
Platform-Based Design for Embedded

Systems

Luca P. Carloni a Fernando De Bernardinis a,b Claudio Pinello a

Alberto L. Sangiovanni-Vincentelli a Marco Sgroi a,c

aUniversity of California at Berkeley, Berkeley, CA 94720-1772
bDipartimento di Ingegneria dell’Informazione, Università di Pisa, Italy

cDoCoMo Euro-labs, Munich, Germany

Abstract

A platform is an abstraction layer that hides the details of several possible implemen-
tation refinements of the underlying layers. It is a library of elements characterized
by models that represent their functionalities and offer an estimation of (physical)
quantities that are of importance for the designer. The library contains interconnects
and rules that define what are the legal composition of the elements. A legal com-
position of elements and interconnects is called a platform instance. Platform-based
design is a meet-in-the-middle process, where successive refinements of specifications
meet with abstractions of potential implementations that are captured in the models
of the elements of the platform. It is this characteristic that makes platform-based
design a novel design method.

We argue for the importance of structuring precisely the platform layers and we
discuss how to define formally the transitions from one platform to the next. In par-
ticular, we emphasize the interplay of top-down constraint propagation and bottom-
up performance estimation while illustrating the notion of articulation point in the
design process. In this context, we study the key role played by the API platform
together with the micro-architecture platform in embedded system design. Also, we
report on three applications of platform-based design: at the system-level, we discuss
network platforms for communication protocol design and fault-tolerant platforms
for the design of safety-critical applications; at the implementation level, we present
analog platforms for mixed-signal integrated circuit design.

Key words: Platform-based design, derivative design, embedded systems,
networks, protocol design, mixed-signal design, safety-critical applications.

1 Introduction

The motivations behind Platform-Based Design [29] originated from three ma-
jor factors that characterize the evolution of the electronics industry:

• The disaggregation of the electronic industry, a phenomenon that began
about a decade ago and has affected the structure of the electronics in-
dustry favoring the move from a vertically-oriented business model into a
horizontally-oriented one. In the past, electronic system companies used to
maintain full control of the production cycle from product definition to final
manufacturing. Today, the identification of a new market opportunity, the
definition of the detailed system specifications, the development of the com-
ponents, the assembly of these components, and the manufacturing of the
final product are tasks that are mostly performed by distinct organizations.
In fact, the complexity of electronic designs and the number of technologies
that must be mastered to bring to market winning products have forced
electronic companies to focus on their core competence. In this scenario,
the integration of the design chain becomes a serious problem whose most
delicate aspects occur at the hand-off points from one company to another.

• The pressure for reducing time-to-market of electronics products in the pres-
ence of exponentially increasing complexity has forced designers to adopt
methods that favor component re-use at all levels of abstraction. Further-
more, each organization that contributes a component to the final product
naturally strives for a position that allows it to make continuous adjust-
ments and accommodate last-minute engineering changes.

• The dramatic increase in Non-Recurring Engineering (NRE) costs due to
· mask making at the Integrated Circuit (IC) implementation level (a set of

masks for the 90 nanometer technology node costs more than two millions
US dollars),

· development of production plants (a new fab costs more than two billions
dollars), and

· design (a new generation micro-processor design requires more than 500
designers with all the associated costs in tools and infrastructure!)

has created the necessity of correct-the-first-time designs.

Major delays in the introduction of new products have been the cause of severe
economic problems for a number of companies. The cost of fabs have changed
the landscape of IC manufacturing forcing companies to team up for develop-
ing new technology nodes (for example, the recent agreement among Motorola,
Philips and ST Microelectronics and the creation of Renesas in Japan). The
costs and complexity of ASIC designs has caused several system companies
(for example, Ericsson) to reduce substantially or to eliminate completely their
IC design efforts. Traditional paradigms in electronic system and IC design
have to be revisited and re-adjusted or altogether abandoned.

2

The combination of these factors has caused several system companies to
reduce substantially their ASIC design efforts. Traditional paradigms in elec-
tronic system and IC design have to be revisited and re-adjusted or altogether
abandoned. Along the same line of reasoning, IC manufacturers are moving
towards developing parts that have guaranteed high-volume production form
a single mask set (or that are likely to have high-volume production, if suc-
cessful) thus moving differentiation and optimization to reconfigurability and
programmability.

Platform-based design has emerged over the years as a way of coping with the
problems listed above. The term “platform” has been used in several domains:
from service providers to system companies, from tier 1 suppliers to IC com-
panies. In particular, IC companies have been very active lately to espouse
platforms. The TI OMAP platform for cellular phones, the Philips Viper and
Nexperia platforms for consumer electronics, the Intel Centrino platform for
laptops, are but a few examples. Recently, Intel has been characterized by its
CEO Ottellini as a “platform company”.

As is often the case for fairly radical new approaches, the methodology emerged
as a sequence of empirical rules and concepts but we have reached a point
where a rigorous design process was needed together with supporting EDA
environments and tools. Platform-based design

• lies the foundation for developing economically feasible design flows because
it is a structured methodology that theoretically limits the space of explo-
ration, yet still achieves superior results in the fixed time constraints of the
design;

• provides a formal mechanism for identifying the most critical hand-off points
in the design chain: the hand-off point between system companies and IC
design companies and the one between IC design companies (or divisions)
and IC manufacturing companies (or divisions) represent the articulation
points of the overall design process;

• eliminates costly design iterations because it fosters design re-use at all ab-
straction levels thus enabling the design of an electronic product by assem-
bling and configuring platform components in a rapid and reliable fashion;

• provides an intellectual framework for the complete electronic design pro-
cess.

This paper presents the foundations of this discipline and outlines a variety
of domains where the PBD principles can be applied. In particular, in Sec-
tion 2 we define the main principles of PBD. Our goal is to provide a precise
reference that may be used as the basis for reaching a common understand-
ing in the electronic system and circuit design community. Then, we present
the platforms that define the articulation points between system definition
and implementation (Section 3). As a demonstration of applicability of the

3

Upper Layer of Abstraction

Lower Layer of Abstraction

P
erfo

rm
an

ce
E

stim
atio

n
 C

o
n

st
ra

in
ts

P
ro

p
ag

at
io

n

Fig. 1. Interactions Between Abstraction Layers.

Platform-Based Design paradigm to all levels of design. in the following sec-
tions, we show that platforms can be applied to very high levels of abstraction
such as communication networks (Section 4) and fault-tolerant platforms for
the design of safety-critical feedback-control systems (Section 5) as well as to
low levels such as analog parts (Section 6), where performance is the main
focus.

2 Platform-Based Design

The basic tenets of platform-based design are:

• The identification of design as a meeting-in-the-middle process, where suc-
cessive refinements of specifications meet with abstractions of potential im-
plementations.

