
INV ITED
P A P E R

From Latency-Insensitive
Design to Communication-
Based System-Level Design
This paper overviews the principles and practice of latency-insensitive design,

offers a retrospective on related research over the past decade, and looks ahead in

proposing the protocols and shells paradigm as the foundation to bridge the gap

between system-level and logic/physical design, a requisite to cope with the complexity

of engineering future system-on-chip platforms.

By Luca P. Carloni, Senior Member IEEE

ABSTRACT | By the end of the 20th century, the continuous

progress of the semiconductor industry brought a major

transformation in the design of integrated circuits: as the speed

of global wires could not keep up with the speed of ever-smaller

transistors, the digital chip became a distributed system. This

fact broke the synchronous paradigm assumption, i.e., the

foundation of those computer-aided design (CAD) flows which

had made possible three decades of unique technology prog-

ress: from chips with thousands of transistors to systems on

chips (SoCs) with over a billion transistors. Latency-insensitive

design (LID) is a correct-by-construction design methodology

that was originally developed to address this challenge while

preserving as much as possible the synchronous assumption. A

broad new approach that transforms the fundamentals of how

complex digital systems are assembled, LID introduces the

protocols and shells paradigm, which offers several main

benefits: modularity (by reconciling the synchronous paradigm

with the dominant impact of global interconnect delays that

characterizes nanometer technologies), scalability (by making

key properties of the design be correct by construction through

interface synthesis), flexibility (by simplifying the design and

validation of a system through the separation of communication

from computation), and efficiency (by enabling the reuse of

predesigned components, thus reducing the overall design time).

This paper overviews the principles and practice of LID, offers a

retrospective on related research over the past decade, and

looks ahead in proposing the protocols and shells paradigm as

the foundation to bridge the gap between system-level and

logic/physical design, a requisite to cope with the complexity of

engineering future SoC platforms.

KEYWORDS | Computer engineering; computer-aided design

(CAD); embedded systems; integrated circuits; latency-

insensitive design (LID); system-level design (SLD); system on

chip (SoC)

I . INTRODUCTION: A PARADIGM SHIFT?

Paradigms are ‘‘accepted examples of scientific practiceV
examples which include law, theory, application, and
instrumentation togetherV[that] provide models from

which spring particular coherent traditions of scientific

research.’’ This at least according to Kuhn in his classic

1962 book, a landmark event in the philosophy of science

[1]. The informal definition is centered around the English

word that best translates the original Greek paradeigma,

i.e., example. Therefore, paradigms are examples. These

examples gain their value, which is ultimately a practical
value (‘‘to provide models’’), from offering a diverse body

of information (‘‘law, theory, application, instrumenta-

tion’’). As such, Kuhn’s definition applies well also to

engineering, particularly to the design of hardware and

software systems in computer engineering.

In their work, engineers naturally follow fundamental

laws and theories, but, as they strive to build their systems on

time, they regularly find support in those practices, methods,
and tools which have been applied repeatedly and success-

fully before. And they continue to do so as long as the shared

paradigm remains effective for solving their engineering

Manuscript received April 28, 2015; revised August 16, 2015; accepted September 6,

2015. Date of publication October 15, 2015; date of current version October 26, 2015.

This work was supported in part by the National Science Foundation and by C-FAR, one

of the six centers of STARnet, a Semiconductor Research Corporation program

sponsored by MARCO and DARPA.

The author is with the Department of Computer Science, Columbia University, New York,

NY 10027 USA (e-mail: luca@cs.columbia.edu).

Digital Object Identifier: 10.1109/JPROC.2015.2480849

0018-9219 � 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2133

problems. Conversely, the emergence of a growing number
of anomalies that are intractable with the established

paradigm leads a community of scientists and engineers to

start searching for a paradigm change. Eventually, after a

period of both resistance to change and proliferation of

competing approaches, a new paradigm emerges [1].

This paper is about the crisis of the paradigm of

synchrony in the design of integrated circuits and the

emergence of a new candidate for a paradigm that looks
ahead at the shift toward the engineering of systems on

chips (SoCs). The crisis started around the turn of the

century with the anomalies caused by global wire delays

(the Wire Problem) [2]. It continues to date with the

resistance to change those practices and methods that have

been so successful for realizing chips with tens of millions

of transistors but are ineffective for future billion-

transistor SoC platforms. Latency-insensitive design
(LID) is a methodology that was originally developed to

address the Wire Problem, while preserving as much as

possible the advantages of the synchronous assumption in

register-transfer level (RTL) design. As I revisit LID and

related works, I show how its principles are informing the

transition from RTL design to system-level design (SLD).

II . THE SYNCHRONOUS PARADIGM

The synchronous design paradigm, or simply synchronous

paradigm, is ubiquitous in electrical engineering and computer

science [3]. It is the basis of digital integrated circuit design, it

is used in building discrete-time dynamical control systems,

and it is the foundation of programming languages and design

environments for real-time embedded systems [4]. With the

synchronous paradigm, a complex system is represented as a
collection of interacting concurrent components whose state is

updated collectively in one instantaneous step. The system

consists of a composition of sequential functional processes

and evolves through a sequence of atomic reactions. At each

reaction all processes, simultaneously, read the values of their

input variables and use them, together with the values of their

state variables, to compute new values for both their state and

output variables. Between two successive reactions the
communication of the computed values across the processes

occurs via broadcasting.

The synchronous hypothesis is precisely the idea that

at each reaction the computation phase (within the

functional modules) and the communication phase

(transferring the computed values across modules) occur

in sequence without any overlap between them. Each of

the two phases can be thought as instantaneous with
respect to the other. Indeed, in the synchronous

paradigm, ‘‘time’’ progresses in lock step, one reaction

after the other. Measuring time is confined to the concept

of a virtual, or logical, clock, whose ticking indexes the

totally ordered sequence of reactions. Each index is

denoted as a timestamp. The set of timestamps coincides

with the set of natural numbers.

The power of the synchronous paradigm lies essen-
tially in its simplicity. It is an intuitive, but formal,

model of computation that offers many advantages as it:

1) simplifies the modeling of deterministic concurrent

systems; 2) enables the incremental design of complex

systems in a modular and hierarchical fashion; 3) facilitates

the design process by separating functionality from the

notion of time; 4) encourages abstraction and reuse by

leading to design specifications that are independent from
the details of a particular implementation technology; and

5) eases the development of design automation tools for

specification, validation, and synthesis.

In summary, to use the words of Benveniste et al., ‘‘the

paradigm of synchrony has emerged as an engineer-friendly

design method based on mathematically sound tools’’ [3].

A. Synchronous Paradigm and Hardware Design
In digital hardware design, methodologies and tools

based on the synchronous paradigm have made it possible

to turn the progress of Moore’s Law [5] into generations of
integrated circuits (IC), each generation more powerful

and more complex. To build these ICs, engineers assemble

a myriad of transistors whose concurrent operations are

tightly controlled by the beat of a master clock signal (the

physical, or real, clock). Transistors and logic gates,

however, are abstracted away during most stages of the

design process. Since the mid-1980s, the core of the design

effort occurs at the RTL of abstraction, where designers
use hardware-description languages (HDLs), like Verilog

or VHDL, to write circuit specifications. These specifica-

tions are processed by computer-aided design (CAD) tools,

which automatically generate the circuit implementations

through logic and physical synthesis [6].

Fig. 1(a) shows the block diagram of a sequential module,

i.e., the basic RTL building block for applying the

synchronous paradigm to IC design. The acyclic combina-
tional logic implements the functionality of the module

(typically a complex arithmetic or logic function) while the

registers (memory elements controlled by the clock) store

the values of the state and output variables over time. A

sequential module is the direct implementation of a finite

state machine (FSM),1 which is the model of computation

used to specify control logic in IC design. Also, most

arithmetic data paths can be modeled as a cascade of
sequential modules. Using HDLs, designers write software

programs to specify the functionality of each module and

their (possibly hierarchical) composition.

Example: A multiplier accumulator (MAC) is a common

digital circuit used to implement operations likeP
k xðnÞ � yðn� kÞ, which are ubiquitous in signal processing.

1Specifically, the diagram of Fig. 1(a) shows the basic implementation
of a Moore FSM. Removing the output registers yields that of a Mealy
FSM [7].

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

2134 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

Fig. 1(b) shows the RTL diagram of a pipelined implementa-

tion of a variation of a MAC circuit, which returns alternate

accumulated sums: x and y are the input values to be

multiplied, c is the output of the accumulator register that can

be preset to a given value w by setting input z ¼ 1, and a is the

resulting sequence of alternate partial sums. The circuit is

designed as the composition of three sequential modules. Its
RTL behavior is captured by three equations with n 2 IN
denoting the timestamp

mnþ1 ¼ xn � yn

anþ1 ¼ cn þ mn

cnþ1 ¼
an; if zn ¼ 0

wn; if zn ¼ 1:

�

The table of Fig. 1(c) reports the traces for a fragment
of an RTL behavior spanning 11 clock periods. The circuit

performance is dictated by the clock frequency sustainable

by its slowest component, which in this case is likely to be

the multiplier. h
The key point in RTL design is the separation of the

design and validation of the functional behavior of the

system from the analysis and optimization of its perfor-

mance. The longest combinational path inside a module
(critical path) dictates the minimum clock period i that

makes it operate correctly. Therefore, given a target clock

period for the clock signal, the task of designing a large

digital circuit can be decomposed in subtasks aimed at

designing smaller RTL modules such that i G for each

module i. The modules can be specified, simulated,

implemented, and verified independently from each other,

based only on the desired input/output (I/O) functionality
and the expected value of . The separation of functional

design from performance analysis consists of the following:

a functionally correct design is obtained by simply

assembling all the modules, while its speed (i.e., clock

frequency) is determined by the slowest module. In other

words, once all modules are composed, the overall circuit

works correctly as far as it is running with a clock having a

period � maxif ig. The effectiveness of this strategy

lies on the assumption that the delay of any path connecting

two modules (intermodule delay) is negligible compared to

the delay of the paths inside the slowest module in the

system (intramodule delay). This had been the case for the

first 30 years of progress of semiconductor technologies,

when the average intermodule delays were much smaller
than the delays of the logic gates.

The other advantages of the synchronous paradigm also

apply to hardware design. In particular: 1) the design of the

circuit as a deterministic concurrent system is simplified

(different modules of the same system can be designed

independently by different designers); 2) the RTL design is

inherently incremental and hierarchical (e.g., portions of

the circuit can be redesigned to improve their performance
without touching the rest of the system); 3) the RTL design

of a module is independent from the particular semicon-

ductor technology used to build the circuits; 4) prede-

signed RTL modules can be reused for different projects;

and 5) designers can take advantage of a rich offering of

commercial CAD tools for RTL specification, simulation,

synthesis, and validation.

B. Crisis of the Synchronous Paradigm for IC Design
The crisis of a paradigm begins with its blurring in the

attempt of dealing with a growing set of anomalies [1].
While strongly simplifying system specification, the

synchronous hypothesis leaves the problem of deriving a

correct and efficient implementation from it. The diffi-

culty of this problem grows dramatically when the physical

implementation has a distributed nature that poorly

matches the synchronous hypothesis. This has been

increasingly the case for IC design since the turn of the

century, with the progress of semiconductor manufactur-
ing toward nanometer technologies [8]. These enable a

denser integration of transistors and modules on a chip.

However, while local wires connecting devices within a

module shrink with its logic, global wires connecting

devices across different modules do not because they need

to span significant parts of the die [2]. The increasing

resistance–capacitance delays combined with the growth

Fig. 1. (a) RTL diagram of a generic sequential module. (b) RTL block diagram of the MAC circuit. (c) Example of RTL traces for the MAC circuit.

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2135

of clock frequencies, die size, and average interconnect
length cause many intermodule paths to become critical

paths. As the percentage of the die reachable within a clock

period decreases [9], more and more gates can fit on a chip

than can communicate in a clock period [2]. The Wire

Problem is exacerbated by the difficulty of estimating

global interconnect delays early in the design process [10].

