enable a
denser integration of transistors and modules on a chip.
However, while local wires connecting devices within a
module shrink with its logic, global wires connecting
devices across different modules do not because they need
to span significant parts of the die [2]. The increasing
resistance—capacitance delays combined with the growth
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of clock frequencies, die size, and average interconmecbrding to a latency-insensitive protocol. The protocol
length cause many intermodule paths to become critiwalks on the assumption that the modules are stallable, a
paths. As the percentage of the die reachable within a clwekk condition to ask them to obey (as explained below). The
period decreases [9], more and more gates can fit on a goigd of the protocol is to guarantee that a system composed of
than can communicate in a clock period [2]. The Wifenctionally correct modules behaves correctly independent-
Problem is exacerbated by the difficulty of estimatilygpfthe channel latencies. This increases the robustness of a
global interconnect delays early in the design process [d€%ign implementation because any delay variations of a
In turn, since every violation of the target clock period iglannel can be “recovered” by changing its latency while the
design exception that needs to be fixed, designers aserall system functionality remains unaffected. As a
forced to many costly iterations across the various stagesmgequence, an important application of the proposed
the CAD flow before converging to a final implementatitreory is the LID methodology to build SoCs with nanometer
(timing closure problem) [11]. In summary, the chip heschnologies [15].
become a distributed systemplgerating wire-related
design exceptions act as anomalies for the synchroMauEhe Protocols and Shells Paradigm
paradigm, and projects shift from being computation Latency-insensitive protocols are a mechanism to
bound to being communication bound [10]. formally separate communication from computation by
Hence, the crisis of the synchronous paradigm startsgecifying a system as a collection of computational
the consequence of a spreading gap between the synghnozesses that exchangead#trough communication
nous hypothesis of the specification and the distributdthnnels. The protocols cause the communication to be
reality of the implementation. On the one hand, to assumsensitive to the latencies of the channels. The theory of
instantaneous communication when it is more likely tHdD can then be applied as a rigorous basis to design
the concurrent modules will be implemented as distribebmplex systems by simply composing predesigned and
ed components may lead to poor design specificationsv@ified components so that the composition satisfies,
the other hand, even if it is still possible to take farmally and by construction, the required properties of
synchronous specification and enforce a synchroneyschronization and communication. Also, the theory
design style on the distributed implementation, the finzturally enables the separation of the system specification
result is likely to be a suboptimal design. from the derivation of one among many possible imple-
But has this crisis really started? After all, the vaséntations. The designers of a latency-insensitive system
majority of today’s digital ICs are still designed starting froam focus first on specifying the overall system and then on
RTL specifications as synchronous circuits and implementembsing the best components for the implementation. In
as chips controlled with a master clock signal. Still, itis a fdcing so they do not need to worry about communication
that the design of high-performance ICs is becomihgails such as data synchronization and transmission
increasingly more difficult and expensive [12], [13]. latency. A latency-insensitive protocol takes care of these.
While it may be debatable whether the crisis of tlk@rther, as the designers kxp the design space and
synchronous paradigm started, it is clear that, if it hasgdnsider alternative implementations for the various parts
has not ended. The proof is that a new candidate paradignthe system, they can rely on the fact that the
has not emerged yet. LID was proposed as an attempinfiementation of the interface (i.e., the shell) between
end this apparent crisis with a compromise: preserve tihe component and the latency-insensitive channel can be
synchronous hypothesis while relaxing the time cautomatically generated.
straints during the early phases of the design process wheA formal presentation of the theory of LID was given on
correct measures of the delay paths among the modulethardasis of the “tagged-signal model” denotation frame-
not yet available. Being a compromise, it could haverk [16]. Section III-B and IlI-C summarize the main
developed in either of two directions: as a confirmationaaincepts of LID and the methods for their practical
the synchronous paradigm or as a candidate for a @a@plication, respectively.
paradigm. About 15 years since it was first proposed [14],
the odds, | believe, are increasingly in favor of the sec&drheory of LID
outcome. | explain my rationale in Section V, after offering At the core of LID lies the notion of latency
a retrospective on LID. equivalence: two signals are latency equivalent if they
present the same ordered streams of data items but
possibly with different timing. In a synchronous model of
II. LATENCY-INSENSITIVE DESIGN computation the existence of a clock guarantees a common
The theory of LID is the foundation of a correct-biime reference among signatslatherefore, a signal must
construction methodology to design complex systemgpit®gsent an event at each clock period [3], [17]. LID
assembling predesigned components. LIDs are synchrod@ts)guishes between the occurrence of an informative
distributed systems and are built by composing functiosatnt (a valid data item also known as a valid token or atrue
modules that exchange data on communication chanpatsket) and a stalling event (a void token or a void packet,
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often denoted with the 7 symbol). Any class of latency-
equivalent signals contains a single reference signal that
does not present stalling events (a strict signal) while all
the other members of the equivalence class (stalling
signals) contain the same sequence of informative events
interleaved by one or more stalling events. By following
the tagged-signal model [17], the notions of latency-
equivalence signals, strict signals, and stalling signals are
extended to behaviors (i.e., sets of signals) and processes
(i.e., sets of behaviors).