• The identification of precisely defined layers where the refinement and ab-
straction processes take place. Each layer supports a design stage providing
an opaque abstraction of lower layers that allows accurate performance es-
timations. This information is incorporated in appropriate parameters that
annotate design choices at the present layer of abstraction. These layers of
abstraction are called platforms to stress their role in the design process and
their solidity.

A platform is a library of components that can be assembled to generate a de-
sign at that level of abstraction. This library not only contains computational
blocks that carry out the appropriate computation but also communication
components that are used to interconnect the functional components. Each
element of the library has a characterization in terms of performance param-
eters together with the functionality it can support. For every platform level,
there is a set of methods used to map the upper layers of abstraction into the
platform and a set of methods used to estimate performances of lower level

4

abstractions. As illustrated in Figure 1, the meeting-in-the-middle process is
the combination of two efforts:

• top-down: map an instance of the top platform into an instance of the
lower platform and propagate constraints;

• bottom-up: build a platform by defining the library that characterizes it
and a performance abstraction (e.g., number of literals for tech. indepen-
dent optimization, area and propagation delay for a cell in a standard cell
library).

A platform instance is a set of architecture components that are selected from
the library and whose parameters are set. Often the combination of two con-
secutive layers and their “filling” can be interpreted as a unique abstraction
layer with an “upper” view, the top abstraction layer, and a “lower” view, the
bottom layer. A platform stack is a pair of platforms, along with the tools and
methods that are used to map the upper layer of abstraction into the lower
level. Note that we can allow a platform stack to include several sub-stacks if
we wish to span a large number of abstractions.

Platforms should be defined to eliminate large loop iterations for affordable
designs: they should restrict design space via new forms of regularity and
structure that surrender some design potential for lower cost and first-pass
success. The library of function and communication components is the design
space that we can explore at the appropriate level of abstraction.

Establishing the number, location, and components of intermediate platforms
is the essence of platform-based design. In fact, designs with different re-
quirements and specification may use different intermediate platforms, hence
different layers of regularity and design-space constraints. A critical step of
the platform-based design process is the definition of intermediate platforms
to support predictability, which enables the abstraction of implementation de-
tail to facilitate higher-level optimization, and verifiability, i.e. the ability to
formally ensure correctness.

The trade-offs involved in the selection of the number and characteristics of
platforms relate to the size of the design space to be explored and the accuracy
of the estimation of the characteristics of the solution adopted. Naturally, the
larger the step across platforms, the more difficult is predicting performance,
optimizing at the higher levels of abstraction, and providing a tight lower
bound. In fact, the design space for this approach may actually be smaller
than the one obtained with smaller steps because it becomes harder to ex-
plore meaningful design alternatives and the restriction on search impedes
complete design space exploration. Ultimately, predictions/abstractions may
be so inaccurate that design optimizations are misguided and the lower bounds
are incorrect.

5

It is important to emphasize that the Platform-Based Design paradigm ap-
plies to all levels of design. While it is rather easy to grasp the notion of a pro-
grammable hardware platform, the concept is completely general and should
be exploited through the entire design flow to solve the design problem. In the
following sections, we will show that platforms can be applied to low levels
of abstraction such as analog components, where flexibility is minimal and
performance is the main focus, as well as to very high levels of abstraction
such as networks, where platforms have to provide connectivity and services.
In the former case platforms abstract hardware to provide (physical) imple-
mentation, while in the latter communication services abstract software layers
(protocol) to provide global connectivity.

3 Platforms at the Articulation Points of the Design Process

As we mentioned above, the key to the application of the design principle is the
careful definition of the platform layers. Platforms can be defined at several
point of the design process. Some levels of abstraction are more important
than others in the overall design trade-off space. In particular, the articulation
point between system definition and implementation is a critical one for design
quality and time. Indeed, the very notion of platform-based design originated
at this point (see [3,10,15,18]). In [15,18,29], we have discovered that at this
level there are indeed two distinct platforms forming a system platform stack.
These need to be defined together with the methods and tools necessary to link
them: a (micro-)architecture platform and an API platform. The API platform
allows system designers to use the services that a (micro-)architecture offers
them. In the world of personal computers, this concept is well known and is
the key to the development of application software on different hardware that
share some commonalities allowing the definition of a unique API.

3.1 (Micro-) Architecture Platforms

Integrated circuits used for embedded systems will most likely be developed
as an instance of a particular (micro-) architecture platform. That is, rather
than being assembled from a collection of independently developed blocks
of silicon functionalities, they will be derived from a specific family of micro-
architectures, possibly oriented toward a particular class of problems, that can
be extended or reduced by the system developer. The elements of this family
are a sort of “hardware denominator” that could be shared across multiple ap-
plications. Hence, an architecture platform is a family of micro-architectures
that share some commonality, the library of components that are used to define
the micro-architecture. Every element of the family can be obtained quickly

6

through the personalization of an appropriate set of parameters controlling the
micro-architecture. Often the family may have additional constraints on the
components of the library that can or should be used. For example, a particular
micro-architecture platform may be characterized by the same programmable
processor and the same interconnection scheme, while the peripherals and the
memories of a specific implementation may be selected from the pre-designed
library of components depending on the given application. Depending on the
implementation platform that is chosen, each element of the family may still
need to go through the standard manufacturing process including mask mak-
ing. This approach then conjugates the need of saving design time with the
optimization of the element of the family for the application at hand. Although
it does not solve the mask cost issue directly, it should be noted that the mask
cost problem is primarily due to generating multiple mask sets for multiple
design spins, which is addressed by the architecture platform methodology.

The less constrained the platform, the more freedom a designer has in se-
lecting an instance and the more potential there is for optimization, if time
permits. However, more constraints mean stronger standards and easier ad-
dition of components to the library that defines the architecture platform (as
with PC platforms). Note that the basic concept is similar to the cell-based
design layout style, where regularity and the re-use of library elements allow
faster design time at the expense of some optimality. The trade-off between
design time and design “quality” needs to be kept in mind. The economics
of the design problem must dictate the choice of design style. The higher the
granularity of the library, the more leverage we have in shortening the design
time. Given that the elements of the library are re-used, there is a strong
incentive to optimize them. In fact, we argue that the “macro-cells” should
be designed with great care and attention to area and performance. It makes
also sense to offer a variation of cells with the same functionality but with
implementations that differ in performance, area and power dissipation. Ar-
chitecture platforms are, in general, characterized by (but not limited to) the
presence of programmable components. Then, each of the platform instances
that can be derived from the architecture platform maintains enough flexibil-
ity to support an application space that guarantees the production volumes
required for economically viable manufacturing.