In turn, since every violation of the target clock period is a

design exception that needs to be fixed, designers are
forced to many costly iterations across the various stages of

the CAD flow before converging to a final implementation

(timing closure problem) [11]. In summary, the chip has

become a distributed system, proliferating wire-related

design exceptions act as anomalies for the synchronous

paradigm, and projects shift from being computation

bound to being communication bound [10].

Hence, the crisis of the synchronous paradigm starts as
the consequence of a spreading gap between the synchro-

nous hypothesis of the specification and the distributed

reality of the implementation. On the one hand, to assume

instantaneous communication when it is more likely that

the concurrent modules will be implemented as distribut-

ed components may lead to poor design specifications. On

the other hand, even if it is still possible to take a

synchronous specification and enforce a synchronous-
design style on the distributed implementation, the final

result is likely to be a suboptimal design.

But has this crisis really started? After all, the vast

majority of today’s digital ICs are still designed starting from

RTL specifications as synchronous circuits and implemented

as chips controlled with a master clock signal. Still, it is a fact

that the design of high-performance ICs is becoming

increasingly more difficult and expensive [12], [13].
While it may be debatable whether the crisis of the

synchronous paradigm started, it is clear that, if it has, it

has not ended. The proof is that a new candidate paradigm

has not emerged yet. LID was proposed as an attempt to

end this apparent crisis with a compromise: preserve the

synchronous hypothesis while relaxing the time con-

straints during the early phases of the design process when

correct measures of the delay paths among the modules are
not yet available. Being a compromise, it could have

developed in either of two directions: as a confirmation of

the synchronous paradigm or as a candidate for a new

paradigm. About 15 years since it was first proposed [14],

the odds, I believe, are increasingly in favor of the second

outcome. I explain my rationale in Section V, after offering

a retrospective on LID.

III . LATENCY-INSENSITIVE DESIGN

The theory of LID is the foundation of a correct-by-

construction methodology to design complex systems by

assembling predesigned components. LIDs are synchronous,

distributed systems and are built by composing functional

modules that exchange data on communication channels

according to a latency-insensitive protocol. The protocol
works on the assumption that the modules are stallable, a

weak condition to ask them to obey (as explained below). The

goal of the protocol is to guarantee that a system composed of

functionally correct modules behaves correctly independent-

ly of the channel latencies. This increases the robustness of a

design implementation because any delay variations of a

channel can be ‘‘recovered’’ by changing its latency while the

overall system functionality remains unaffected. As a
consequence, an important application of the proposed

theory is the LID methodology to build SoCs with nanometer

technologies [15].

A. The Protocols and Shells Paradigm
Latency-insensitive protocols are a mechanism to

formally separate communication from computation by

specifying a system as a collection of computational
processes that exchange data through communication

channels. The protocols cause the communication to be

insensitive to the latencies of the channels. The theory of

LID can then be applied as a rigorous basis to design

complex systems by simply composing predesigned and

verified components so that the composition satisfies,

formally and by construction, the required properties of

synchronization and communication. Also, the theory
naturally enables the separation of the system specification

from the derivation of one among many possible imple-

mentations. The designers of a latency-insensitive system

can focus first on specifying the overall system and then on

choosing the best components for the implementation. In

doing so they do not need to worry about communication

details such as data synchronization and transmission

latency. A latency-insensitive protocol takes care of these.
Further, as the designers explore the design space and

consider alternative implementations for the various parts

of the system, they can rely on the fact that the

implementation of the interface (i.e., the shell) between

the component and the latency-insensitive channel can be

automatically generated.

A formal presentation of the theory of LID was given on

the basis of the ‘‘tagged-signal model’’ denotation frame-
work [16]. Section III-B and III-C summarize the main

concepts of LID and the methods for their practical

application, respectively.

B. Theory of LID
At the core of LID lies the notion of latency

equivalence: two signals are latency equivalent if they

present the same ordered streams of data items but
possibly with different timing. In a synchronous model of

computation the existence of a clock guarantees a common

time reference among signals and, therefore, a signal must

present an event at each clock period [3], [17]. LID

distinguishes between the occurrence of an informative

event (a valid data item also known as a valid token or a true

packet) and a stalling event (a void token or a void packet,

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

2136 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

often denoted with the � symbol). Any class of latency-
equivalent signals contains a single reference signal that

does not present stalling events (a strict signal) while all

the other members of the equivalence class (stalling

signals) contain the same sequence of informative events

interleaved by one or more stalling events. By following

the tagged-signal model [17], the notions of latency-

equivalence signals, strict signals, and stalling signals are

extended to behaviors (i.e., sets of signals) and processes
(i.e., sets of behaviors).

A synchronous system can be modeled as a set of

processes communicating by exchanging signals (se-

quences of events) on a set of point-to-point channels. In

the theory of LID, each signal is associated to a distinct

channel. Two systems are latency equivalent if on every

channel they present the same data streams, i.e., the same

ordered sequence of data items, but, possibly, with
different timing. The sets of signals of two latency-

equivalent systems are latency equivalent. In particular,

when solicited by latency-equivalent sequences of events

occurring at their input ports, two latency-equivalent

systems produce latency-equivalent sequences of events at

their output ports.

As discussed in Section II-B, the Wire Problem causes

delay uncertainties in intermodule (i.e., interprocess)
communication. This greatly complicates the use of strict

equality to compare corresponding signals across the

various stages of the design process, from the initial RTL

specification to the final layout implementation. Once one

must abandon strict equality, latency equivalence becomes

the next most natural concept to build upon. The first goal

of LID is to accommodate this shift within the realm of the

paradigm of synchrony while keeping things as simple as
possible. Specifically, LID expects that designers continue

to build a complex synchronous system as if it only

contained strict signals which can be compared in terms of

strict equality. From the strictly synchronous specification

of a system, then, designers can use CAD tools to obtain

automatically a particular implementation that is latency

equivalent to it. This automatic transformation is made

possible by the main theoretical contributions of the
theory of LID. These are about the concept of ‘‘patience.’’

1) Patience: A patient system is a synchronous system

whose functionality depends only on the order of the

events of each signal and not on their exact timing. A

latency-insensitive protocol guarantees that a patient

system, if composed of functionally correct processes,

behaves correctly independently from the delays of the
channels connecting the processes. The compositional

nature of the concepts of patience and latency equivalence

is proven with the following three results [16]:2 1) the

intersection of two patient processes is a patient process;

2) given two pairs of latency-equivalent patient processes,
their pairwise intersections are latency equivalent; 3) for

all pairs of strict processes P1, P2 and patient processes Q1,

Q2, if P1 is latency equivalent to Q1 and P2 is latency

equivalent to Q2, then their pairwise intersections are

latency equivalent.

The major result of the theory naturally follows: if all

processes in a strict system are replaced by corresponding

latency-equivalent patient processes, then the resulting
system is patient and latency equivalent to the original one.

This result provides a formal way to orthogonalize compu-

tation and communication in SLD [18], as explained next.

2) Shell Encapsulation: The next question is: How to

derive the patient processes? The answer is a procedure to

transform any given strict process into a patient process

that is latency equivalent to it. To do so the strict process
must be stallable, i.e., it can be forced to wait for any

number of clock periods without losing its internal state.3

The procedure consists in encapsulating the strict

stallable process, which is referred as core or pearl in LID,

with a special process called shell, as shown in Fig. 2. This

2These results use the parallel composition by intersection of
processes, a method that is typical of the synchronous paradigm.

3Stallability is a requirement that is much easier to satisfy than
patience. For instance, at the specification level, any sequential module
can be modeled as an FSM and, therefore, can easily be made stallable by
adding an extra Boolean input variable and extra Boolean output variable
to denote stalling input and output events, respectively: when active, this
input variable forces the FSM to remain in the current state and to raise
this output variable at the next clock period. At the implementation level,
stallability can be implemented through clock gating, a pervasive
technique for low-power design [19].

Fig. 2. (Top) Block diagram template for a two-input–two-output shell

encapsulating a stallable core module. (Bottom) Logic functions of the

shell controller.

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2137

encapsulation returns a patient process that is latency

equivalent to the original strict process. As a circuit, the

shell implements a wrapper module that uses buffering

queues and synchronization logic to act as an interface

between its core and the latency-insensitive protocol
governing the channels. At every clock period, the shell

decides between two main actions: if a new set of valid

tokens has arrived through the input channels, then the

shell lets the core consume them to produce new valid

tokens that are transmitted on the output channels at the

next clock period; if, instead, there is an input channel that

does not have a new valid token, then the shell stalls the

core while storing in its queues those valid tokens that may
have arrived on other input channels (so that they will be

processed in a future clock period).

Fig. 2 shows a particular shell implementation among

many possible ones; in fact, one may choose among many

different latency-insensitive protocols [20], [21]. There

are, however, some common properties. In particular,

backpressure is a mechanism that lets a downlink shell on

a given channel request the uplink shell to temporarily
stop its production of valid tokens. The reason for this

request is that the buffering capability of a shell in terms of

input queues is finite. Hence, the cause of many

consecutive stalling periods is either the sustained lack

of alignment of corresponding valid tokens across input

channels or backpressure coming from output channels

(or, possibly, their combination) [22]. In the case of Fig. 2,

the latency-insensitive protocol that governs each channel
uses two signals: a void bit to distinguish void from valid

tokens and a stop bit to implement backpressure. The

control logic is general and can be easily scaled to handle

an arbitrary number of input and output channels. The

clock-gating signal ðfireÞ decides whether the core module

is fired or stalled. It is asserted when each channel presents

a valid token either directly from the input channel or

from its input queue, and no stop request has arrived on
any output channel. The second condition can be detected

by checking the current stopIn and voidOut bits for each

output channel. The condition stopIn j � voidOut j ¼ true
means that the downlink module on channel j was not able

to process the current (also latest) valid data token. If so,

the core module will be stalled, the current token will be
repeated, and voidOut j will be set low. In all other cases,

the value of the voidOut j bit depends on whether the core

module will be fired. The major data path components in a

shell are the bypassable queues that store unused valid

tokens from input channels. If a queue is empty, the shell

controller selects the data token from its corresponding

input channel and passes it to the core.

Example: Table 1 reports the traces for the RTL behavior

of a LID of the MAC circuit of Fig. 1(b). This design is

obtained by encapsulating each of the three sequential

modules with a corresponding shell automatically gener-

ated from the template of Fig. 2. The columns for each

signal in Table 1 show the values for three variables

ðd; v; sÞ, which are abbreviations for the data, void, and

stop signals of each intermodule channel. For example, at
timestamp n ¼ 1, the input channel x receives valid data

(equal to 2) from the environment, while at n ¼ 2, the data

(equal to 9) are not valid because voidInx ¼ 1. The arrival

of these invalid data causes a stalling period for the

multiplier at n ¼ 2 and, consequently, channel m keeps

the same value (4) at n ¼ 3 but labels it with voidInm ¼ 1

to avoid double sampling from the downlink adder. In

turn, this causes a stalling period for the adder at n ¼ 3
(the repeated 4 on output channel a is marked as void at

n ¼ 4) and for the multiplexer at n ¼ 4 (and, therefore,

channel c has a void value at n ¼ 5). At both timestamps

n ¼ 5 and n ¼ 6, the environment requires output channel

a to keep the same value (3) by raising stopIna ¼ 1; the

environment samples this value only at n ¼ 7. Meanwhile,

this request has caused the adder to stall twice and the

multiplier and multiplexer to stall once. The stalling
requests propagate back to the input channels w and z

TABLE 1 RTL Traces for the LID Version of the MAC Circuit of Fig. 1(b)

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

2138 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

appearing at n ¼ 7; 8; one stalling request appears also on

input channel y (stopIny ¼ 1 at n ¼ 8), while the other is

absorbed by the multiplier shell, which uses the opportu-

nity to realign the occupations of its queues for x and y that

were misaligned since the arrival of the void value on
channel x at n ¼ 2. By comparing each column of the table

of Fig. 1(c) with the corresponding triplet of columns of

Table 1 it is easy to check that the data signals on the

corresponding channels in the two systems are latency

equivalent. In doing so, it is important to keep in mind that

for this latency-insensitive protocol at any given timestamp

the activation of at least one signal between the void and

stop signals encodes the presence of a stalling event on the
corresponding channel. h

Typically, the shell design is optimized to minimize

area or performance overhead (e.g., by making the input

queues bypassable [20]). The shell can be automatically

generated from just the I/O signal specification of a core;

this guarantees the broad applicability of LID since no

information on the internal structure/behavior of a core is

required beyond stallability. If available, this information
enables performance optimizations [21].