A synchronous system can be modeled as a set of
processes communicating by exchanging signals (se-
quences of events) on a set of point-to-point channels. In
the theory of LID, each signal is associated to a distinct
channel. Two systems are latency equivalent if on every
channel they present the same data streams, i.e., the same
ordered sequence of data items, but, possibly, with
different timing. The sets of signals of two latency-
equivalent systems are latency equivalent. In particular,
when solicited by latency-equivalent sequences of events
occurring at their input ports, two latency-equivalent
systems produce latency-equivalent sequences of events at
their output ports.

As discussed in Section 11-B, the Wire Problem causes
delay uncertainties in intermodule (i.e., interprocess)
communication. This greatly complicates the use of strict
equality to compare corresponding signals across the
various stages of the design process, from the initial RTL
specification to the final layout implementation. Once one
must abandon strict equality, latency equivalence becomes
the next most natural concept to build upon. The first goal
of LID is to accommodate this shift within the realm of the
paradigm of synchrony while keeping things as simple as
possible. Specifically, LID expects that designers continue
to build a complex synchronous system as if it only
contained strict signals which can be compared in terms of
strict equality. From the strictly synchronous specification
of a system, then, designers can use CAD tools to obtain
automatically a particular implementation that is latency
equivalent to it. This automatic transformation is made
possible by the main theoretical contributions of the
theory of LID. These are about the concept of “patience.”

1) PatienceéA patient system is a synchronous system
whose functionality depends only on the order of the
events of each signal and not on their exact timing. A
latency-insensitive protocol guarantees that a patient
system, if composed of functionally correct processes,
behaves correctly independently from the delays of the
channels connecting the processes. The compositional
nature of the concepts of patience and latency equivalence
is proven with the following three results [16]:2 1) the
intersection of two patient processes is a patient process;

2These results use the parallel composition by intersection of
processes, a method that is typical of the synchronous paradigm.
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Fig. 2. (Top) Block diagram template for a two-input-two-output shell
encapsulating a stallable core module. (Bottom) Logic functions of the
shell controller.

2) given two pairs of latency-equivalent patient processes,
their pairwise intersections are latency equivalent; 3) for
all pairs of strict processes P, P, and patient processes Q,
Q, if P, is latency equivalent to Q and P, is latency
equivalent to @Q, then their pairwise intersections are
latency equivalent.

The major result of the theory naturally follows: if all
processes in a strict system are replaced by corresponding
latency-equivalent patient processes, then the resulting
system is patient and latency equivalent to the original one.
This result provides a formal way to orthogonalize compu-
tation and communication in SLD [18], as explained next.

2) Shell Encapsulatidrhe next question is: How to
derive the patient processes? The answer is a procedure to
transform any given strict process into a patient process
that is latency equivalent to it. To do so the strict process
must be stallable, i.e., it can be forced to wait for any
number of clock periods without losing its internal state.’