The library that defines the architecture platform may also contain re-configurable
components. Reconfigurability comes in two flavors. With run-time reconfig-
urability, FPGA blocks can be customized by the user without the need of
changing mask set, thus saving both design cost and fabrication cost. With
design-time reconfigurability, where the silicon is still application-specific, only
design time is reduced.

An architecture platform instance is derived from an architecture platform by
choosing a set of components from the architecture platform library and/or by

7

setting parameters of re-configurable components of the library. The flexibility,
or the capability of supporting different applications, of a platform instance
is guaranteed by programmable components. Programmability will ultimately
be of various forms. One is software programmability to indicate the presence
of a microprocessor, DSP or any other software programmable component.
Another is hardware programmability to indicate the presence of reconfig-
urable logic blocks such as FPGAs, whereby logic function can be changed by
software tools without requiring a custom set of masks. Some of the new ar-
chitecture and/or implementation platforms being offered on the market mix
the two types into a single chip. For example, Triscend, Altera, and Xilinx are
offering FPGA fabrics with embedded hard processors. Software programma-
bility yields a more flexible solution, since modifying software is, in general,
faster and cheaper than modifying FPGA personalities. On the other hand,
logic functions mapped on FPGAs execute orders of magnitude faster and
with much less power than the corresponding implementation as a software
program. Thus, the trade-off here is between flexibility and performance.

3.2 API Platform

The concept of architecture platform by itself is not enough to achieve the
level of application software re-use we require. The architecture platform has
to be abstracted at a level where the application software “sees” a high-level
interface to the hardware that we call Application Programm Interface (API)
or Programmer Model. A software layer is used to perform this abstraction.
This layer wraps the essential parts of the architecture platform:

• the programmable cores and the memory subsystem via a real-time operat-
ing system (RTOS),

• the I/O subsystem via the device drivers, and
• the network connection via the network communication subsystem.

In our framework, the API is a unique abstract representation of the architec-
ture platform via the software layer. Therefore, the application software can
be re-used for every platform instance. Indeed the API is a platform itself that
we can call the API platform. Of course, the higher the abstraction level at
which a platform is defined, the more instances it contains. For example, to
share source code, we need to have the same operating system but not nec-
essarily the same instruction set, while to share binary code, we need to add
the architectural constraints that force us to use the same ISA, thus greatly
restricting the range of architectural choices.

The RTOS is responsible for the scheduling of the available computing re-
sources and of the communication between them and the memory subsystem.

8

Platform
Design-Space
Export

Platform
Mapping

Architectural Space

Application Space
Application Instance

Platform Instance

System
Platform

Fig. 2. System Platform Stack.

Note that in several embedded system applications, the available computing
resources consist of a single microprocessor. In others, such as wireless hand-
sets, the combination of a RISC microprocessor or controller and DSP has
been used widely in 2G, now for 2.5G and 3G, and beyond. In set-top boxes,
a RISC for control and a media processor have also been used. In general, we
can imagine a multiple core architecture platform where the RTOS schedules
software processes across different computing engines.

3.3 System Platform Stack

The basic idea of system platform-stack is captured in Figure 2. The vertex of
the two cones represents the combination of the API and the architecture plat-
form. A system designer maps its application into the abstract representation
that “includes” a family of architectures that can be chosen to optimize cost,
efficiency, energy consumption and flexibility. The mapping of the application
into the actual architecture in the family specified by the API can be carried
out, at least in part, automatically if a set of appropriate software tools (e.g.,
software synthesis, RTOS synthesis, device-driver synthesis) is available. It is
clear that the synthesis tools have to be aware of the architecture features as
well as of the API. This set of tools makes use of the software layer to go from
the API platform to the architecture platform. Note that the system platform
effectively decouples the application development process (the upper triangle)
from the architecture implementation process (the lower triangle). Note also
that, once we use the abstract definition of “API” as described above, we may
obtain extreme cases such as traditional PC platforms on one side and full
hardware implementation on the other. Of course, the programmer model for
a full custom hardware solution is trivial since there is a one-to-one map be-
tween functions to be implemented and physical blocks that implement them.
In the latter case, platform-based design amounts to adding to traditional
design methodologies some higher level of abstractions.

9

4 Network Platforms

In distributed systems the design of the protocols and channels that support
the communication among the system components is a difficult task due to
the tight constraints on performances and cost. To make the communication
design problem more manageable, designers usually decompose the communi-
cation function into distinct protocol layers, and design each layer separately.
According to this approach, of which the OSI Reference Model is a particular
instance, each protocol layer together with the lower layers defines a plat-
form that provides communication services to the upper layers and to the
application-level components. Identifying the most effective layered architec-
ture for a given application requires one to solve a tradeoff between perfor-
mances, which increase by minimizing the number of layers, and design man-
ageability, which improve with the number of the intermediate steps. Present
embedded system applications, due to their tight constraints, increasingly de-
mand the co-design of protocol functions that in less-constrained applications
are assigned to different layers and considered separately (e.g. cross-layer pro-
tocol design of MAC and routing protocols in sensor networks). The definition
of an optimal layered architecture, the design of the correct functionality for
each protocol layer, and the design space exploration for the choice of the phys-
ical implementation must be supported by tools and methodologies that allow
to evaluate the performances and guarantee the satisfaction of the constraints
after each step. For these reasons, we believe that the platform-based design
principles and methodology provide the right framework to design communi-
cation networks. In this section, first, we formalize the concept of Network
Platform. Then, we outline a methodology for selecting, composing and refin-
ing Network Platforms [30].

4.1 Definitions

A Network Platform (NP) is a library of resources that can be selected and
composed together to form a Network Platform Instance (NPI) and support
the interaction among a group of interacting components.

The structure of an NPI is defined abstracting computation resources as nodes
and communication resources as links. Ports interface nodes with links or with
the environment of the NPI. The structure of a node or a link is defined by its
input and output ports, the structure of an NPI is defined by a set of nodes
and the links connecting them.

The behaviors and the performances of an NPI are defined in terms of the
type and the quality of the communication services it offers. We formalize the

10

behaviors of an NPI using the Tagged Signal Model [25]. NPI components are
modeled as processes and events model the instances of the send and receive
actions of the processes. An event is associated with a message which has a
type and a value and with tags that specify attributes of the corresponding
action instance (e.g. when it occurs in time). The set of behaviors of an NPI
is defined by the intersection of the behaviors of the component processes.

A Network Platform Instance is defined as a tuple NPI = (L,N, P, S), where

• L = {L1, L2, ...LNl} is a set of directed links.
• N = {N1, N2,NNn} is a set of nodes.
• P = {P1, P2, ...PNp} is a set of ports. A port Pi is a triple (Ni, Li, d), where
Ni ∈ N is a node, Li ∈ L∪Env is a link or the NPI environment and d = in if
it is an input port, d = out if it is an output port. The ports that interface
the NPI with the environment define the sets P in = {(Ni, Env, in)} ⊆
P, P out = {(Ni, Env, out)} ⊆ P .