3) Channel Pipelining: The shell encapsulation procedure

expands the capabilities of RTL design by making it robust

with respect to the Wire Problem. For instance, a design

given as a netlist of Verilog modules (or VHDL entities) can

be made patient by synthesizing automatically a shell

around each of them. The resulting netlist can then proceed
through the steps of a standard CAD flow (logic synthesis,

physical design, etc.) with a new design option, wire

pipelining: those wires implementing a channel that have a

delay greater than the target clock period can be segmented

into shorter wires through the insertion of sequential

repeaters. This is a well-known technique to trade off the

fixing a wire exception with increasing its latency by one or

more clock periods. As the number of wire exceptions has
grown dramatically with the arrival of nanometer technol-

ogy processes [2], LID simplifies wire pipelining by making

it amenable to automation. Any channel between two pairs

of shell–core pairs can be pipelined through the insertion

of one or more sequential repeaters, called relay stations,

without any need of revisiting the logic of either the cores

or the shells (Fig. 3). In breaking a combinational path,

relay stations act similarly to traditional clocked repeaters

[23], [24], but differ because they are patient processes
which implement a latency-insensitive protocol.4

The compositionality of latency equivalence for patient

processes guarantees that from a given specification of a strict

RTL design, it is possible to obtain a class of many design

implementations (which are patient and latency equivalent

to it). Thanks to the latency-insensitive protocol and shell

encapsulation, channel pipelining with relay stations can be

done without changing the logic of any process of the original
design. The class of design implementations, which differ

only for the number of relay stations, embodies the flexibility

of LID in a modular and scalable way.

As for the shells, the relay-station implementation

depends on the choice of a latency-insensitive protocol

[20], [21]. Common properties include the twofold data-

storage capacity and unit latency in transferring data (in the

forward direction) and backpressure (in the backward
direction). Fig. 4 illustrates an implementation compatible

with the shell of Fig. 2. The control logic implements a two-

state Mealy FSM. The initial state is the processing state,

which enables the main flip-flop and sets the stopOut bit

low. The switching from the processing state to the stalling

state is triggered by the condition that the stopIn bit is high,

and both the voidIn and voidOut bits are low. In the stalling

state, the relay station uses both the main and auxiliary flip-
flops to store two valid tokens while requesting the uplink

sender to stop sending valid tokens by asserting its stopOut
bit. The relay station goes back from the stalling to the

processing state when its downlink receiver deasserts the

stopIn bit, indicating that it is ready to receive new valid

tokens; hence, the relay station moves the token saved in

the auxiliary flip-flop to the main flip-flop.

Being a sequential module, a relay station must be
initialized at startup time. Since relay stations are added to

Fig. 3. (Top) A fragment of a system with three shells and two relay stations, which pipeline a channel; void and stop signals are omitted to avoid

cluttering. (Bottom) The marked-graph model corresponding to the fragment: each component has a single corresponding transition in the

marked graph. The tokens in the places denote the number of valid data items (in the forward direction) and the number of available buffering

slots (in the backward direction).

4Indeed, after the insertion of some relay stations, a pipelined channel
itself can be seen as a patient process that is latency equivalent to the
original strict process, i.e., the channel without relay stations.

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2139

an RTL design a posteriori (i.e., after the design is

completed) they can only be initialized with a void token.
Indeed, relay stations are the origin of void tokens within5

a latency-insensitive system, a fact of critical importance

for practical purposes [22].

C. Practice of LID
The theoretical results of LID provide this formal

guarantee: from any given RTL design specification made

of stallable processes, it is possible to synthesize a class of

many implementations which are correct by construction in

the sense that their behavior is correct independently from

the latency values of the interprocess communication

channels. The criterion to evaluate the preservation of the
correct semantics while moving from the specification to a

particular implementation is, of course, the notion of latency

equivalence. Any implementation is the result of choosing a

particular arrangement of relay stations on the channels to

satisfy the target clock period (see Section II-A). This

semantics-preservation guarantee is a strong theoretical

result of LID. But considering that the final implementation

produces not only valid tokens but also void tokens, one may
wonder about its quality from a practical viewpoint.

1) Nominal versus Effective Clock Frequency: In order to

evaluate the performance of a latency-insensitive system S,

it is necessary to check how frequently it produces void

tokens at its output ports. Accordingly, the throughput

#ðSÞ of a latency-insensitive system S is defined as its rate

of production of valid tokens over time. This is a number
between zero and one that corresponds to the ratio of valid

tokens over the sum of valid and void tokens (as observed

at the system outputs) [25]. Hence, given a target clock

period , if S runs nominally at the clock frequency

�nom ¼ 1= , then effectively it produces valid data at a

rate �effðSÞ ¼ �nom � #ðSÞ. Throughput #ðSÞ depends on
two factors: the internal structure of S and the interaction

with the environment E where S operates [22].

2) Maximum Sustainable Throughput: A latency-

insensitive system S may receive void tokens at its primary

inputs from the environment E in which it operates as well

as generate them internally by itself. In the first case,

obviously, E impacts the data-processing throughput #ðSÞ
of S. The second case is more interesting from a design

perspective because it sets a limit on the maximum

throughput that S can sustain regardless of the character-

istics of E. A properly designed shell emits void tokens on

its output channels only as a result of being forced to stall.

At system startup, each core, being a sequential process, has

its output registers initialized with a valid token; each relay

station, instead, is initialized with one void token. Since
each core–shell pair operates according to an and-causality

semantics [26], the arrival of a void token on (at least) one

of its input ports produces void tokens on its output ports.

While some of these void tokens may leave S after a

transitional phase, others may continue to loop in S forever.

In the latter case, they have a negative impact on #ðSÞ.
The presence and extent of throughput degradation

depends on the computation structure of S, which can be
formally analyzed with marked graphs [22], a restriction of

the Petri Nets model of computation [27]. Fig. 3 sketches a

marked graph model for a generic path in a latency-

insensitive system. For any given system, the model can be

unambiguously derived by combining two simple types of

building blocks (one for the shell and one for the relay

station) while following its topology [28]. A throughput

degradation is caused by the insertion of relay stations on
some particular channels (those belonging to feedback

loops or reconvergent paths of system S) and can be

exacerbated by backpressure effects, depending on its

computation structure (its topology) [22], [28].

5Of course, void tokens and stop signals can also arrive at the inputs
of the system when originated from the external environment.

Fig. 4. (Left) Block diagram template for a relay station. (Right) State transition diagram of its control FSM.

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

2140 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

The maximum sustainable throughput (MST) of a

marked graph GS modeling S is defined as [22]

#ðGSÞ ¼

1; if GS is acyclic

min 1; 1
�ðGSÞ

n o
; if GS is cyclic,

strongly connected

min8Gi2SðGSÞ #ðGiÞf g; otherwise.

8>><
>>:

When S is modeled by an acyclic marked graph, it can

sustain any rate of production/consumption regardless of

the number of relay stations that are inserted on any of its

channels: hence, the value of #ðGSÞ is ideal, equal to one.

When S is modeled by a cyclic and strongly connected

marked graph, then #ðGSÞ is equal to the reciprocal of its

cycle time �ðGSÞ, which is the average time separation

between two consecutive firings of any transition of GS (and
correspondingly of any shell in S). For any cycle c of GS, let

mðcÞ ¼ sðcÞ=ðsðcÞ þ rðsÞÞ be its cycle mean, where sðcÞ is

the number of shells and rðcÞ is the number of relay stations

that are present on the cyclic path of S corresponding to c.

The critical cycles of GS are those with the smallest value of

mðcÞ, which is equal to the value of #ðGSÞ.
Finally, when GS is cyclic with a set SðGSÞ of strongly

connected components, the value of #ðGSÞ is effectively
determined by the slowest among them.6

3) Optimizing Throughput by Moving Latency Around: The

concept of critical cycle and the MST play the same roles

for LID as the concept of critical path and clock frequency

do for traditional hardware design with the synchronous

paradigm (Section II-A). In assembling multiple modules

to derive a system S, the module with the smallest MST
constrains the MST of S in the same way as the module

with the longest critical path in a synchronous circuit

constrains its target clock period. LID offers an efficient

solution to handle both intermodule critical paths

(through automatic wire pipelining) and intermodule

critical cycles. Since the effectiveness of LID depends on

the ability to maintain a sufficient throughput in the

presence of increased channel latencies, its application

must be guided by efficient methods of performance

analysis and optimization [25], [28], [30].

Example: Fig. 5(a) shows a simple latency-insensitive
system Sa with four cores and one relay station; its cycle

A! B! RS! A is critical because with two cores and

one relay station it imposes the lowest bound on the MST,

which is #ðSaÞ ¼ ð2=ð2þ 1ÞÞ ¼ 0:67. The throughput

degradation, however, can be mitigated if the concurrency

among the cores on the critical cycle is increased by a finer

grained shell encapsulation of their logic. For example,

Fig. 5(b) shows that the logic within core B can be
partitioned into two smaller cores B1 and B2, each with its

own shell. This partitioning yields a system Sb that is

latency equivalent to Sa but has an MST #ðSbÞ ¼
ð3=ð3þ 1ÞÞ ¼ 0:75, i.e., 13% higher than #ðSaÞ. The

improvement comes from the fact that in Sb cores B1 and

B2 do not have to stall at the same clock period, while in Sa,

their logic is stalled whenever the shell of B receives a void

input or backpressure. Conversely, decreasing the granu-
larity of shell encapsulation on noncritical cycles can

reduce the shell’s area overhead without hurting the MST.

For example, since cycle C ! D! C is not critical, cores

C and D can be merged so that they get encapsulated by

one shell (instead of two), yielding system Sc of Fig. 5(c),

which has two less queues and one less control block than

system Sb of Fig. 5(b), while #ðScÞ ¼ 0:75 ¼ #ðSbÞ. h

4) Limits and Overhead of LID: Moving around latency in

the system is not the same as removing it from the system.

Some systems have strict performance requirements with

characteristics that do not make them suitable for LID. An

example is a real-time system with a component that

contains a ‘‘watchdog timer’’ that progresses independent-

ly from the clock signal controlling the rest of the

component logic. This component would not be stallable
and, consequently, the system would not satisfy the

6Using marked graphs, it is easy to prove other key properties, e.g., a
latency-insensitive system never deadlocks (it is live by construction), no
matter how many void tokens continue to cycle within the system [29].

Fig. 5. Three latency-equivalent implementations of a simple system. Different shell encapsulations lead to different MSTs: (a) 0.67; (b) 0.75;

and (c) 0.75.

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2141

stallability condition specified in Section III-A. On the
other hand, if a real-time system is made of stallable

components, then LID can be applied to it and the

functionality of the system will be correct. This, however,

does not necessarily mean that the system will satisfy its

real-time requirements, which are about performance. So,

a LID implementation of the system may run with an

effective throughput that is not high enough to satisfy

these requirements in the same way as a strict implemen-
tation of the system may run at a clock frequency that is

not sufficiently high. In both cases, careful design space

exploration and optimization combined with the choice of

an appropriate technology process are necessary to achieve

an implementation that is functionally correct and meets

the performance requirements.