The procedure consists in encapsulating the strict
stallable process, which is referred as core or pearl in LID,
with a special process called shell, as shown in Fig. 2. This

3Stallability is a requirement that is much easier to satisfy than
patience. For instance, at the specification level, any sequential module
can be modeled as an FSM and, therefore, can easily be made stallable by
adding an extra Boolean input variable and extra Boolean output variable
to denote stalling input and output events, respectively: when active, this
input variable forces the FSM to remain in the current state and to raise
this output variable at the next clock period. At the implementation level,
stallability can be implemented through clock gating, a pervasive
technique for low-power design [19].
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TABLE 1RTL Traces for the LID Version of the MAC Circuit of Fig. 1(b)

encapsulation returns a patient process that is latency
equivalent to the original strict process. As a circuit, the
shell implements a wrapper module that uses buffering
queues and synchronization logic to act as an interface
between its core and the latency-insensitive protocol
governing the channels. At every clock period, the shell
decides between two main actions: if a new set of valid
tokens has arrived through the input channels, then the
shell lets the core consume them to produce new valid
tokens that are transmitted on the output channels at the
next clock period; if, instead, there is an input channel that
does not have a new valid token, then the shell stalls the
core while storing in its queues those valid tokens that may
have arrived on other input channels (so that they will be
processed in a future clock period).

Fig. 2 shows a particular shell implementation among
many possible ones; in fact, one may choose among many
different latency-insensitive protocols [20], [21]. There
are, however, some common properties. In particular,
backpressure is a mechanism that lets a downlink shell on
a given channel request the uplink shell to temporarily
stop its production of valid tokens. The reason for this
request is that the buffering capability of a shell in terms of
input queues is finite. Hence, the cause of many
consecutive stalling periods is either the sustained lack
of alignment of corresponding valid tokens across input
channels or backpressure coming from output channels
(or, possibly, their combination) [22]. In the case of Fig. 2,
the latency-insensitive protocol that governs each channel
uses two signals: a void bit to distinguish void from valid
tokens and a stop hit to implement backpressure. The
control logic is general and can be easily scaled to handle
an arbitrary number of input and output channels. The
clock-gating signal &irebdecides whether the core module
is fired or stalled. It is asserted when each channel presents
a valid token either directly from the input channel or
from its input queue, and no stop request has arrived on
any output channel. The second condition can be detected

by checking the current stoplnand voidOubits for each
output channel. The condition stoplnj voidOuj % true
means that the downlink module on channel j was not able
to process the current (also latest) valid data token. If so,
the core module will be stalled, the current token will be
repeated, and voidOuj will be set low. In all other cases,
the value of the voidOuj bit depends on whether the core
module will be fired. The major data path components in a
shell are the bypassable queues that store unused valid
tokens from input channels. If a queue is empty, the shell
controller selects the data token from its corresponding
input channel and passes it to the core.

Exampletable 1 reports the traces for the RTL behavior
of a LID of the MAC circuit of Fig. 1(b). This design is
obtained by encapsulating each of the three sequential
modules with a corresponding shell automatically gener-
ated from the template of Fig. 2. The columns for each
signal in Table 1 show the values for three variables
ad, v, & which are abbreviations for the data, void, and
stop signals of each intermodule channel. For example, at
timestamp n %1, the input channel x receives valid data
(equal to 2) from the environment, while at n % 2, the data
(equal to 9) are not valid because voidly ¥ 1. The arrival
of these invalid data causes a stalling period for the
multiplier at n¥ 2 and, consequently, channel m keeps
the same value (4) at n ¥ 3 but labels it with voidin, ¥4 1
to avoid double sampling from the downlink adder. In
turn, this causes a stalling period for the adder at n% 3
(the repeated 4 on output channel ais marked as void at
n¥4) and for the multiplexer at n¥ 4 (and, therefore,
channel ¢ has a void value at n¥5). At both timestamps
n ¥4 5and n ¥ 6, the environment requires output channel
a to keep the same value (3) by raising stoplg % 1; the
environment samples this value only at n ¥ 7. Meanwhile,
this request has caused the adder to stall twice and the
multiplier and multiplexer to stall once. The stalling
requests propagate back to the input channels w and z
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power-efficient, and robust solution [87]. These are also
the reasons that motivated the development of industrial
methodologies such as the “islands of synchronicity” [88].
A subset of GALS systems are the globally ratiochronous
locally synchronous (GRLS) systems, where all clock
frequencies are forced to be rationally related, i.e., they are
submultiples of the same physical/virtual frequency [89],
[90]. This restriction simplifies the implementation of
synchronizers used to bridge rationally related clock
domains and eliminates the round-trip delay penalty
associated with the traditional GALS approach [90].