• S =
⋂

Nn+Nl Ri is the set of behaviors, where Ri indicates the set of behav-
iors of a resource that can be a link in L or a node in N .

The basic services provided by an NPI are called Communication Services
(CS). A CS consists of a sequence of message exchanges through the NPI
from its input to its output ports. A CS can be accessed by NPI users through
the invocation of send and receive primitives whose instances are modeled as
events. An NPI Application Programming Interface (API) consists of the set of
methods that are invoked by the NPI users to access the CS. For the definition
of an NPI API it is essential to specify not only the service primitives but also
the type of CS they provide access to (e.g. reliable send, out-of-order delivery

etc.). Formally, a Communication Service (CS) is a tuple (P
in
, P

out
, M,E, h, g,

<t), where P
in ⊆ P in is a non-empty set of NPI input ports, P

out ⊆ P out is a
non-empty set of NPI output ports, M is a non-empty set of messages, E is a

non-empty set of events, h is a mapping h : E → (P
in ∪ P out

) that associates
each event with a port, g is a mapping g : E →M associating each event with
a message, <t is a total order on the events in E.

A CS is defined in terms of the number of ports, that determine, for example,
if it is a unicast, multicast or broadcast CS, the set M of messages representing
the exchanged information, the set E including the events that are associated
with the messages in M and model the instances of the send and receive meth-
ods invocations. The CS concept is useful to express the correlation among
events, and explicit, for example, if two events are from the same source or
are associated with the same message.

11

4.2 Quality of Service

NPIs can be classified according to the number, the type, the quality and
the cost of the CS they offer. Rather than in terms of event sequences, a CS
is more conveniently described using QoS parameters like error rate, latency,
throughput, jitter, and cost parameters like consumed power and manufactur-
ing cost of the NPI components. QoS parameters can be simply defined using
annotation functions that associate individual events with quantities, such as
the time when an event occurs and the power consumed by an action. Hence,
one can compare the values of pairs of input and output events associated
with the same message to quantify the error rate, or compare the timestamp
of events observed at the same port to compute the jitter. The most relevant

QoS parameters are defined below using a notation where ei,j ∈ eM,(P
in∪P

out
)

indicates an event carrying the i-th message and observed at the j-th port,
v(e) and t(e) represents respectively the value of the message carried by event
e and the timestamp of the action modeled by event e.

• Delay: The communication delay of a message is given by the difference be-
tween the timestamps of the input and output events carrying that message.
Assuming that the i-th message is transferred from input port j1 to output
port j2, the delay ∆i of the i-th message, the average delay ∆Av and the
peak delay ∆Peak are defined respectively as ∆i = t(ej2,i) − t(ej1,i),∆Av =∑|M |

i=1
t(ej2,i)−t(ej1,i)

|M | ,∆Peak = maxi{t(ej2,i)− t(ej1,i)}.
• Throughput: The throughput is given by the number of output events

in an interval (t0, t1), i.e. the cardinality of the set Θ = {ei ∈ E|h(ei) ∈
P

out
, t(ei) ∈ (t0, t1)}.

• Error rate: The message error rate (MER) is given by the ratio between
the number of lost or corrupted output events and the total number of

input events. Given LostM = {ei ∈ E|h(ei) ∈ P
in
,¬∃ej ∈ E s.t. h(ej) ∈

P
out
g(ej) = g(ei)}, CorrM = {ei ∈ E|h(ei) ∈ P

in
,∃ej ∈ E s.t. h(ej) ∈

P
out
, g(ej) = g(ei), v(ej) 6= v(ei)} and InM = {ei ∈ E|h(ei) ∈ P

in}, the

message error rate MER = |LostM |+|CorrM |
|InM | . Using information on message

encoding MER can be converted to Packet and Bit Error Rate.

The number of CS that an NPI can offer is large, so the concept of Class of
Communication Services (CCS) is introduced to simplify the description of
an NPI. CCS define a new abstraction (and therefore a platform) that groups
together CS of similar type and quality. For example, a CCS may include all
the CS that transfer a periodic stream of messages with no errors, another
CCS all the CS that transfer a stream of input messages arriving at a bursty
rate with a 1% error rate. CCS can be identified based on the type of messages
(e.g. packets, audio samples, video pixels etc.), the input arrival pattern (e.g.
periodic, bursty etc.), the range of QoS parameters. For each NPI supporting

12

multiple CS, there are several ways to group them into CCS. It is task of
the NPI designer to identify the CCS and provide the proper abstractions to
facilitate the use of the NPI.

4.3 Design of Network Platforms

The design methodology for NPs derive an NPI implementation by successive
refinement from the specification of the behaviors of the interacting compo-
nents and the declaration of the constraints that an NPI implementation must
satisfy. The most abstract NPI is defined by a set of end-to-end direct logical
links connecting pairs of interacting components. Communication refinement
of an NPI defines at each step a more detailed NPI′ by replacing one or mul-
tiple links in the original NPI with a set of components or NPIs. During this
process another NPI can be used as a resource to build other NPIs. A cor-
rect refinement procedure generates an NPI′ that provides CS equivalent to
those offered by the original NPI with respect to the constraints defined at
the upper level. A typical communication refinement step requires to define
both the structure of the refined NPI′, i.e. its components and topology, and
the behavior of these components, i.e. the protocols deployed at each node.
One or more NP components (or predefined NPIs) are selected from a library
and composed to create CS of better quality. Two types of compositions are
possible. One type consists of choosing an NPI and extending it with a proto-
col layer to create CS at a higher level of abstraction (vertical composition).
The other type is based on the concatenation of NPIs using an intermediate
component called adapter (or gateway) that maps sequences of events between
the ports being connected (horizontal composition).

5 Fault-Tolerant Platforms

The increasing role of embedded software in real-time feedback-control systems
drives the demand for fault-tolerant design methodologies [24]. The aerospace
and automotive industries offer many examples of systems whose failure may
have unacceptable costs (financial, human or both). Designing cost-sensitive
real-time control systems for safety-critical applications requires a careful anal-
ysis of the cost/coverage trade-offs of fault-tolerant solutions. This further
complicates the difficult task of deploying the embedded software that imple-
ments the control algorithms on the execution platform. The latter is often
distributed around the plant as it is typical, for instance, in automotive appli-
cations. In this section, we present a synthesis-based design methodology that
relieves the designers from the burden of specifying detailed mechanisms for
addressing the execution platform faults, while involving them in the defini-

13

controller

embedded software

plant
sensor

sensor

actuator

actuator

execution platform

sensor
driver

sensor
driver

actuator
driver

actuator
driver

control law algorithms

RTOS & middleware
hardware architecture

ECU

ECU

ECU

ECU

ECU

ECU

ECU

ECU

Fig. 3. A real-time control system.

tion of the overall fault-tolerance strategy. Thus, they can focus on addressing
plant faults within their control algorithms, selecting the best components for
the execution platform, and defining an accurate fault model. Our approach is
centered on a new model of computation, Fault Tolerant Data Flows (FTDF),
that enables the integration of formal validation techniques.