In exchange for the flexibility of pipelining long

channels and moving around latency, LID introduces
some design overheads. The circuits implementing the

latency-insensitive protocol in the relay stations and shells

occupy area and dissipate power. These costs, however, are

usually fairly small relatively to the overall design. For

instance, Table 2 reports the results of applying LID to

Stereo Vision, a SoC that measures stereo depth and

consists of 16 instanced modules for a total of over half a

million gates and about 200 000 flip-flops [31]. The results
are reported for the original strictly synchronous design

and for three latency-equivalent LID implementations

[30]. Each row in the table reports on the cell area (broken

down into core and shell areas), channel width, the total

number and width of relay stations, the floorplan area, and

the MST.7 Row ‘‘strict’’ shows the results of floorplanning

the strict design: since this is not latency insensitive, the

shell area is zero and MST is one. Row ‘‘starting floorplan’’
shows the results of applying LID to the original SoC in a

straightforward way, i.e., by simply encapsulating the

cores of the original design: its MST is 0.83 with an area

overhead of 5% compared to the strict design. Row

‘‘postpartitioning’’ shows the results after a large core on the

critical cycle is partitioned into smaller cores to increase

concurrency and raise the overall MST. The MST of the

resulting LID implementation is improved to 1.0, the ideal
value, but the fine-grained shell partitioning increases the

area overhead to 12% in the cell and 16% in the floorplan

area, compared to the strict design. This additional

overhead, however, can be fully recouped after merging
the shells of cores that are on noncritical cycles while

preserving the overall MST, as shown by the results in row

‘‘postmerging.’’ The final LID implementation has ideal

MST and an area overhead of 3% compared to the original

strict design. This is a relatively small SoC, and the

overhead would be smaller for larger designs.

In summary, by introducing the new paradigm of

protocols and shells, LID augments the design flexibility
while preserving the decoupling of functional correctness

from performance analysis of the synchronous paradigm

and, therefore, its modularity.

IV. RETROSPECTIVE ON LID-RELATED
RESEARCH

This section presents a discussion of works that are

related to, or influenced by, LID. It is organized along five

main axes.

A. LID and On-Chip Communication, Networks
on Chip

The application of LID to the design of on-chip

pipelined interconnects was studied by many researchers
[24], [32]–[35]. Casu and Macchiarulo proposed a new

implementation of the LID building blocks for the case

when the computation of each core module can be

scheduled statically [36] and applied it to the problem of

throughput-driven floorplanning with wire pipelining

[37], [38]. Boucaron et al. studied the static scheduling

of some classes of LIDs [39]. Hassoun and Alpert used

relay stations as the basic synchronization element to
achieve simultaneous routing and buffer insertion in SoCs

with many clock domains [40]. Chandra et al. proposed an

interconnect design approach that is suitable to LID, as

they observed that LID is a solution to ‘‘two fundamental

challenges in designing interconnect channels in a

system-on-chip: systems operating under different timing

assumptions and long delays in communication between

systems’’ [41].
Lahiri et al. were among the first to observe how LID

specifications allow system designers to explore numerous

alternative architectures for on-chip communication with-

out incurring the large cost of verification at each step [42].

In a retrospective talk at the 2010 Design Automation

Conference (DAC’10) [43], De Micheli identified the

separation of computation and communication with LID as

TABLE 2 Results of Floorplanning stereo_vision: Original Strictly Synchronous and Three LID Implementations

7The designs were synthesized with a 90-nm complementary metal–
oxide–semiconductor (CMOS) industrial standard cell library; all shells in
the LID implementations have queues of size two.

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

2142 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

one of the key principles that led to the birth of the idea of a
network on chip (NoC) [44]–[47]. Modern bus standards,

like the AMBA AXI protocol, support the pipelining of the

wires through the insertion of ‘‘register stages’’ to help

improving timing closure [48]. Hemani et al. established a

link between the introduction of LID-enabled wire

pipelining and the pipelining that switching elements

naturally introduce in NoCs [44]. A variety of NoC

architectures, protocols, implementations, and optimiza-
tion methods have been proposed since the early 2000s

[49], [50]. LID was adopted as the mode of operation for

the components of �pipes, a scalable, high-performance

NoC architecture [51]–[53]. Latency-insensitive protocols

can be used to optimize flit-buffer flow control for NoCs

because both techniques rely on backpressure while they

offer complementary advantages: automation of wire

pipelining and simpler router design [54]. The idea of
using latency-insensitive protocols in NoC design has

been investigated by several other researchers in academia

[55]–[62] and has found application in the industry, e.g., at

STMicroelectronics [63]. Singh et al. discussed the ap-

plication of LID to the design of NoCs with various topol-

ogies and multiple clock domains [56], [64]. Balkan et al.
used a modified version of a relay station in their mesh-of-

trees NoC for single-chip parallel processing [59], [65].
Abdelfattah et al. use LID to augment the existing wires and

switches in a field-programmable gate array (FPGA) with

an embedded NoC [66].

B. Latency-Insensitivity and Variable-Latency
Circuit Design

Researchers at Intel and UPC showed how latency-

insensitive systems can be used for the design of high-
performance microprocessors, particularly to explore

alternative microarchitectural pipelines via correct-by-

construction transformations of instruction set architec-

ture (ISA) models [67]. By being tolerant to changes in

latency of computation and communication and by

providing a practical method to separate timing and

functionality, they enable the design of functional units

that are optimized for the typical case instead of the worst
case, thereby offering new design tradeoffs while simpli-

fying also layout convergence [67], [68].

Casu et al. presented the first design of a latency-

insensitive microprocessor (for the MIPS-R2000 ISA)

with variable-latency functional units and showed how

LID can uniformly support pipeline stalls caused by

control and data hazards, late memory access, and

variable-latency execution [69], [70]. Benini et al. first
proposed the transformation of fixed-latency synchronous

circuits into variable-latency units obtained automatically

from standard fixed-latency designs to improve their

average throughput [71]. More recently, the idea of

accommodating variable-latency modules has been revis-

ited for the design of speculative arithmetic units with

high-level synthesis [72] and for determining at runtime

the scheduling of operations in coarse-grained reconfigur-
able arrays [73]. Vijayaraghavan and Arvind developed a

theory for modular refinement of synchronous sequential

circuits using bounded dataflow networks that generalizes

the LID theory and enables changing the latency of any

module in a circuit, in addition to the channel latencies,

without affecting its functional correctness [74]. A

description of applying LID to an industrial IC design

flow was given by Shand: in presenting the hardware/
software codesign methodology of a product line of

backend video processors for digital television, Shand

explained how LID simplifies circuit composability, late

pipeline changes for timing or functional fixes, and the

alignment of simulation results against the software

model [75].

C. LID versus Asynchronous Circuit Design
and GALS

The LID methodology is reminiscent of many ideas

proposed in the asynchronous-design community [76],
including the inherent modularity of the macromodular

systems of Clark and Molnar [77] and micropipelines of

Sutherland [78]. The similarities and important differ-

ences between LID and asynchronous design are discussed

in the original paper on the LID methodology [15]. More

recently, Carmona et al. argued that, from a broader

standpoint, LID can be considered as a discretization of

asynchronous design and introduced ‘‘elasticity’’ as the
property of a circuit to adapt its activity to the timing

requirements of its computations, communications, and

operating conditions [79]. Chelcea and Nowick proposed a

collection of low-latency interface circuits for extending

LID to designs with mixed-timing domains [80]. Many

researchers studied LID for multiple clock domains [56],

[64], [81]. In this context, Singh and Theobald showed

how LID enables the extension of the notion of early
evaluation from asynchronous to synchronous circuits

[56], a technique investigated by many other researchers

[21], [82]–[84].

The continued growth in complexity of SoC designs has

led some researchers to seek a hybrid approach that

combines the use of synchronous components with an

asynchronous interconnection network to form a globally

asynchronous locally synchronous (GALS) system. The
GALS approach was first described by Seitz [85] and later

formalized by Chapiro [86].8 For modern SoC design,

GALS could represent a winning compromise because: on

the one hand, it accommodates the reuse of many

components that are designed with well-accepted CAD

flows for synchronous design and, on the other hand, it

limits the use of asynchronous techniques to the design of

an interconnection network, where the elimination of
fixed-rate global clocking can provide a more scalable,

8Reportedly, a GALS approach was used first already in 1969 by Evans &
Sutherland Computer Corp. in its LDS-1 commercial graphics system [87].

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2143

power-efficient, and robust solution [87]. These are also
the reasons that motivated the development of industrial

methodologies such as the ‘‘islands of synchronicity’’ [88].

A subset of GALS systems are the globally ratiochronous

locally synchronous (GRLS) systems, where all clock

frequencies are forced to be rationally related, i.e., they are

submultiples of the same physical/virtual frequency [89],

[90]. This restriction simplifies the implementation of

synchronizers used to bridge rationally related clock
domains and eliminates the round-trip delay penalty

associated with the traditional GALS approach [90].

Both GALS and GRLS methods have commonalities

with the protocols and shells paradigm of LID: each locally

synchronous component is encapsulated within a circuit

that, similarly to a shell, acts as an interface to an

interconnection network by implementing a particular

protocol. In a GALS system, the circuit is based on a
mixed-timing interface and the network consists of an

asynchronous circuit. Recently, however, the term ‘‘GALS’’

has been stretched to describe any system containing many

components operating at different clock frequencies and

directly connected through synchronizers, e.g., dual-clock

first-in–first-out (FIFO) queues [87]. With this relaxed

use, soon most ICs could be considered GALS systems

because both chip multiprocessors and SoCs are increas-
ingly based on multicore architectures and operate with

aggressive power-management schemes [91]. In particular,

the application of dynamic voltage and frequency scaling

(DVFS) mechanisms to each core results in a system where

different cores operate at different frequencies at any

given time. These differences must be absorbed by the

interconnection network, which can be implemented as

either a synchronous or an asynchronous circuit at the
physical level, as long as it supports a latency-insensitive

protocol at the logical level.

D. LID and Desynchronization
Many emerging classes of embedded systems (e.g., in

automotive electronics, aeronautics, and industrial auto-

mation) require the deployment of tightly interactive,

concurrent processes on networked architectures. Like the
designers of ICs with nanometer technologies, the

designers of these embedded systems face a major issue:

while helpful to deal with the complexity of deriving a

concurrent specification, the synchronous paradigm

matches poorly the distributed nature of the final

implementation [92], [93]. The problem of desynchroni-

zation was defined to reconcile the use of synchronous

programming of reactive and real-time embedded software
[94] with the need of reaching a correct-by-construction

modular deployment of this software on a distributed

architecture [95], [96]. Benveniste was the first to study

the similarities and differences between desynchroniza-

tion of embedded software and LID. He concluded that

‘‘think synchronouslyVact asynchronously’’ emerges as a

common paradigm for the compositional design of

embedded systems [92]. The notions of endochrony and
isochrony characterize those synchronous programs which

can be distributed on an asynchronous architecture

without losing semantic properties [96]. The relationship

between these notions and the principles of LID was

studied with a framework that formalizes the interplay

among the concepts of event absence, event sampling, and

communication latency in modeling distributed embedded

systems [97]. The concept of polychrony, which denotes
the capability of describing circuits and systems using the

synchronous assumption together with multiple clocks,

was introduced for the formal validation of the refinement

of synchronous multiclocked programs into GALS archi-

tectures [98], [99]. Benveniste et al. proposed a protocol

for the correct deployment of synchronous programs on

loosely time-triggered architectures (LTTAs) [100], a

weaker form of the strictly synchronous TTA proposed
by Kopetz and Bauer [101]. A compositional theory of

heterogeneous reactive systems based on tag systems [102]

formalizes the concept of heterogeneous parallel compo-

sition and provides a model for matching a specification

and an implementation that are heterogeneous: it was

applied to the analysis of the correct-by-construction

deployment of synchronous heterogeneous specifications

onto the LTTAs in use in the aerospace industry [103]. By
using a control mechanism like backpressure in LID,

Tripakis et al. extended the communication-by-sampling

method that characterizes LTTAs and, through a form of

reachability analysis on marked graphs, obtained perfor-

mance bounds on throughput and latency for an LTTA

implementation [104]. Di Natale et al. adapted the LTTA

model to the deployment on controller area networks

(CANs) that are pervasive in automotive systems [105]. For
these systems, Mangeruca et al. presented a method that

used buffer-based intertask communication to preserve the

synchronous semantics of embedded control software

when deployed on single-processor or multiprocessor

architectures [106].