Both GALS and GRLS methods have commonalities
with the protocols and shells paradigm of LID: each locally
synchronous component is encapsulated within a circuit
that, similarly to a shell, acts as an interface to an
interconnection network by implementing a particular
protocol. In a GALS system, the circuit is based on a
mixed-timing interface and the network consists of an
asynchronous circuit. Recently, however, the term “GALS”
has been stretched to describe any system containing many
components operating at different clock frequencies and
directly connected through synchronizers, e.g., dual-clock
first-in—first-out (FIFO) queues [87]. With this relaxed
use, soon most ICs could be considered GALS systems
because both chip multiprocessors and SoCs are increas-
ingly based on multicore architectures and operate with
aggressive power-management schemes [91]. In particular,
the application of dynamic voltage and frequency scaling
(DVFS) mechanisms to each core results in a system where
different cores operate at different frequencies at any
given time. These differences must be absorbed by the
interconnection network, which can be implemented as
either a synchronous or an asynchronous circuit at the
physical level, as long as it supports a latency-insensitive
protocol at the logical level.

D. LID and Desynchronization

Many emerging classes of embedded systems (e.g., in
automotive electronics, aeronautics, and industrial auto-
mation) require the deployment of tightly interactive,
concurrent processes on networked architectures. Like the
designers of ICs with nanometer technologies, the
designers of these embedded systems face a major issue:
while helpful to deal with the complexity of deriving a
concurrent specification, the synchronous paradigm
matches poorly the distributed nature of the final
implementation [92], [93]. The problem of desynchroni-
zation was defined to reconcile the use of synchronous
programming of reactive and real-time embedded software
[94] with the need of reaching a correct-by-construction
modular deployment of this software on a distributed
architecture [95], [96]. Benveniste was the first to study
the similarities and differences between desynchroniza-
tion of embedded software and LID. He concluded that
“think synchronouslyV act asynchronously” emerges as a
common paradigm for the compositional design of

embedded systems [92]. The notions of endochrony and
isochrony characterize those synchronous programs which
can be distributed on an asynchronous architecture
without losing semantic properties [96]. The relationship
between these notions and the principles of LID was
studied with a framework that formalizes the interplay
among the concepts of event absence, event sampling, and
communication latency in modeling distributed embedded
systems [97]. The concept of polychrony, which denotes
the capability of describing circuits and systems using the
synchronous assumption together with multiple clocks,
was introduced for the formal validation of the refinement
of synchronous multiclocked programs into GALS archi-
tectures [98], [99]. Benveniste et al.proposed a protocol
for the correct deployment of synchronous programs on
loosely time-triggered architectures (LTTAs) [100], a
weaker form of the strictly synchronous TTA proposed
by Kopetz and Bauer [101]. A compositional theory of
heterogeneous reactive systems based on tag systems [102]
formalizes the concept of heterogeneous parallel compo-
sition and provides a model for matching a specification
and an implementation that are heterogeneous: it was
applied to the analysis of the correct-by-construction
deployment of synchronous heterogeneous specifications
onto the LTTAs in use in the aerospace industry [103]. By
using a control mechanism like backpressure in LID,
Tripakis et al.extended the communication-by-sampling
method that characterizes LTTAs and, through a form of
reachability analysis on marked graphs, obtained perfor-
mance bounds on throughput and latency for an LTTA
implementation [104]. Di Natale et al.adapted the LTTA
model to the deployment on controller area networks
(CANs) that are pervasive in automotive systems [105]. For
these systems, Mangeruca et al.presented a method that
used buffer-based intertask communication to preserve the
synchronous semantics of embedded control software
when deployed on single-processor or multiprocessor
architectures [106].

E. Latency Insensitivity in SLD with FPGAs
FPGAs are a mainstream technology with many
applications, ranging from embedded systems to hardware
acceleration in data centers and high-performance com-
puting. Thanks to the lower engineering costs and design
times, an FPGA implementation represents an enticing
alternative to an application-specific integrated circuit
(ASIC) implementation for a growing set of applications
and markets. The progress of FPGA technologies,
however, has suffered for the difference in scaling
between local and global interconnects, as discussed for
ASICs and SoCs in Section II-B. Over five technology
generations, from 130 to 28 nm, the speed of local
communication spanning a relatively small amount of
logic (about 40 000 elements of the largest FPGA device)
has more than doubled, while global communication has
not improved [107]. This speed mismatch exacerbates the
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timing-closure problem particularly for large desigos many emerging classes of heterogeneous computing
which are increasingly the target of FPGA develop@iatforms.