5.1 Types of Faults and Platform Redundancy

In a real-time feedback-control system, like the one of Figure 3, the controller
interacts with the plant by means of sensors and actuators. A controller is
a hardware-software system where the software algorithms that implement
the control law run on an execution platform. An execution platform is a
distributed system that is typically made of a software layer (RTOS, middle-
ware services, . . .) and a hardware layer (a set of processing elements, called
electronic control units or ECUs, connected via communication channels like
buses, crossbars, or rings). The design of these heterogeneous reactive dis-
tributed systems is made even more challenging by the requirement of making
them resilient to faults. Technically, a fault is the cause of an error, an error
is the part of the system state which may cause a failure, and a failure is the
deviation of the system from the specification [23]. A deviation from the spec-
ification may be due to designers’ mistakes (“bugs”) or to accidents occurring
while the system is operating. The latter can be classified in two categories that
are relevant for feedback-control systems: plant faults and execution platform
faults. Theoretically, all bugs can be eliminated before the system is deployed.
In practice, they are minimized by using design environments that are based
on precise models of computation (MoC), whose well-defined semantics en-

14

able formal validation techniques [1,12,13], (e.g., synchronous languages [6]).
Instead, plant faults and execution platform faults must be dealt with on-line.
Hence, they must be included in the specification of the system to be designed.

Plant faults, including faults in sensors and actuators, must be handled at
the algorithmic level using estimation techniques and adaptive control meth-
ods. For instance, a drive-by-wire system might need to handle properly a tire
puncture or the loss of one of the four brakes. Faults in the execution platform
affect the computation, storage, and communication elements. For instance, a
loss of power may turn off an ECU, momentarily or forever. System operation
can be preserved in spite of platform faults if alternative resources supplying
the essential functionality of the faulty one are available. Hence, the process of
making the platform fault-tolerant usually involves the introduction of redun-
dancy with obvious impact on the final cost. While the replication of a bus or
the choice of a faster microprocessor may not affect sensibly the overall cost of
a new airplane, their impact is quite significant for high-volume products like
the ones of the automotive industry. The analysis of the trade-offs between
higher redundancy and lower costs is a challenging HW-SW co-design task
that designers of fault-tolerant systems for cost-sensitive applications must
face in addition to the following two: (1) how to introduce redundancy, and
(2) how to deploy the redundant design on a distributed execution platform.
Since these two activities are both tedious and error prone, designers often
rely on off-the-shelf solutions to address fault tolerance, like Time-Triggered
Architecture (TTA) [20]. One of the main advantages of off-the-shelf solutions
is that the application does not need to be aware of the fault tolerant mecha-
nisms that are transparently provided by the architecture to cover the execu-
tion platform faults. Instead, designers may focus their attention on avoiding
design bugs and tuning the control algorithms to address the plant faults.
However, the rigidity of off-the-shelf solutions may lead to suboptimal results
from a design cost viewpoint.

5.2 Fault-Tolerant Design Methodology

We present an interactive design methodology that involves designers in the
exploration of the redundancy/cost trade-off [27]. To do so efficiently, we need
automatic tools to bridge the different platforms in the system platform stack.
In particular, we introduce automatic synthesis techniques that process simul-
taneously the algorithm specification, the characteristics of the chosen execu-
tion platform, and the corresponding fault model. Using this methodology, the
designers focus on the control algorithms and the selection of the components
and architecture for the execution platform. In particular, they also specify the
relative criticality of each algorithm process. Based on a statistical analysis of
the failure rates, which should be part of the characterization of the execution

15

platforms library, designers specify the expected set of platform faults, i.e. the
fault model. Then, we use this information to (1) automatically deduce the
necessary software process replication, (2) distribute each process on the exe-
cution platform, and (3) derive an optimal scheduling of the processes on each
ECU to satisfy the overall timing constraints. Together, the three steps (repli-
cation, mapping, and scheduling) result in the automatic deployment of the
embedded software on the distributed execution platform. Platforms export
performance estimates, and we can determine for each control process its worst
case execution time (WCET) on a given component 1 Then, we can use a set of
verification tools to assess the quality of the deployment, most notably we have
a static timing analysis tool to predict the worst case latency from sensors to
actuators. When the final results do not satisfy the timing constraints for the
control application, precise guidelines are returned to the designers who may
use them to refine the control algorithms, modify the execution platform, and
revisit the fault model. While being centered on a synthesis step, our approach
does not exclude the use of pre-designed components, such as TTA modules,
communication protocols like TTP [19] and fault-tolerant operating systems.
These components can be part of a library of building blocks that the designer
uses to further explore the fault-coverage/cost trade-off. Finally, the proposed
methodology is founded on a new MoC, fault tolerant data flow (FTDF), thus
making it amenable to the integration of formal validation techniques. The
corresponding API platform constists primarily of the FTDF MoC.

Fault Model. For the sake of simplicity we assume fail silence: components
either provide correct results or do not provide any result at all. Recent work
shows that fail-silent platforms can be realized with limited area overhead and
virtually no performance penalty [4]. The fail silence assumption can be re-
laxed if invalid results are detected otherwise, as in the case of CRC-protected
communication and voted computation [16]. However, it is important to no-
tice that the proposed API platform (FTDF) is fault model independent. For
instance, the presence of value errors, where majority voting is needed, can
be accounted for in the implementation of the FTDF communication media
(see Section 5.3). The same is true for Byzantine failures, where components
can have any behavior, including malicious ones like coordinating to bring the
system down to a failure [22]. In addition to the type of faults, a fault model
also specifies the number (or even the mix) of faults to be tolerated [31]. A
statistical analysis of the various components MTBFs (mean time between
faults), their interactions and MTBR (mean time between repairs), should de-
termine which subsystems have a compound MTBF that is so short to be of
concern, and should be part of the platform component characterization. The
use of failure patterns to capture effectively these interactions was proposed
in [11], which is the basis of our approach [27].