E. Latency Insensitivity in SLD with FPGAs
FPGAs are a mainstream technology with many

applications, ranging from embedded systems to hardware

acceleration in data centers and high-performance com-

puting. Thanks to the lower engineering costs and design

times, an FPGA implementation represents an enticing

alternative to an application-specific integrated circuit

(ASIC) implementation for a growing set of applications

and markets. The progress of FPGA technologies,

however, has suffered for the difference in scaling
between local and global interconnects, as discussed for

ASICs and SoCs in Section II-B. Over five technology

generations, from 130 to 28 nm, the speed of local

communication spanning a relatively small amount of

logic (about 40 000 elements of the largest FPGA device)

has more than doubled, while global communication has

not improved [107]. This speed mismatch exacerbates the

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

2144 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

timing-closure problem particularly for large designs
which are increasingly the target of FPGA developers.

Recently, Murray and Betz have presented an extensive

study to quantify the cost and benefits of LID for FPGAs

and concluded that, as design sizes continue to grow and

CAD runtime for each design iteration increases, LID

becomes increasingly attractive to interconnect large

modules at the system level [107]. Kirischian et al. have

used LID to design a communication infrastructure that
enables the dynamic relocation of virtual hardware

components to predetermined slots in the target FPGA

of reconfigurable computing systems for multitask stream

applications [108].

FPGAs are also extensively used in SoC design and

validation because they offer a unique platform for

prototyping and emulation of ICs and for development

of application and system software. Complex SoC designs,
however, do not typically fit on a single FPGA and must be

partitioned across many. This task is time consuming to

perform manually and leads to suboptimal results when

left to the automatic effort of existing CAD tools. The

main difficulty is to differentiate the functional behavior

of the design from the cycle-by-cycle timing behavior of its

RTL specification [109]. LID provides an effective solution

to this problem and a path to obtain efficient multiple-
FPGA implementations. By viewing a hardware design as a

set of modules connected by latency-insensitive FIFO

queues and breaking it at latency-insensitive boundaries,

researchers at Intel and MIT showed how to automatically

produce efficient implementations that span multiple

FPGAs [109]. They reported the use of LID to realize

highly modular design prototypes for multimedia [110]

and wireless networks [111]. Also, LID enables the
transparent insertion of aggressively pipelined logic into

a preexisting design by using only spare resources in

regions of low congestion, without the need of reconfigur-

ing the entire FPGA [112].

The most recent advancement in this line of research is

the development of the latency-insensitive environment

for application programming (LEAP), an FPGA operating

system built around latency-insensitive communications
channels [113]. Targeting multiple FPGA platforms, LEAP

organizes the memory hierarchy as a network of latency-

insensitive channels and communicates with software by

stretching channels across chip boundaries. By providing a

rich set of LID abstraction layers and strong compiler

support for automating implementation decisions, LEAP

addresses two major issues that limit the adoption of FPGA

technologies: it reduces the burden of programming an
FPGA and enhances design portability, while consuming as

little as 3% of FPGA area.9 An open-source project, LEAP

shows a promising path toward the SLD and programming

of many emerging classes of heterogeneous computing
platforms.

V. FROM RTL TO SLD THROUGH LID

A state-of-the-art SoC contains over a billion transistors

that implement a variety of heterogeneous components,

including many processors, specialized accelerators,

memory subsystems, analog circuits, and interconnects.
Besides heterogeneity, SoC designers face tighter power-

density budgets and a rising impact of software on the

design and validation process. The progress of CAD tools

has not really kept up with the growing complexity of SoC

design. Nearly 30 years after the adoption of logic

synthesis and place-and-route tools, the IC industry has

reached a point where it needs a new set of CAD tools that

must allow a larger group of application experts to
participate in creating the efficient hardware/software

systems that they require [13]. This goal, along with the

reduction of design costs and deployment times, demands

the adoption of SLD methods that enable raising the level

of abstraction when designing ICs [12].

A. Benefits of SLD
SLD is the next level of abstraction above RTL that is

expected to provide a quantum leap in design productivity

of complex SoCs. With SLD, the heterogeneous compo-

nents of a SoC and their interactions are specified using a

high-level programming language such as C [114],

SystemC [115], BlueSpec [116] or MATLAB [117]. The

benefits are multiple.

First, while RTL design specification with Verilog or

VHDL is error prone and time consuming, SLD allows
engineers to abstract away many low-level logic details and

focus instead on the relationships between the data

structures and the operations that characterize a given

algorithm.

Second, both hardware and software engineers can

simulate the SLD specification of a component as part of

the whole system by using a virtual platform. Differently

from the slow cycle-accurate RTL simulators, virtual
platforms allow fast execution of complex application

scenarios on top of the actual software stack that will be

deployed with the SoC, including the operating system

[118]. This permits designers to develop the SoC architec-

ture based on the target applications that it must support.

Also, a virtual platform reduces the gap between applica-

tion software development and circuit hardware design by

providing a framework for collaboration: programmers can
run and refine their software on the hardware model,

while designers can test and optimize their hardware

guided also by the inputs from the programmers.

Third, RTL design optimization is based on running

logic synthesis tools, which are very slow for large

components and offer only a limited number of config-

uration knobs to explore alternative implementations. In

9This 3% overhead is consistent with the area overhead of LID in
ASIC implementations, e.g., see the results of Table II.

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2145

contrast, designers can use high-level synthesis (HLS) to
automatically generate many RTL implementations from a

single SLD specification. Admittedly, state-of-the-art HLS

tools can process only a subset of the programs that can be

written with a high-level programming language [119].

But their rich set of configuration knobs allows the

synthesis of many alternative microarchitectures, which

are increasingly competitive with those that can be

manually designed by hardware engineers. Hence, from
the same SLD specification, it is possible to explore a

broader design space in search of an implementation that

is Pareto optimal with respect to the multiple design

objectives (performance, power, area, etc.) [120]. To do

the same with manual RTL design and logic synthesis

would be prohibitive in terms of nonrecurring engineer-

ing (NRE) costs.

B. High-Level Synthesis and Latency Equivalence
The SLD specification of the SoC components consists

of many functions (e.g., SystemC processes) that work on

high-level data structures (e.g., arrays and matrices). It is

the result of a sequence of partitioning and refinement

steps that designers perform starting from a higher level

algorithmic description. For the synthesis and optimiza-

tion of an individual SystemC process, HLS tools offer a
rich set of configuration knobs, e.g., for loop manipulation,

state insertion, array implementation, and function

sharing. The designer can choose a particular knob

configuration before invoking the HLS engine, which

returns a corresponding optimized microarchitecture

expressed in synthesizable Verilog. Different configura-

tions result in different microarchitectures, thus enabling

the choice among many alternative RTL implementations.
As these implementations represent alternative tradeoffs

in the multiobjective design space, HLS promotes design

reuse and intellectual property (IP) exchanges. For

instance, a team of computer vision experts can devise

an innovative algorithm for object detection, use SystemC

to design a specialized accelerator for this algorithm, and

license it as a synthesizable IP module to many different

SoC designers; these can then use HLS to derive
automatically the particular implementation that provides

the best tradeoff (e.g., high performance or low power) for

their particular system.

Example: Fig. 6 shows an example of design space

exploration for an interpolation process whose main loop

invokes repeatedly the sinc function, which is relatively

expensive to realize in hardware. The diagram shows over
40 points, each corresponding to a distinct microarchi-

tecture synthesized with HLS. The application of the ‘‘loop

pipelining’’ knob leads to RTL implementations of the

interpolation module which have more parallel and faster

hardware, thereby delivering lower execution time in

exchange of higher area occupation and power dissipation.

Conversely, ‘‘loop breaking’’ leads to more sequential

executions on shared hardware, resulting in resource

savings but lower performance. The ‘‘loop unrolling’’ knob
yields implementations in between those yielded by the

previous two knobs. Each implementation i of the

interpolation module takes a different number pðiÞ of

clock periods to execute the interpolation task on a given

input. The reciprocal of pðiÞ is equal to the MST of

implementation i (see Section III-B).10 h
All the HLS-synthesized implementations are not

functionally equivalent from an RTL viewpoint because
they do not produce exactly, i.e., clock by clock, the same

sequence of output signals for any valid sequence of input

signals [121]. On the other hand, they are expected to be all

valid RTL implementations of the original SLD specifica-

tion, given as an untimed SystemC model. So, the first

question to pose is: How to verify the correctness of each

of these RTL implementations against the SLD specifica-

tion? The answer is provided by the notion of latency
equivalence. As the implementations that can be obtained

with LID from a strict RTL specification are all latency

equivalent to it (Section III-B), similarly all the RTL

implementations that can be obtained from an untimed

specification through HLS must belong to a latency-

equivalent class. Every behavior of each member of this

class is latency equivalent to a corresponding behavior of

the untimed specification, i.e., it presents the same
ordered streams of valid data items at its ports, but

possibly with different timing. Hence, latency equivalence

provides a key to address one of the most important

challenges in the area of formal verification for SLD.

The second question is: How to choose a particular

implementation among all the synthesized RTL ones? If

the design consists of only one module, then it would be

sufficient to analyze the set of the RTL implementations
returned by the HLS tool in the multiobjective design

space and choose the one that provides the desired

Fig. 6. HLS-enabled design space exploration of an interpolation

process.

10In this example, all implementations can run at the target clock
frequency (1 GHz). If this is not the case, then the effective latency, which
is defined as the reciprocal of the effective clock frequency (Section III-B),
should be used as the metric for the x-axis of Fig. 6.

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

2146 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

compromise between performance and cost (e.g., for the
interpolation example, choose a Pareto-optimal point in

the diagram of Fig. 6). A modern SoC design, however, is

the result of composing a large number of modules; further,

many of these modules are themselves too complex to be

synthesized by state-of-the-art HLS tools without being

first broken down into smaller submodules. Indeed, SoC

design is inherently an instance of component-based

design. Hence, the choice of a particular RTL implemen-
tation for a module must be made in the context of the

choices for all the other modules that are also

components of the given SoC. A particular set of choices

leads to a point in the multiobjective design space for the

whole SoC. So, the process of deriving the diagram of

Pareto-optimal points repeats itself hierarchically at the

system level [120]. Every system-level point is the result

of composing many component-level points, each
corresponding to an RTL implementation that can run

with its own effective clock frequency. Hence, the

resulting composition works correctly only if the differ-

ences among the effective clock frequencies across all the

components can be absorbed by the communication

infrastructure that connects them. The protocols and

shells paradigm is a modular approach to address this

problem in the context of communication-based SLD.

C. Toward Communication-Based SLD
The composition of modules synthesized with HLS is

just one aspect of the complexity of SoC design and

programming. While the design of individual components

is important, the most critical challenges in the realization

of a SoC lie in the selection, integration, and management

of many components.

Modern SoCs are increasingly based on heterogeneous

multicore architectures that consist of a mix of cores,

including many different types of programmable proces-
sors and special-function hardware accelerators. Each core

can dynamically change its operating frequency depending

on its current workload requirements (combined with

other system conditions) and independently from the

other cores.11 All cores communicate among themselves

and with off-chip devices (primarily the main memory

DRAM) through a communication infrastructure. Tradi-

tionally, this has been implemented as a bus or a set of
buses; however, as the number of cores continues to grow,

buses are getting replaced by NoCs, which offer more

scalability in terms of both logical and physical properties

[45]. Since the communication infrastructure is a resource

shared by all the cores, each core must be ready to

temporarily stall its operations in case of congestion.

Furthermore, the operations of many ‘‘device cores’’

(accelerator or peripherals) are intrinsically event based:
at any given time, they get configured and invoked by

software through device drivers, run for some time, and
then get back into an idle state, typically after sending an

interrupt signal that will itself be processed in an

asynchronous fashion, on a best-effort basis.

In this context, communication plays an increasingly

central role at both runtime and design time. At runtime,

the communication infrastructure must scale up with the

demands in terms of data transfers from a growing number

of cores; also it must be capable to dynamically absorb
differences in the effective clock frequency among the

cores and provide backpressure signals to inform them

about the needs for stalling without losing their internal

state. At design time, communication is key to the correct

and efficient assembly of components that are designed

independently from each other.