Recently, Murray and Betz have presented an extensive

study to quantify the cost and benefits of LID for FPGAs

and concluded that, as design sizes continue to grow\énd:ROM RTL TO SLD THROUGH LID

CAD runtime for each design iteration increases, L#Dstate-of-the-art SoC contains over a billion transistors
becomes increasingly attractive to interconnect latgat implement a variety of heterogeneous components,
modules at the system level [107]. Kirisclggal.have including many processorspesialized accelerators,
used LID to design a communication infrastructure thmémory subsystems, analog circuits, and interconnects.
enables the dynamic re&ion of virtual hardware Besides heterogeneity, SoC designers face tighter power-
components to predetermined slots in the target FP@gsity budgets and a rising impact of software on the
of reconfigurable computing systems for multitask stred@esign and validation process. The progress of CAD tools
applications [108]. has not really kept up with the growing complexity of SoC

FPGAs are also extensively used in SoC designdasign. Nearly 30 years after the adoption of logic
validation because they offer a unique platform fgynthesis and place-and-route tools, the IC industry has
prototyping and emulation of ICs and for developmeptiched a point where it needs a new set of CAD tools that
of application and system software. Complex SoC designist allow a larger group of application experts to
however, do not typically fit on a single FPGA and mustdaeticipate in creating the efficient hardware/software
partitioned across many. This task is time consumingsystems that they require [13]. This goal, along with the
perform manually and leads to suboptimal results wheduction of design costs and deployment times, demands
left to the automatic effort of existing CAD tools. Thike adoption of SLD methods that enable raising the level
main difficulty is to differentiate the functional behaviaf abstraction when designing ICs [12].
of the design from the cycle-by-cycle timing behavior of its
RTL specification [109]. LID provides an effective solutianBenefits of SLD
to this problem and a path to obtain efficient multiple- SLD is the next level of abstraction above RTL that is
FPGA implementations. By viewing a hardware design @speected to provide a quantum leap in design productivity
set of modules connected by latency-insensitive FfGomplex SoCs. With SLD, the heterogeneous compo-
gueues and breaking it at latency-insensitive boundamesits of a SoC and their interactions are specified using a
researchers at Intel and MIT showed how to automaticaligh-level programming language such as C [114],
produce efficient implementations that span multipystemC [115], BlueSpec [116] or MATLAB [117]. The
FPGAs [109]. They reported the use of LID to reallzenefits are multiple.
highly modular design prototypes for multimedia [110] First, while RTL design specification with Verilog or
and wireless networks [111]. Also, LID enables wdDL is error prone and time consuming, SLD allows
transparent insertion of aggressively pipelined logic ietgyineers to abstract away many low-level logic details and
a preexisting design by using only spare resource$oaus instead on the relationships between the data
regions of low congestion, without the need of reconfigsiructures and the operations that characterize a given
ing the entire FPGA [112]. algorithm.

The most recent advancement in this line of research isSecond, both hardware and software engineers can
the development of the latency-insensitive environmeirhulate the SLD specification of a component as part of
for application programming (LEAP), an FPGA operatihg whole system by using a virtual platform. Differently
system built around latency-insensitive communicatidrmsn the slow cycle-accueatRTL simulators, virtual
channels [113]. Targeting multiple FPGA platforms, LEpA&forms allow fast execution of complex application
organizes the memory hierarchy as a network of latersgenarios on top of the actual software stack that will be
insensitive channels and communicates with softwaredbployed with the SoC, including the operating system
stretching channels across chip boundaries. By providifigl8]. This permits designers to develop the SoC architec-
rich set of LID abstraction layers and strong compitare based on the target applications that it must support.
support for automating implementation decisions, LEARo, a virtual platform reduces the gap between applica-
addresses two major issues that limit the adoption of FRIGA software development and circuit hardware design by
technologies: it reduces the burden of programming moviding a framework for collaboration: programmers can
FPGA and enhances design fmlitg, while consuming asrun and refine their software on the hardware model,
little as 3% of FPGA ar@a\n open-source project, LEARvhile designers can test and optimize their hardware
shows a promising path toward the SLD and programnungled also by the inputs from the programmers.