1 See [14] for some issues and techniques to estimate WCETs.

16

CH1

CH0

ECU0 ECU1 ECU2

Fig. 4. A simple platform graph.

m

m

coarse
control

task

coarse
control

task

m

m

m

m

m

sensor

inputsensor

sensor

arbiter

m

output

actuator

m actuator

inverter pendulum
(the plant)

Fig. 5. Controlling an inverted pendulum.

17

Setup. Consider the feedback control system in Figure 3. The control system
repeats the following sequence at each period Tmax: (1) sensors are sampled, (2)
software routines are executed, and (3) actuators are updated with the newly-
processed data. The actuator updates are applied to the plant at the end of
the period to help minimize jitter, a well known technique in the real-time
control community [17,32]. In order to guarantee correct operation, the worst-
case execution time among all possible iterations, i.e. the worst case latency
from sensors to actuators, must be smaller than the given period Tmax (the
real-time constraint), which is determined by the designers of the controller
based on the characteristics of the application. Moreover, the critical subset
of the control algorithms must be executed in spite of the specified platform
faults.

Example. Figure 5 illustrates a FTDF graph for a paradigmatic feedback-
control application, the inverted pendulum control system. The controller is
described as a bipartite directed graph G where the vertices, called actors and
communication media, represent software processes and data communication.
Figure 4 illustrates a possible platform graph PG, where vertices represent
ECUs and communication channels and edges describe their interconnections.

Platform Characteristics. Each vertex of PG is characterized by its failure
rate and by its timing performance. A failure pattern is a subset of vertices
of PG that may fail together during the same iteration, with a probability so
high to be of concern. A set of failure patterns identify the fault scenarios to
be tolerated. Based on the timing performance, we can determine the WCET
of actors on the different ECUs and the worst case transmission time of data
on channels. Graphs G and PG are related in two ways:

• fault-tolerance binding: for each failure pattern the execution of a cor-
responding subset of the actors of G must be guaranteed. This subset is
identified a-priori based on the relative criticality assignment.

• functional binding: a set of mapping constraints and performance esti-
mates indicate where on PG each vertex of G may be mapped and the
corresponding WCET.

These bindings are the basis to derive a fault-tolerant deployment of G on
PG. We use software replication to achieve fault tolerance: critical routines
are replicated statically (at compile time) and executed on separate ECUs and
the processed data are routed on multiple communication paths to withstand
channel failures. In particular, to have a correct deployment in absence of
faults, it is necessary that all actors and data communications are mapped to
ECUs and channels in PG. Then, to have a correct fault-tolerant deployment,
critical elements of G must be mapped to additional PG vertices to guarantee
their correct and timely execution under any possible failure pattern in the
fault model.

18

FaultBehavior

Mapping

Fine
CTRL

Coarse
CTRLSens

Sens

Sens
Act

Act
Input Arbiter

Best
Output

ECU0

ECU1

ECU2

CH0

CH1

Sens

Sens

Sens

Input

Input

Coarse
CTRL

Coarse
CTRL

Fine
CTRL

Arbiter
Best

Arbiter
Best

Output

Output

Act

Act

Fig. 6. Proposed Design Flow.

Design Flow. Using the interactive design flow of Figure 6 designers

• specify the controller (the top-left FTDF graph);
• assemble the execution platform (the top-right PG);
• specify a set of failure patterns (subsets of PG);
• specify the fault tolerance binding (fault behavior);
• specify the functional binding.

All this information contributes to specifying what the system should do and
drive how it should be implemented. A synthesis tool automatically

• introduces redundancy in the FTDF graph;
• maps actors and their replicas onto PG;
• schedules their execution.

Finally, a verification tool checks whether the fault-tolerant behavior and the
timing constraints are met. If no solution is found, the tool returns a violation
witness that can be used to revisit the specification and to provide hints to
the synthesis tool.

5.3 The API Platform (FTDF Primitives)

In this section we present the structure and general semantics of the FTDF
MoC. The basic building blocks are actors and communication media. FTDF
actors exchange data tokens at each iteration with synchronous semantics [6].

An actor belongs to one of six possible classes: sensors, actuators, inputs,
outputs, tasks, arbiters. Sensor and actuator actors read and update respec-
tively the sensor and actuator devices interacting with the plant. Input actors
perform sensor fusion, output actors are used to balance the load on the actu-
ators, while task actors are responsible for the computation workload. Arbiter

19

actors mix the values that come from actors with different criticality to reach
to the same output actor (e.g. braking command and anti-lock braking system
(ABS) 2). Finally, state memories are connected to actors and operate as one-
iteration delays. With a slight abuse of terminology the terms state memory
and memory actor are used interchangeably in this paper.

Tokens. Each token consists of two fields: Data, the actual data being com-
municated; Valid, a boolean flag indicating the outcome of fault detection on
this token. When Valid is “false” either no data is available for this iteration,
or the available data is not correct. In both cases the Data field should be
ignored. The Valid flag is just an abstraction of more concrete and robust
fault detection implementations.

Communication Media. Communication occurs via unidirectional (possibly
many-to-many) communication media. All replicas of the same source actor
write to the same medium, and all destination actors read from it. Media act
both as mergers and as repeaters sending the single “merged” result to all
destinations. More formally, the medium provides the correct merged result
or an invalid token if no correct result is determined.

Assuming fail-silence, merging amounts to selecting any of the valid results;
assuming value errors majority voting is necessary; assuming Byzantine faults
requires rounds of voting (see the consensus problem [5]). Communication
media must be distributed to withstand platform faults. Typically, this means
to have a repeater on each source ECU and a merger on each destination
ECU (broadcasting communication channels helps reducing message traffic
greatly). Using communication media, actors always receive exactly one token
per input and the application behavior is independent of the type of platform
faults. The transmission of tokens is initiated by the active elements: regular
actors and memory actors.

Regular Actors. When an actor fires, its sequential code is executed. This
code is: stateless (state must be stored in memory actors), deterministic (iden-
tical inputs generates identical outputs), non-blocking (once fired, it does not
await for further tokens, data, or signals from other actors) and terminating
(bounded WCET). The firing rule specifies which subsets of input tokens must
be valid to fire the actor, typically all of them (and firing rule). However, the
designer may need to specify partial firing rules for input and arbiter actors.
For example, an input actor reading data from three sensors may produce a
valid result even when one of the sensors cannot deliver data (e.g. when the
ECU where the sensor is mapped is faulty).

2 We advocate running non-safety critical tasks, e.g. door controllers, on separate
HW. However some performance enhancement tasks, e.g. side-wind compensation,
may share sensors and actuators with critical tasks (steer-by-wire). It may be prof-
itable to have them share the execution platform as well.

20

Memory Actors (State Memories). A memory provides its state at the
beginning of an iteration and has a source actor, possibly replicated, that
updates its state at every iteration. State memories are analogous to latches in
a sequential digital circuit: they store the results produced during the current
iteration for use in the next one.