Choosing the best implementation of each component

for a given SoC and combining these implementations
into an optimal system design are still manual, time-

consuming tasks. To assist SoC designers in this effort,

however, CAD-tool vendors have started to provide

libraries of interface primitives. Based on the transaction-

level modeling (TLM) approach [122], [123], these

libraries offer: 1) an application programming interface

to specify communication and synchronization mechan-

isms among computation processes at the system level;
and 2) synthesizable implementations of these mechan-

isms that can be combined with the implementation of

each process in a modular fashion [124]–[126]. These

primitives follow the protocols and shells paradigm in

using point-to-point channels, which are inherently

latency insensitive, combined with modular socket

interfaces, which can be instanced to connect the

processes to the channels. With these primitives, TLM
separates the implementation details of the communica-

tion and computation parts of the design and facilitates

the combination of hardware and software components in

virtual platforms. By absorbing the timing differences

across processes, it simplifies the replacement of a

particular implementation of any process with another

one that may take a different number of clock periods, as

it offers a different power/performance tradeoff point. By
providing predesigned implementations and encapsulating

low-level signals, it relieves SoC designers from the tedious

task of creating a communication protocol. By decoupling

the computation and communication parts, it enables a

more efficient design of the communication infrastructure,

whose implementation characteristics may vary as long as

it supports the protocol.

As discussed in Section III-A, in RTL design, a latency-
insensitive channel can be implemented by augmenting

the wires carrying the data with two additional wires

carrying the void/valid bit and the backpressure stop/ready

bit, respectively. With SLD, the designer has still the

option of specifying the LID protocol using a cycle-

accurate model. Thanks to the interface-primitive librar-

ies, however, modern HLS tools support more abstract

11Increasingly, together with the frequency also the voltage supply is
scaled through the fine-grained application of DVFS.

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2147

specifications that do not require to describe the imple-
mentation details of the protocol and shell interfaces.

These are automatically synthesized from the TLM

specification by the tools, together with the computational

part of the design. For instance, SystemC offers the

sc_fifo data structure that can be used to specify a

point-to-point channel between a producer and a consumer

[115]. The higher level of abstraction simplifies the

specification, debugging, and maintenance of the channels
and the interfaces among the system components; it also

enables faster simulation at the system level without losing

the benefits of latency insensitivity either at this level or

for the synthesized RTL implementation [127].

VI. CONCLUSIONS: A PERSPECTIVE FOR
THE FUTURE

Building on the foundations of LID and the protocols

and shells paradigm, we can bridge the gap between

RTL design and SLD. If this is possible and if the

benefits of SLD are so clear, one may wonder why most

integrated circuits are still designed starting from

manually written RTL specifications. While it is difficult

to pinpoint a single cause, multiple issues are likely at

play here. There is the natural inertia of continuing to
apply best practices that have brought decades of

successful products in the semiconductor industry.

Many engineers who have been trained for RTL design

and have acquired years of experience in using CAD

flows that start from this level of abstraction may be

reluctant to switch to new, relatively untested, practices.

Meanwhile, the engineering divisions and teams of

many semiconductor companies are organized in a way
that is conducive to realize an integrated circuit with

traditional CAD flows and their well-established signoff

points. This may make managers more skeptical about

the benefits of a major reorganization. These reluctance

and skepticism are also amplified by some concrete

challenges that delay the progress of SLD, including: the

lack of a commonly accepted methodology, the limita-

tions of current virtual platforms, HLS and verification
tools, and the shortage of engineers trained to work at

this higher level of abstraction.

Arguably, this is a chicken-and-egg problem: the lack of

bigger investments in developing SLD methodologies and

tools is due to a lack of demand from engineers; conversely,

the lack of this demand is due to the shortcomings of

current SLD methodologies and tools. I believe that

academia should take the lead in breaking this vicious
cycle. In most universities, the design and validation of

digital circuits is still taught based on RTL specifications

made with Verilog or VHDL. Furthermore, while the

interplay between hardware and software becomes tighter

with the design of each new generation of electronic

products, traditional boundaries between disciplines pre-

vent students from acquiring a true system perspective. For

instance, the typical curriculum in electrical engineering
(EE) does not cover basic concepts of operating systems and

driver programming, while most computer science (CS)

graduates who can develop sophisticated software applica-

tions cannot evaluate basic tradeoffs between performance

and power dissipation.

Technology and commercial trends in electronic

systems, however, call for a renewal of the professional

figure of the computer engineer. The emphasis should
move toward the ability of: mastering the hardware and

software aspects of integrating heterogeneous components

into a complete system, evaluating their performance in a

multiobjective optimization space that includes both

logical and physical properties, and designing new

components that are reusable across different systems,

product generations, and implementation platforms (e.g.,

FPGAs and standard cells). Based on my experience with
developing the course ‘‘System-on-Chip Platforms’’ at

Columbia University, I think that there is a growing

demand for learning these skills among the new genera-

tions of EE and CS students.

According to Kuhn [1], when confronted by severe and

prolonged anomalies, scientists may consider alternatives but

‘‘they do not renounce the paradigm that has led them into

the crisis’’; far from being a cumulative process, the transition
from a paradigm in crisis to a new one ‘‘must occur all at once

(though not necessarily in an instant) or not at all.’’ A

paradigm shift sometimes requires a new generation. h

Acknowledgment

The author would like to thank present and past

members of the System-Level Design Group at Columbia
University, New York, NY, USA, in particular J. Chen,

R. Collins, G. Di Guglielmo, C.-H. Li, H.-Y Liu, P. Mantovani,

and M. Petracca. He would also like to thank L. Lavagno,

A. Sangiovanni-Vincentelli, and Y. Watanabe for many

discussions on topics related to this paper over the years.

Finally, he thanks the anonymous reviewers for their help

in improving the overall quality of the paper.

REF ERENCE S

[1] T. S. Kuhn, The Structure of Scientific
Revolutions, 3rd ed. Chicago, IL, USA:
Univ. Chicago Press, 2000.

[2] R. Ho, K. Mai, and M. Horowitz, ‘‘The future
of wires,’’ Proc. IEEE, vol. 89, no. 4,
pp. 490–504, Apr. 2001.

[3] A. Benveniste et al., ‘‘The synchronous
languages twelve years later,’’ Proc. IEEE,
vol. 91, no. 1, pp. 64–83, Jan. 2003.

[4] T. A. Henzinger and J. Sifakis, ‘‘The
discipline of embedded systems design,’’
IEEE Computer, vol. 40, no. 10, pp. 32–40,
Oct. 2007.

[5] G. Moore, ‘‘No exponential is forever: But
(forever) can be delayed!’’ in Int. Solid-State
Circuits Conf. Dig. Tech. Papers, Feb. 2003,
pp. 20–23.

[6] R. K. Brayton, G. D. Hachtel, and
A. L. Sangiovanni-Vincentelli, ‘‘Multilevel
logic synthesis,’’ Proc. IEEE, vol. 78, no. 2,
pp. 264–300, Feb. 1990.

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

2148 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

[7] T. Villa, T. Kam, R. K. Brayton, and
A. Sangiovanni-Vincentelli, Synthesis of
FSMs: Logic Optimization. Norwell, MA,
USA: Kluwer, 1997.

[8] R. Bryant et al., ‘‘Limitations and challenges
of computer-aided design technology for
CMOS VLSI,’’ Proc. IEEE, vol. 89, no. 3,
pp. 341–365, Mar. 2001.

[9] D. Matzke, ‘‘Will physical scalability
sabotage performance gains?’’ in IEEE
Computer, vol. 8, no. 9, pp. 37–39, Sep. 1997.

[10] L. P. Carloni and A. L. Sangiovanni-
Vincentelli, ‘‘Coping with latency in SOC
design,’’ IEEE Micro, vol. 22, no. 5,
pp. 24–35, Sep./Oct. 2002.

[11] L. P. Carloni and A. L. Sangiovanni-
Vincentelli, ‘‘On-chip communication
design: Roadblocks and avenues,’’ in Proc.
Conf. Hardware/Softw. Codesign Syst.
Synthesis, Oct. 2003, pp. 75–76.

[12] A. L. Sangiovanni-Vincentelli, ‘‘Quo vadis
SLD: Reasoning about trends and challenges
of system-level design,’’ Proc. IEEE, vol. 95,
no. 3, pp. 467–506, Mar. 2007.

[13] M. Horowitz, ‘‘Computing’s energy problem
(and what we can do about it),’’ in Int.
Solid-State Circuits Conf. Dig. Tech. Papers,
Feb. 2014, pp. 10–14.

[14] L. P. Carloni, K. L. McMillan, and
A. L. Sangiovanni-Vincentelli, ‘‘Latency
insensitive protocols,’’ in Proc. Int.
Conf. Comput.-Aided Verif., Jul. 1999,
pp. 123–133.

[15] L. P. Carloni, K. L. McMillan, A. Saldanha,
and A. L. Sangiovanni-Vincentelli, ‘‘A
methodology for ‘‘correct-by-construction’’
latency insensitive design,’’ in Proc. Int.
Conf. Comput.-Aided Design, Nov. 1999,
pp. 309–315.

[16] L. P. Carloni, K. L. McMillan, and
A. L. Sangiovanni-Vincentelli, ‘‘Theory of
latency-insensitive design,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst.,
vol. 20, no. 9, pp. 1059–1076, Sep. 2001.

[17] E. A. Lee and A. Sangiovanni-Vincentelli, ‘‘A
framework for comparing models of
computation,’’ IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems,
vol. 17, no. 12, pp. 1217–1229, Dec. 1998.

[18] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey,
and A. Sangiovanni-Vincentelli, ‘‘System
level design: Orthogonalization of concerns
and platform-based design,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst.,
vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

[19] V. G. Oklobdzija, V. M. Stojanovic,
D. M. Markovic, and N. M. Nedovic, Digital
System Clocking: High-Performance and
Low-Power Aspects. New York, NY, USA:
Wiley, 2003.

[20] C.-H. Li, R. Collins, S. Sonalkar, and
L. P. Carloni, ‘‘Design, implementation,
validation of a new class of interface circuits
for latency-insensitive design,’’ in Proc. Int.
Conf. Formal Methods Models Codesign,
Jun. 2007, pp. 13–22.

[21] C.-H. Li and L. P. Carloni, ‘‘Leveraging local
intra-core information to increase global
performance in block-based design of
systems-on-chip,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 28, no. 2,
pp. 165–178, Feb. 2009.

[22] L. P. Carloni, ‘‘The role of back-pressure in
implementing latency-insensitive design,’’
Electron. Notes Theor. Comput. Sci., vol. 146,
no. 2, pp. 61–80, Jan. 2006.

[23] P. Saxena, N. Menezes, P. Cocchini, and
D. Kirkpatrick, ‘‘Repeater scaling and its
impact on CAD,’’ IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 23, no. 4,
pp. 451–462, Apr. 2004.

[24] L. Scheffer, ‘‘Methodologies and tools for
pipelined on-chip interconnect,’’ in Proc.
Int. Conf. Comput. Design, Oct. 2002,
pp. 152–157.

[25] L. P. Carloni and A. L. Sangiovanni-
Vincentelli, ‘‘Performance analysis and
optimization of latency insensitive
systems,’’ in Proc. Design Autom. Conf.,
Los Angeles, CA, USA, Jun. 2000,
pp. 361–367.

[26] J. Gunawardena, ‘‘Causal automata,’’ Theor.
Comput. Sci., vol. 101, no. 2, pp. 265–288,
1992.

[27] T. Murata, ‘‘Petri Nets: Properties, analysis
and applications,’’ Proc. IEEE, vol. 77, no. 4,
pp. 541–580, Apr. 1989.

[28] R. Collins and L. P. Carloni, ‘‘Topology-based
performance analysis and optimization
of latency-insensitive systems,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 27, no. 12, pp. 2277–2290,
Dec. 2008.

[29] L. P. Carloni, ‘‘Latency-insensitive design,’’
Ph.D. dissertation, Electron. Res. Lab., Uni.
California Berkeley, Berkeley, CA, USA,
Aug. 2004, Memo. UCB/ERL M04/29.

[30] C.-H. Li, S. Sonalkar, and L. P. Carloni,
‘‘Exploiting local logic structures to optimize
multi-core SoC floorplanning,’’ in Proc.
Conf. Design Autom. Test Eur., Mar. 2010,
pp. 1291–1296.