Third, RTL design optimization is based on running
logic synthesis tools, which are very slow for large

°This 3% overhead is consistent with the area overhead of LIEfMPONents and offer only a |Im_ﬁeq number Of_Conflg-
ASIC implementations, e.g., see the results of Table II. uration knobs to explore alternative implementations. In
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contrast, designers can use high-level synthesis (HLS) to
automatically generate many RTL implementations from a
single SLD specification. Admittedly, state-of-the-art HLS
tools can process only a subset of the programs that can be
written with a high-level programming language [119].
But their rich set of configuration knobs allows the
synthesis of many alternative microarchitectures, which
are increasingly competitive with those that can be
manually designed by hardware engineers. Hence, from
the same SLD specification, it is possible to explore a
broader design space in search of an implementation that
is Pareto optimal with respect to the multiple design
objectives (performance, power, area, etc.) [120]. To do
the same with manual RTL design and logic synthesis
would be prohibitive in terms of nonrecurring engineer-
ing (NRE) costs.

B. High-Level Synthesis and Latency Equivalence

The SLD specification of the SoC components consists
of many functions (e.g., SystemC processes) that work on
high-level data structures (e.g., arrays and matrices). It is
the result of a sequence of partitioning and refinement
steps that designers perform starting from a higher level
algorithmic description. For the synthesis and optimiza-
tion of an individual SystemC process, HLS tools offer a
rich set of configuration knobs, e.g., for loop manipulation,
state insertion, array implementation, and function
sharing. The designer can choose a particular knob
configuration before invoking the HLS engine, which
returns a corresponding optimized microarchitecture
expressed in synthesizable Verilog. Different configura-
tions result in different microarchitectures, thus enabling
the choice among many alternative RTL implementations.
As these implementations represent alternative tradeoffs
in the multiobjective design space, HLS promotes design
reuse and intellectual property (IP) exchanges. For
instance, a team of computer vision experts can devise
an innovative algorithm for object detection, use SystemC
to design a specialized accelerator for this algorithm, and
license it as a synthesizable IP module to many different
SoC designers; these can then use HLS to derive
automatically the particular implementation that provides
the best tradeoff (e.g., high performance or low power) for
their particular system.

ExampleFig. 6 shows an example of design space
exploration for an interpolation process whose main loop
invokes repeatedly the sincfunction, which is relatively
expensive to realize in hardware. The diagram shows over
40 points, each corresponding to a distinct microarchi-
tecture synthesized with HLS. The application of the “loop
pipelining” knob leads to RTL implementations of the
interpolation module which have more parallel and faster
hardware, thereby delivering lower execution time in
exchange of higher area occupation and power dissipation.
Conversely, “loop breaking” leads to more sequential

100 I

@ Break

function interpolation()
{ 80

for(...)

{
accum = 0;
for(...)

{
accum += sinc(input);
) L )

store (accum) ; %) %
} o
° ] )

@ Unroll ||

@ Pipeline

60

Power (mW)
(o]

Execution Time (million-clock-cycles)

Fig. 6. HLS-enabled design space exploration of an interpolation
process.

executions on shared hardware, resulting in resource
savings but lower performance. The “loop unrolling” knob
yields implementations in between those yielded by the
previous two knobs. Each implementation i of the
interpolation module takes a different number pdb of
clock periods to execute the interpolation task on a given
input. The reciprocal of pdb is equal to the MST of
implementation i (see Section 111-B).*° h

All the HLS-synthesized implementations are not
functionally equivalent from an RTL viewpoint because
they do not produce exactly, i.e., clock by clock, the same
sequence of output signals for any valid sequence of input
signals [121]. On the other hand, they are expected to be all
valid RTL implementations of the original SLD specifica-
tion, given as an untimed SystemC model. So, the first
question to pose is: How to verify the correctness of each
of these RTL implementations against the SLD specifica-
tion? The answer is provided by the notion of latency
equivalence. As the implementations that can be obtained
with LID from a strict RTL specification are all latency
equivalent to it (Section I11-B), similarly all the RTL
implementations that can be obtained from an untimed
specification through HLS must belong to a latency-
equivalent class. Every behavior of each member of this
class is latency equivalent to a corresponding behavior of
the untimed specification, i.e., it presents the same
ordered streams of valid data items at its ports, but
possibly with different timing. Hence, latency equivalence
provides a key to address one of the most important
challenges in the area of formal verification for SLD.