Finally FTDF graphs can express redundancy, i.e. one or more actors may
be replicated. All the replicas of an actor v ∈ A are denoted by R(v) ⊂ A.
Note that any two actors in R(v) are of the same type and must compute the
same function. This basic condition is motivated in Section 5.5 where replica
determinism is discussed. Note that the replication of sensors and actuators is
not performed automatically because they may have a major impact on cost,
we discuss the implications of this choice in [27].

5.4 Fault-Tolerant Deployment

The result of the synthesis is a redundant mapping L, i.e. an association of
elements of the FTDF network to multiple elements of the execution platform,
and for each element in the execution platform a schedule S, i.e. a total order
in which actors should be executed and data should be transmitted. A pair
(L,S) is called a deployment. To avoid deadlocks, the total orders defined by S
must be compatible with the partial order in L, which in turn derives directly
from the partial order in which the FTDF actors in the application must be
executed. To avoid causality problems, memory actors are scheduled before
any other actor, thus using the results of the previous iteration. Schedules
based on total orders are called static: there are no run-time decisions to make,
each ECU and each channel controller simply follows the schedule. However,
in the context of a faulty execution platform an actor may not receive enough
valid inputs to fire and this may lead to starvation. This problem is solved by
skipping an actor if it cannot fire and by skipping a communication if no data
is available [11].

5.5 Replica Determinism

Given a mapping Lit is important to preserve replica determinism: if two
replicas of a same actor fire, they produce identical results. For general MoCs
the order of arrival of results must also be the same for all replicas. Synchrony
of FTDF makes this check unnecessary. Clearly the execution platform must
contain the implementation of a synchronization algorithm [21].

Replica determinism in FTDF can be achieved enforcing two conditions: (1)
all replicas compute the same function, and (2) for any failure pattern, if

21

two replicas get a firing subset of inputs they get the same subset of inputs.
Condition (1) is enforced by construction by allowing only identical replicas.
Condition (2) amounts to a consensus problem and it can either be checked
at run-time (like for Byzantine agreement rounds of voting), or it can be
analyzed statically at compile time (if the fault model is milder). Our interest
in detectably faulty execution platforms makes the latter approach appear
more promising and economical. Condition (2) is trivially true for all actors
with the “AND firing rule”. For input and arbiter actors the condition must
be checked and enforced [27].

6 Analog Platforms

Emerging applications such as multimedia devices (video cell phones, digital
cameras, wireless PDAs to mention but a few) are driving the SoC market
towards the integration of analog components in almost every system. Today,
system-level analog design is a design process dominated by heuristics. Given a
set of specifications/requirements that describes the system to be realized, the
selection of a feasible (let alone optimal) implementation architecture comes
mainly out of experience. Usually, what is achieved is just a feasible point at
the system level, while optimality is sought locally at the circuit level. This
practice is caused by the number of second order effect that are very hard to
deal with at high level without actually designing the circuit. Platform-based
design can provide the necessary insight to develop a methodology for analog
components that takes into consideration system level specifications and can
choose among a set of possible solutions including digital approaches wherever
it is feasible to do so. If the “productivity gap” between analog and digital
components is not overcome, time-to-market and design quality of SoC will be
seriously affected by the small analog sections required to interface with the
real world. Moreover, SoC designs will expose system level explorations that
would be severely limited if the analog section is not provided with a proper
abstraction level that allows system performance estimation in an efficient way
and across the analog/digital boundary. Therefore, there is a strong need to
develop more abstract design techniques that can encapsulate analog design
into a methodology that could shorten design time without compromising
the quality of the solutions, leading to a hardware/software/analog co-design
paradigm for embedded systems

6.1 Definitions

The platform abstraction process can be extended to analog components in
a very natural way. Deriving behavioral and performance models, however, is

22

more involved due to the tight dependency of analog components on device
physics that requires the use of continuous mathematics for modeling the
relations among design variables. Formally, an Analog Platform (AP) consists
of a set of components, each decorated with:

• a set of input variables u ∈ U , a set of output (performance) variables
y ∈ Y , a set of “internal” variables (including state variables) x ∈ X , a
set of configuration parameters κ ∈ K; some parameters take values in a
continuous space, some take values in a discrete set, for example when they
encode the selection of a particular alternative;

• a behavioral model that expresses the behavior of the component represented
implicitly as F(u, y, x, κ) = 0, where F(·), may include integro-differential
components; in general, this set determines uniquely x and y given u and
κ. Note that the variables considered here can be function of time and that
the functional F includes constraints on the set of variables (for example,
the initial conditions on the state variables).

• a feasible performance model. Let φy(u, κ) denote the map that computes
the performance y corresponding to a particular value of u and κ by solving
the behavioral model. The set of feasible analog performance (such as gain,
distortion, power), is the set described by the relation P(y(u)) = 1 ⇔
∃κ′, y(u) = φy(κ

′, u).
• validity laws L(u, y, x, κ) ≤ 0 i.e., constraints (or assumptions) on the vari-

ables and parameters of the component that define the range of the variables
for which the behavioral and performance models are valid.

Note that there is no real need to define the feasible performance model since
the necessary information is all contained in the behavioral model. We prefer
to keep them separate because of the use we make of them in explaining our
approach.

At the circuit level of abstraction, the behavioral models are the circuit equa-
tions with x being the voltages, currents and charges, y being a subset of
x and/or a function of x and κ when they express performance figures such
as power or gain. To compute performance models, we need to solve the be-
havioral models that implies solving ordinary differential equations, a time
consuming task. In the past, methods to approximate the relation between
y and κ (the design variables) with an explicit function were proposed. In
general, to compute this approximation, a number of evaluations of the be-
havioral model for a number of parameters κ is performed (by simulation, for
example) and then an interpolation or approximation scheme is used to derive
the approximation to the map φy. We see in Section 6.2 how to compute an
approximation to the feasible performance set directly.

Example — Considering an OTA for an arbitrary application, we can start
building a platform from the circuit level by defining:

23

• U as the set of all possible input voltages Vin(t) s.t. |Vin| < 100 mV and
bandwidth Vin < 3 MHz; Y as the space of vectors {Vout(t), gain, IIP3, rout}
(IIP3 is the third order intermodulation intercept point referred to the input,
rout is the output resistance) X the set of all internal current and voltages,
and K the set of transistor sizings.

• for a transistor level component, the behavioral model F consists of the
solution of the circuit equations, e.g. through a circuit simulator.

• φy(u, κ) as the set of all possible y;
• validity laws L are obtained from Kirchoff laws when composing individual

transistors and other constraints, e.g. maximum power ratings of breakdown
voltages.