[31] A. Darabiha, J. Rose, and W. J. MacLean,
‘‘Video-rate stereo depth measurement on
programmable hardware,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2003,
pp. 203–210.

[32] R. Lu and C. Koh, ‘‘Performance optimization
of latency insensitive systems through buffer
queue sizing of communication channels,’’ in
Proc. Int. Conf. Comput.-Aided Design, 2003,
pp. 227–231.

[33] R. Lu and C. Koh, ‘‘Performance analysis of
latency-insensitive systems,’’ IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst.,
vol. 25, no. 3, pp. 469–483, Mar. 2006.

[34] V. Nookala and S. Sapatnekar, ‘‘A method
for correcting the functionality of a
wire-pipelined circuit,’’ in Proc. Design
Autom. Conf., Jun. 2004, pp. 574–575.

[35] V. Nookala and S. Sapatnekar, ‘‘Designing
optimized pipelined global interconnects:
Algorithms and methodology impact,’’ in
Proc. Int. Symp. Circuits Syst., May 2005,
pp. 608–611.

[36] M. R. Casu and L. Macchiarulo, ‘‘A new
approach to latency insensitive design,’’ in
Proc. Design Autom. Conf., Jun. 2004,
pp. 576–581.

[37] M. R. Casu and L. Macchiarulo, ‘‘Floorplan
assisted data rate enhancement through wire
pipelining: A real assessment,’’ in Proc. Int.
Symp. Phys. Design, Apr. 2005, pp. 121–128.

[38] M. R. Casu and L. Macchiarulo,
‘‘Throughput-driven floorplanning with
wire pipelining,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 24, no. 5,
pp. 663–675, May 2005.

[39] J. Boucaron, R. de Simone, and J.-V. Millo,
‘‘Formal methods for scheduling of latency-
insensitive designs,’’ EURASIP J. Embedded
Syst., vol. 2007, no. 1, pp. 1–16, Jan. 2007.

[40] S. Hassoun and C. J. Alpert, ‘‘Optimal path
routing in single and multiple clock domain
systems,’’ IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 22, no. 11,
pp. 1580–1588, Nov. 2003.

[41] V. Chandra, H. Schmit, A. Xu, and L. Pileggi,
‘‘A power aware system level interconnect
design methodology for latency-insensitive
systems,’’ in Proc. Int. Conf. Comput.Aided
Design, Nov. 2004, pp. 275–282.

[42] K. Lahiri, A. Raghunathan, and S. Dey,
‘‘Design space exploration for optimizing
on-chip communication architectures,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 23, no. 6, pp. 952–961, Dec. 2004.

[43] G. De Micheli, ‘‘Networks on chips: From
research to products,’’ in Proc. Design Autom.
Conf., Jun. 2010. [Online]. Available: http://
infoscience.epfl.ch/record/158362/files/
demicheli_dac_2010.pdf

[44] A. Hemani et al., ‘‘Network on chip: An
architecture for billion transistor era,’’ in
Proc. IEEE NorChip Conf., vol. 31, Nov. 2000,
pp. 1–8.

[45] W. J. Dally and B. Towles, ‘‘Route packets,
not wires: On-chip interconnection
networks,’’ in Proc. Design Autom. Conf.,
Jun. 2001, pp. 684–689.

[46] L. Benini and G. De Micheli, ‘‘Networks on
chip: A new SoC paradigm,’’ IEEE Computer,
vol. 35, no. 1, pp. 70–78, Jan. 2002.

[47] M. B. Taylor et al., ‘‘The Raw
microprocessor: A computational fabric for
software circuits and general purpose
programs,’’ IEEE Micro, vol. 22, no. 2,
pp. 25–35, Mar./Apr. 2002.

[48] ARM Ltd. AMBA AXI and ACE Protocol
Specification, 2011.

[49] R. Marculescu, U. Y. Ogras, L.-S. Peh,
N. D. E. Jerger, and Y. V. Hoskote,
‘‘Outstanding research problems in NoC
design: System, microarchitecture, circuit
perspectives,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 28, no. 1,
pp. 3–21, Jan. 2009.

[50] J. Owens et al., ‘‘Research challenges for on-
chip interconnection networks,’’ IEEE Micro,
vol. 27, no. 5, pp. 96–108, Sep./Oct. 2007.

[51] M. Dall’Osso, G. Biccari, L. Giovannini,
D. Bertozzi, and L. Benini, ‘‘�pipes: A
latency insensitive parameterized network-
on-chip architecture for multi-processor
SoCs,’’ in Proc. Int. Conf. Comput. Design,
Oct. 2003, pp. 536–541.

[52] A. Jalabert, L. Benini, S. Murali, and
G. De Micheli, ‘‘�pipes compiler: A tool
for instantiating application-specific NoCs,’’
in Proc. Conf. Design Autom. Test Eur.,
Feb. 2004, pp. 884–889.

[53] D. Bertozzi and L. Benini, ‘‘A retrospective
look at �pipes: The exciting ride from a
design experience to a design platform for
nanoscale networks-on-chip,’’ in Proc. Int.
Conf. Comput. Design, Sep. 2012, pp. 43–44.

[54] N. Concer, M. Petracca, and L. P. Carloni,
‘‘Distributed flit-buffer flow control for
networks-on-chip,’’ in Proc. Conf. Hardware/
Softw. Codesign Syst. Synthesis, Oct. 2008,
pp. 215–220.

[55] A. Pinto, L. P. Carloni, and
A. L. Sangiovanni-Vincentelli, ‘‘Efficient
synthesis of networks on chip,’’ in Proc.
Int. Conf. Comput. Design, Oct. 2003,
pp. 146–151.

[56] M. Singh and M. Theobald, ‘‘Generalized
latency-insensitive systems for single-clock
and multi-clock architectures,’’ in Proc. Conf.
Design Autom. Test Eur., Feb. 2004,
pp. 21008–21013.

[57] U. Y. Ogras and R. Marculescu,
‘‘Application-specific network-on-chip
architecture customization via long-range link
insertion,’’ in Proc. Int. Conf. Comput.-Aided
Design, Nov. 2005, pp. 246–253.

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2149

[58] Z. Lu, I. Sander, and A. Jantsch, ‘‘Towards
performance-oriented pattern-based
refinement of synchronous models onto
NOC communication,’’ in Proc. Euromicro
Conf. Digital Syst. Design, Aug. 2006,
pp. 37–44.

[59] A. O. Balkan, M. N. Horak, G. Qu, and
U. Vishkin, ‘‘Layout-accurate design and
implementation of a high-throughput
interconnection network for single-chip
parallel processing,’’ in Proc. IEEE Symp.
High-Performance Interconnects, Aug. 2007,
pp. 21–28.

[60] J. You, Y. Xu, H. Han, and K. S. Stevens,
‘‘Performance evaluation of elastic GALS
interfaces and network fabric,’’ Electron.
Notes Theor. Comput. Sci., vol. 200, no. 1,
pp. 17–32, Feb. 2008.

[61] D. E. Holcomb, B. A. Brady, and S. A. Seshia,
‘‘Abstraction-based performance verification
of NoCs,’’ in Proc. Design Autom. Conf.,
Jun. 2011, pp. 492–497.

[62] G. Michelogiannakis and W. Dally, ‘‘Elastic
buffer flow control for on-chip networks,’’
IEEE Trans. Comput., vol. 62, no. 2,
pp. 295–309, Feb. 2013.

[63] M. Coppola et al., ‘‘OCCN: A NoC modeling
framework for design exploration,’’ J. Syst.
Architect., vol. 50, no. 2/3, pp. 129–163,
Feb. 2004.

[64] A. Agiwal and M. Singh, ‘‘An architecture
and a wrapper synthesis approach for
multi-clock latency-insensitive systems,’’ in
Proc. Int. Conf. Comput.-Aided Design, 2005,
pp. 1006–1013.

[65] A. O. Balkan, G. Qu, and U. Vishkin, ‘‘Mesh-
of-Trees and alternative interconnection
networks for single-chip parallelism,’’ IEEE
Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 17, no. 10, pp. 1419–1432, Dec. 2009.

[66] M. S. Abdelfattah, A. Bitar, and V. Betz,
‘‘Take the highway: Design for embedded
NoCs on FPGAs,’’ in Proc. Int. Symp. Field
Programmable Gate Arrays, Feb. 2015,
pp. 98–107.

[67] T. Kam, M. Kishinevsky, J. Cortadella, and
M. Galceran-Oms, ‘‘Correct-by-construction
microarchitectural pipelining,’’ in Proc. Int.
Conf. Comput.-Aided Design, Nov. 2008,
pp. 434–441.

[68] J. Cortadella, M. Kishinevsky, and
B. Grundmann, ‘‘Synthesis of synchronous
elastic architectures,’’ in Proc. Design Autom.
Conf., Jul. 2006, pp. 657–662.

[69] M. R. Casu, S. Colazzo, and P. Mantovani,
‘‘Coupling latency-insensitivity with variable-
latency for better than worst case design:
A RISC case study,’’ in Proc. Great Lakes Symp.
VLSI, May 2011, pp. 163–168.

[70] M. R. Casu and P. Mantovani, ‘‘A
synchronous latency-insensitive RISC for
better than worst-case design,’’ Integr., VLSI
J., vol. 48, no. 2/3, pp. 72–82, Jan. 2015.

[71] L. Benini, E. Macii, M. Poncino, and
G. De Micheli, ‘‘Telescopic units: A new
paradigm for performance optimization of
VLSI designs,’’ IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 17, no. 3,
pp. 220–232, Mar. 1998.

[72] A. Del Barrio, S. Memik, M. Molina,
J. Mendias, and R. Hermida, ‘‘A distributed
controller for managing speculative
functional units in high level synthesis,’’
IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 30, no. 3, pp. 350–363,
Mar. 2011.

[73] Y. Huang, P. Ienne, O. Temam, Y. Chen, and
C. Wu, ‘‘Elastic CGRAs,’’ in Proc. Int. Symp.
Field Programmable Gate Arrays, Feb. 2013,
pp. 171–180.

[74] M. Vijayaraghavan and Arvind, ‘‘Bounded
dataflow networks and latency-insensitive
circuits,’’ in Proc. Int. Conf. Formal Methods
Models Codesign, Jul. 2009, pp. 171–180.

[75] M. Shand, ‘‘A case study of hardware
software co-design in a consumer ASIC,’’ in
Proc. Int. Conf. Formal Methods Models
Codesign, Jul. 2011, pp. 145–150.

[76] C. van Berkel, M. Josephs, and S. Nowick,
‘‘Applications of asynchronous circuits,’’
Proc. IEEE, vol. 87, no. 2, pp. 223–233,
Feb. 1999.

[77] W. A. Clark and C. E. Molnar, ‘‘The promise
of macromodular systems,’’ in Dig. Papers 6th
Annu. IEEE Comput. Soc. Int. Conf., 1972,
pp. 3009–3312.

[78] I. E. Sutherland, ‘‘Micropipelines,’’ Commun.
ACM, vol. 32, no. 6, pp. 720–738, Jun. 1989.

[79] J. Carmona, J. Cortadella, M. Kishinevsky,
and A. Taubin, ‘‘Elastic circuits,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 28, no. 10, pp. 1437–1455,
Oct. 2009.

[80] T. Chelcea and S. Nowick, ‘‘Robust interfaces
for mixed-timing systems,’’ IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 12,
no. 8, pp. 857–873, Aug. 2004.

[81] A. Edman, C. Svensson, and B. Mesgarzadeh,
‘‘Synchronous latency-insensitive design for
multiple clock domain,’’ in Proc. Int. SOC
Conf., Sep. 2005, pp. 83–86.

[82] J. Julvez, J. Cortadella, and M. Kishinevsky,
‘‘Performance analysis of concurrent systems
with early evaluation,’’ in Proc. Int. Conf.
Comput.-Aided Design, Nov. 2006,
pp. 448–455.

[83] M. R. Casu and L. Macchiarulo, ‘‘Adaptive
latency insensitive protocols and elastic
circuits with early evaluation: A comparative
analysis,’’ Electron. Notes Theor. Comput. Sci.,
vol. 245, pp. 35–50, Aug. 2009.