The second question is: How to choose a particular
implementation among all the synthesized RTL ones? If
the design consists of only one module, then it would be
sufficient to analyze the set of the RTL implementations
returned by the HLS tool in the multiobjective design
space and choose the one that provides the desired

OIn this example, all implementations can run at the target clock
frequency (1 GHz). If this is not the case, then the effective latency, which
is defined as the reciprocal of the effective clock frequency (Section I11-B),
should be used as the metric for the x-axis of Fig. 6.
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compromise between performance and cost (e.g., forsbftware through device drivers, run for some time, and
interpolation example, choose a Pareto-optimal pointhen get back into an idle state, typically after sending an
the diagram of Fig. 6). A modern SoC design, howeveinisrrupt signal that willitself be processed in an
the result of composing a large number of modules; furthesynchronous fashion, on a best-effort basis.

many of these modules are themselves too complex to bl this context, communication plays an increasingly
synthesized by state-of-the-art HLS tools without bedegtral role at both runtime and design time. At runtime,
first broken down into smaller submodules. Indeed, Sth€ communication infrastructure must scale up with the
design is inherently an instance of component-basledhands in terms of data transfers from a growing number
design. Hence, the choice of a particular RTL implemeh-cores; also it must be capable to dynamically absorb
tation for a module must be made in the context of tdéferences in the effective clock frequency among the
choices for all the other modules that are alsores and provide backpressure signals to inform them
components of the given SoC. A particular set of choigbseut the needs for stalling without losing their internal
leads to a point in the multiobjective design space for giate. At design time, communication is key to the correct
whole SoC. So, the process of deriving the diagramamd efficient assembly of components that are designed
Pareto-optimal points repeats itself hierarchically at thdependently from each other.

system level [120]. Every system-level point is the resultChoosing the best implementation of each component
of composing many component-level points, edoh a given SoC and combining these implementations
corresponding to an RTL implementation that can rimo an optimal system design are still manual, time-
with its own effective ctk frequency. Hence, theconsuming tasks. To assist SoC designers in this effort,
resulting composition worksrcectly only if the differ- however, CAD-tool vendors have started to provide
ences among the effective clock frequencies across alliiharies of interface primitives. Based on the transaction-
components can be absorbed by the communicaterel modeling (TLM) appach [122], [123], these
infrastructure that connects them. The protocols alildraries offer: 1) an application programming interface
shells paradigm is a modular approach to address tihispecify communication and synchronization mechan-
problem in the context of communication-based SLD.isms among computation processes at the system level;
and 2) synthesizable implentations of these mechan-
isms that can be combined with the implementation of

C. Toward Communication-Based SLD : .
The composition of modules synthesized with HLSEE%Ch process in a modular fashion [124]-{126]. These

just one aspect of the complexity of SoC design grrllcrpltlves follow the protocols and shells paradigm in

programming. While the design of individual componerlljtSlrlg po_mt to |_o<_)|nt chann_els, Wh'Ch are inherently
D - . . __lalency insensitive, combined with modular socket
is important, the most critical challenges in the realizatio . .

n?rfaces, which can be instanced to connect the

. T ; [
of a SoC lie in the selection, integration, and managemgr%cesses to the channels. With these primitives, TLM
of many components.

. . seBarates the implementation details of the communica-
Modern SoCs are increasingly based on heterogen§o S . . -
ion"and computation parts of the design and facilitates

_multlc_ore arch|tec_;tures that consist of a mix of CO'%Re combination of hardware and software components in
including many different pes of programmable proces-.

sors and special-function hardware accelerators. Each\é(r)tyeal platforms. By absorbing the timing differences

. . ) Cross processes, it simplifies the replacement of a
can dynamically change its operating frequency depending. : . :
. . d particular implementatioof any process with another
on its current workload requirements (combined wi : )
- . ne that may take a different number of clock periods, as

other system conditions) and independently from the . .