[84] D. Bufistov, J. Cortadella, M. G. Oms,
J. Júlvez, and M. Kishinevsky, ‘‘Retiming and
recycling for elastic systems with early
evaluation,’’ in Proc. Design Autom. Conf.,
Jul. 2009, pp. 288–291.

[85] L. C. Seitz, ‘‘System timing,’’ in Introduction
to VLSI Systems, C. A. Mead and L. A.
Conway, Eds. Reading, MA, USA: Addison-
Wesley, 1980.

[86] D. M. Chapiro, ‘‘Globally-asynchronous
locally-synchronous systems,’’ Ph.D.
dissertation, Dept. Comput. Sci., Stanford
Univ., Stanford, CA, USA, Oct. 1984.

[87] S. M. Nowick and M. Singh, ‘‘Asynchronous
designVPart 1: Overview and recent
advances,’’ IEEE Design Test, vol. 32, no. 3,
pp. 5–18, May/Jun. 2015.

[88] A. P. Niranjan and P. Wiscombe, ‘‘Islands of
synchronicity, a design methodology for
SoC design,’’ in Proc. Conf. Design Autom. Test
Eur., 2004, pp. 64–69.

[89] J.-M. Chabloz and A. Hemani, ‘‘Low-latency
maximal-throughput communication
interfaces for rationally related clock
domains,’’ IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 22, no. 3, pp. 641–654,
Mar. 2014.

[90] J.-M. Chabloz and A. Hemani, ‘‘Power
management architectures in McNOC,’’ in
Scalable Multi-Core Architectures, A. Jantsch
and D. Soudris, Eds. New York, NY, USA:
Springer-Verlag, 2012, pp. 55–80.

[91] C. Isci, A. Buyuktosunoglu, C.-Y. Cher,
P. Bose, and M. Martonosi, ‘‘An analysis of
efficient multi-core global power
management policies: Maximizing
performance for a given power budget,’’

in Proc. Int. Symp. Microarchitect., Dec. 2006,
pp. 347–358.

[92] A. Benveniste, ‘‘Some synchronization issues
when designing embedded systems from
components,’’ in Proc. Int. Conf. Embedded
Softw., Oct. 2001, pp. 32–49.

[93] P. Caspi and R. Salem, ‘‘Threshold and
bounded-delay voting in critical control
systems,’’ in Proc. Int. Symp. Formal Tech.
Real-Time Fault-Tolerant Syst., Sep. 2000,
pp. 70–81.

[94] A. Benveniste and B. Gerard, ‘‘The
synchronous approach to reactive and
real-time systems,’’ Proc. IEEE, vol. 79, no. 9,
pp. 1270–1282, Sep. 1991.

[95] A. Benveniste, B. Caillaud, and P. L. Guernic,
‘‘From synchrony to asynchrony,’’ in Proc.
Int. Conf. Concurrency Theory, Aug. 1999,
pp. 162–177.

[96] A. Benveniste, B. Caillaud, and P. L. Guernic,
‘‘Compositionality in dataflow synchronous
languages: Specification & distributed
code generation,’’ Inf. Comput., vol. 163,
pp. 125–171, 2000.

[97] L. P. Carloni and A. L. Sangiovanni-
Vincentelli, ‘‘A framework for modeling
the distributed deployment of synchronous
designs,’’ J. Formal Methods Syst. Design,
vol. 28, no. 2, pp. 93–110, Mar. 2006.

[98] P. L. Guernic, J. P. Talpin, and J. C. L. Lann,
‘‘Polychrony for system design,’’ J. Circuits
Syst. Comput., vol. 12, no. 3, pp. 261–303,
Apr. 2003.

[99] J. P. Talpin, P. L. Guernic, S. K. Shukla,
R. Gupta, and F. Doucet, ‘‘Formal
refinement-checking in a system-level design
methodology,’’ Fundamenta Informaticae,
vol. 62, no. 2, pp. 243–273, Jul. 2004.

[100] A. Benveniste et al., ‘‘A protocol for
loosely time-triggered architectures,’’ in Proc.
Int. Conf. Embedded Softw., Oct. 2002,
pp. 252–265.

[101] H. Kopetz and G. Bauer, ‘‘The time-triggered
architecture,’’ Proc. IEEE, vol. 91, no. 1,
pp. 112–126, Jan. 2003.

[102] A. Benveniste, B. Caillaud, L. P. Carloni,
P. Caspi, and A. L. Sangiovanni-Vincentelli,
‘‘Composing heterogeneous reactive
systems,’’ ACM Trans. Embedded Comput.
Syst., vol. 7, no. 4, pp. 1–36, Jul. 2008.

[103] A. Benveniste, B. Caillaud, L. P. Carloni,
P. Caspi, and A. L. Sangiovanni-Vincentelli,
‘‘Heterogeneous reactive systems modeling:
Capturing causality and the correctness
of loosely time-triggered architectures
(ltta),’’ in Proc. Int. Conf. Embedded Softw.,
Sep. 2004, pp. 220–229.

[104] S. Tripakis et al., ‘‘Implementing
synchronous models on loosely time
triggered architectures,’’ IEEE Trans.
Comput., vol. 57, no. 10, pp. 1300–1314,
Oct. 2008.

[105] M. Di Natale, Q. Zhu,
A. L. Sangiovanni-Vincentelli, and
S. Tripakis, ‘‘Optimized implementation of
synchronous models on industrial LTTA
systems,’’ J. Syst. Architect., vol. 60, no. 4,
pp. 315–328, Apr. 2014.

[106] L. Mangeruca, M. Baleani, A. Ferrari, and
A. Sangiovanni-Vincentelli, ‘‘Semantics-
preserving design of embedded control
software from synchronous models,’’
IEEE Trans. Softw. Eng., vol. 33, no. 8,
pp. 497–509, Aug. 2007.

[107] K. E. Murray and V. Betz, ‘‘Quantifying
the cost and benefit of latency insensitive
communication on FPGAs,’’ in Proc. Int.
Symp. Field Programmable Gate Arrays,
Feb. 2014, pp. 223–232.

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

2150 Proceedings of the IEEE | Vol. 103, No. 11, November 2015

[108] L. Kirischian, V. Dumitriu, P. W. Chun, and
G. Okouneva, ‘‘Mechanism of resource
virtualization in RCS for multitask stream
applications,’’ Int. J. Reconfigurable Comput.,
pp. 8:1–8:13, Feb. 2010.

[109] K. E. Fleming et al., ‘‘Leveraging latency-
insensitivity to ease multiple FPGA design,’’
in Proc. Int. Symp. Field Programmable Gate
Arrays, Feb. 2012, pp. 175–184.

[110] K. Fleming et al., ‘‘H.264 decoder: A case
study in multiple design points,’’ in Proc. Int.
Conf. Formal Methods Models Codesign,
Jun. 2008, pp. 165–174.

[111] M. C. Ng et al., ‘‘Airblue: A system for
cross-layer wireless protocol development,’’
in Proc. Symp. Architect. Netw. Commun. Syst.,
Oct. 2010, pp. 4:1–4:11.

[112] E. Hung, T. Todman, and W. Luk,
‘‘Transparent insertion of latency-oblivious
logic onto FPGAs,’’ in Proc. Int. Conf.
Field Programmable Logic Appl., Sep. 2014,
DOI: 10.1109/FPL.2014.6927497.

[113] K. Fleming, H.-J. Yang, M. Adler, and
J. Emer, ‘‘The LEAP FPGA operating
system,’’ in Proc. Int. Conf. Field
Programmable Logic Appl., Sep. 2014,
DOI: 10.1109/FPL.2014.6927488.

[114] K. Wakabayashi and T. Okamoto, ‘‘C-based
SoC design flow and EDA tools: An ASIC
and system vendor perspective,’’ IEEE
Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 19, no. 12, pp. 1507–1522,
Nov. 2006.

[115] D. C. Black, J. Donovan, B. Bunton, and
A. Keist, SystemC: From the Ground Up,
2nd ed. New York, NY, USA:
Springer-Verlag, 2009.

[116] N. Dave, Arvind, and M. Pellauer,
‘‘Scheduling as rule composition,’’ in Proc.
Int. Conf. Formal Methods Models Codesign,
May 2007, pp. 51–60.

[117] G. Venkataramani, K. Kintali, S. Prakash,
and S. van Beek, ‘‘Model-based hardware
design,’’ in Proc. Int. Conf. Comput.-Aided
Design, Nov. 2013, pp. 69–73.

[118] D. Aarno and J. Engblom, Software and
System Development using Virtual Platforms.
San Francisco, CA, USA: Morgan Kaufmann,
2014.

[119] G. Martin and G. Smith, ‘‘High-level
synthesis: Past, present, future,’’ IEEE Design
Test Comput., vol. 26, no. 4, pp. 18–25,
Jul./Aug. 2009.

[120] H.-Y. Liu, M. Petracca, and L. P. Carloni,
‘‘Compositional system-level design

exploration with planning of high-level
synthesis,’’ in Proc. Conf. Design Autom. Test
Eur., Mar. 2012, pp. 641–646.

[121] F. Somenzi and A. Kuehlmann, ‘‘Equivalence
checking,’’ in Electronic Design Automation
For Integrated Circuits Handbook, L. Scheffer,
L. Lavagno, and G. Martin, Eds. Boca
Raton, FL, USA: CRC Press, 2006.

[122] F. Ghenassia, Transaction-Level Modeling
with SystemC. New York, NY, USA:
Springer-Verlag, 2006.

[123] B. Bailey et al., TLM-Driven Design and
Verification Methodology. Raleigh, NC,
USA: Lulu Enterprises, 2010.

[124] P. Coussy and A. Morawiec, High-Level
Synthesis: From Algorithm to Digital Circuit.
New York, NY, USA: Springer-Verlag, 2008.

[125] M. Fingeroff, High-Level Synthesis Blue Book.
Bloomington, IN, USA: Xlibris., 2010.

[126] J. Sanguinetti, M. Meredith, and S. Dart,
‘‘Transaction-accurate interface scheduling
in high-level synthesis,’’ in Proc. ESLsyn Conf.,
2012, pp. 31–36.

[127] T. Bollaert, ‘‘High-level synthesis walks the
talk: Synthesizing a complete graphics
processing application,’’ in Proc. Design Verif.
Conf., 2011.

ABOUT T HE AUTHO R

Luca P. Carloni (Senior Member, IEEE) received the

Laurea degree (summa cum laude) in electrical

engineering from theUniversità di Bologna, Bologna,

Italy, in 1995 and the M.S. and Ph.D. degrees in

electrical engineering and computer sciences from

the University of California Berkeley, Berkeley, CA,

USA, in 1997 and 2004, respectively.

He is currently an Associate Professor with the

Department of Computer Science, Columbia Uni-

versity, New York, NY, USA. He has authored over

100 publications and holds two patents. His current research interests

include methodologies and tools for heterogeneous multicore platforms

with emphasis on system-level design and design reuse, system-on-chip

design, embedded software, and distributed embedded systems.

Dr. Carloni was a recipient of the Demetri Angelakos Memorial

Achievement Award in 2002, the Faculty Early Career Development

(CAREER) Award from the National Science Foundation in 2006, the

Office Of Naval Research (ONR) Young Investigator Award in 2010,

and the IEEE Council on Electronic Design Automation (CEDA) Early

Career Award in 2012. He was selected as an Alfred P. Sloan Research

Fellow in 2008. His 1999 paper on the latency-insensitive design

methodology was selected for the Best of ICCAD, a collection of the

best papers published in the first 20 years of the IEEE International

Conference on Computer-Aided Design. In 2010, he served as Technical

Program Co-Chair of the International Conference on Embedded

Software (EMSOFT), the International Symposium on Networks-on-Chip

(NOCS), and the International Conference on Formal Methods and

Models for Codesign (MEMOCODE). He was the Vice General Chair (in

2012) and General Chair (in 2013) of Embedded Systems Week (ESWEEK),

the premier event covering all aspects of embedded systems and

software. He is a Senior Member of the Association for Computing

Machinery (ACM).

Carloni: From Latency-Insensitive Design to Communication-Based System-Level Design

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2151

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