1 . It offers a different power/performance tradeoff point. By
other cores! All cores communicate among themselves

) . . L . roviding predesigned implementations and encapsulating
and with off-chip devices (primarily the main memo . o . .
S w-level signals, it relieves SoC designers from the tedious
DRAM) through a communication infrastructure. TraqI-

tionally, this has been implemented as a bus or a se agF of creating a communication protocol. By decoupling

’ : € computation and communication parts, it enables a
buses; however, as the number of cores continues to grow

buses are getting replaced by NoCs, which offer mrg%re efficient design of the communication infrastructure,

scalability in terms of both logical and physical propert‘:’tvesose Implementation characteristics may vary as long as

. A : IT Supports the protocol.
[45]. Since the communication infrastructure is a resource \ " .o ussed in Section llI-A, in RTL design, a latency-

shared by all the cores, each core must be ready to

; . ; . ‘Insensitive channel can be implemented by augmenting
temporarily stall its operations in case of congestign

Furthermore, the operatisnof many “device cores’ € wires carrying the data with two additional wires

(accelerator or peripherals) are intrinsically event bas%)?ilr'rymg the void/valid bit and the backpressure stop/ready

at anv given time. thev get confiaured and invoked " respectively. With SLD, the designer has still the
y 9 ' y 9 g option of specifying the LID protocol using a cycle-

Yncreasingly, together with the frequency also the voltage Supp@qgurate model. Thanks to the interface-primitive librar-
scaled through the fine-grained application of DVFS. ies, however, modern HLS tools support more abstract
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specifications that do not require to describe the imple-
mentation details of the protocol and shell interfaces.
These are automatically synthesized from the TLM
specification by the tools, together with the computational
part of the design. For instance, SystemC offers the
sc_fifo data structure that can be used to specify a
point-to-point channel between a producer and a consumer
[115]. The higher level of abstraction simplifies the
specification, debugging, and maintenance of the channels
and the interfaces among the system components; it also
enables faster simulation at the system level without losing
the benefits of latency insensitivity either at this level or
for the synthesized RTL implementation [127].

academia should take the lead in breaking this vicious
cycle. In most universities, the design and validation of
digital circuits is still taught based on RTL specifications
made with Verilog or VHDL. Furthermore, while the
interplay between hardware and software becomes tighter
with the design of each new generation of electronic
products, traditional boundaries between disciplines pre-
vent students from acquiring a true system perspective. For
instance, the typical curriculum in electrical engineering
(EE) does not cover basic concepts of operating systems and
driver programming, while most computer science (CS)
graduates who can develop sophisticated software applica-
tions cannot evaluate basic tradeoffs between performance
and power dissipation.

Technology and commercial trends in electronic

VI. CONCLUSIONS: A PERSPECTIVE l:Oglstems, however, call for a renewal of the professional

THE FUTURE

Building on the foundations of LID and the protocols
and shells paradigm, we can bridge the gap between
RTL design and SLD. If this is possible and if the
benefits of SLD are so clear, one may wonder why most
integrated circuits are still designed starting from
manually written RTL specifications. While it is difficult
to pinpoint a single cause, multiple issues are likely at
play here. There is the natural inertia of continuing to
apply best practices that have brought decades of
successful products in the semiconductor industry.
Many engineers who have been trained for RTL design
and have acquired years of experience in using CAD
flows that start from this level of abstraction may be
reluctant to switch to new, relatively untested, practices.
Meanwhile, the engineering divisions and teams of
many semiconductor companies are organized in a way
that is conducive to realize an integrated circuit with
traditional CAD flows and their well-established signoff
points. This may make managers more skeptical about
the benefits of a major reorganization. These reluctance
and skepticism are also amplified by some concrete
challenges that delay the progress of SLD, including: the
lack of a commonly accepted methodology, the limita-
tions of current virtual platforms, HLS and verification
tools, and the shortage of engineers trained to work at
this higher level of abstraction.

Arguably, this is a chicken-and-egg problem: the lack of
bigger investments in developing SLD methodologies and
tools is due to a lack of demand from engineers; conversely,
the lack of this demand is due to the shortcomings of
current SLD methodologies and tools. | believe that
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