We can build a higher level (level 1) OpAmp platform where:

• U1 is the same, Y1 is the output voltage of the OpAmp, X is empty, K1

consists of possible {gain, IIP3, rout} triples (thus it is a projection of Y0);
• F1 can be expressed in explicit form, y1(t) = h(t)⊗ (a1 · u(t) + a3 · u(t)3) + noise

y2 = a1; y3 =
√

4
3
· a1

a3

(1)

• φy is the set of possible y;
• there are no validity constraints, L < 0 always.

When a platform instance is considered, we have to compose the models of the
components to obtain the corresponding models for the instance. The platform
instance is then characterized by

• a set of internal variables of the platform ξ = [ξ1, ξ2, ..., ξn] ∈ Ξ,
• a set of inputs of the platform, h ∈ H
• a set of performances υ ∈ Υ,
• a set of parameters ζ ∈ Z.

The variable names are different from the names used to denote the variables
of the components to stress that there may be situations where some of the
component variables change roles (for example, an input variable of one com-
ponent may become an internal variable; a new parameter can be identified in
the platform instance that is not visible or useful at the component level). To
compose the models, we have to include in the platform the composition rules.
The legal compositions are characterized by the interconnect equations that
specify which variables are shared when composing components and by con-
straints that define when the composition is indeed possible. These constraints
may involve range of variables as well as nonlinear relations among variables.

24

a) Platform composition A driving B with interface paramater

λ

A B

A eq B

λ S

eqBA

λ L

λ

b) Characterization setup for platform A and B

Fig. 7. Interface parameter λ during composition A-B and characterization of A and
B.

Formally, a connection is establishing a pairwise equality between internal
variables for example ξi = ξj, inputs and performance; we denote the set of
interconnect relations with c(h, ξ, ζ, κ) = 0 that are in general a set of linear
equalities. The composition constraints are denoted by L(h, ξ, υ, ζ) ≤ 0, that
are in general, non linear inequalities. Note that in the platform instance all
internal variables of the components are present as well as all input variables.
In addition, there is no internal or input variable of the platform instance that
is not an internal or input variable of one of the components. The behavioral
model of the platform instance is the union of all behavioral models of the
components conjoined with the interconnect relations. The validity laws are
the conjunction of the validity laws of the components and of the composition
constraints. The feasible performance model may be defined anew on the plat-
form instance but it may also be obtained by composition of the performance
models of the components. There is an important and interesting case when
the composition may be done considering only the feasible performance mod-
els of the components obtained by appropriate approximation techniques. In
this case, the composition constraints assume the semantics of defining when
the performance models may be composed. For example, if we indicate with
λ the parameters related to internal nodes that characterizes the interface in
Fig. 7a) (e.g. input/output impedance in the linear case), then matching be-
tween λ has to be enforced during composition. In fact, both PA and PB were
characterized with specific λs (Fig. 7b)), so L has to constrain A − B com-
position consistently with performance models. In this case, an architectural
exploration step consisting of forming different platform instances out of the
component library and evaluating them, can be performed very quickly albeit
possibly with restrictions on the space of the considered instances caused by
the composition constraints.

25

Example — We can build a level 2 platform platform consisting of an OpAmp
(OA) and a unity gain buffer following it (UB, the reader can easily find a
proper definition for it), then we can define a higher level OpAmp platform
component so that:

• ξ1 = V OA
in , ξ2 = V OA

out , ξ3 = V UB
in , ξ4 = V UB

in and connect them in series
specifying ξ2 = ξ3;

• h connected to ξ1 is the set of input voltages Vin(t);
• Υ is the space of υ1(t), the cascade response in time, υ2 = gain, υ3 = IIP3.

In this case υ2 immediately equals yOA
2 , while υ3 is a non linear function of

yOA and yUB;
• Z consists of all parameters specifying a platform instance, in this case we

may have Z = YOA ∪ YUB.
• a platform instance composability law L requires that the load impedance
ZL > 100rout both at the output of the OpAmp and the unity buffer.

6.2 Building Performance Models

An important part of the methodology is obtaining performance models. We
already mentioned that we need to approximate the set Ŷ explicitly eliminat-
ing the dependence on the internal variables x. To do so a simulation-based
approach is proposed.

6.2.1 Performance Model Approximation

In general terms, simulation maps a configuration set (typically connected)
K into a performance set in Y , thus establishing a relation among points be-
longing to the mapped set. Classic regression schemes provides an efficient
approximation to the mapping function φ(·), however our approach requires
dealing with performance data in two different ways. The first one, referred to
as performance model P , allows discriminating between points in Ŷ and points
in Y\Ŷ . A second one, µ(·) = φ−1(·), implementing the inverse mapping from
Ŷ into K, used to map down from a higher-level platform layer to a lower
one. However, fundamental issues (i.e. φ(·) being an invertible function) and
accuracy issues (a regression from Rm into Rn) suggest a table-lookup imple-
mentation for µ(·), possibly followed by a local optimization phase to improve
mapping. Therefore, we will mainly focus on basic performance models P .

The set Ŷ ⊂ Y defines a relation in Y denoted with P . We use Support Vector
Machines (SVMs) as a way of approximating the performance relation P [8].

26

SVMs provide approximating functions of the form

f(x) = sign(
∑

i

αie
−γ|x−xi|2 − ρ) (2)

where x is the vector to be classified, xi are observed vectors, αis are weighting
multipliers, ρ is a biasing constant and γ is a parameter controlling the fit of
the approximation. More specifically, SVMs exploit mapping to Hilbert spaces
so that hyperplanes can be exploited to perform classification. Mapping to
high dimensional spaces is achieved through kernel functions, so that a kernel
k(κ, ·) is associated at each point κ. Since the only general assumption we can
make on φ(·) is continuity and on K is connectivity 3 , we can only deduce that
Ŷ is connected as well. Therefore, the radial basis function Gaussian kernel
is chosen, k(κ, κ′) = e−γ·‖κ−κ′‖2

, where γ is a parameter of the kernel and
controls the “width” of the kernel function around κ. We resort to a particular
formulation of SVMs known as one-class SVM where an optimal hyperplane
is determined to separate data from the origin. The optimal hyperplane be
computed very efficiently through a quadratic problem, as detailed in [28].

6.2.2 Optimizing the approximation process

Sampling schemes for approximating unknown functions are exponentially de-
pendent on the size of the function support. In the case of circuit, none but
very simple circuits could be realistically characterized in this way. Fortu-
nately, there is no need to sample the entire space K since we can use addi-
tional information obtained from design considerations to exclude parts of the
parameter space. The set of “interesting” parameters is delimited by a set of
constraints of two types:

• topological — constraints derived from the use of particular circuit struc-
tures, such as two stacked transistor sharing the same current or a set of
VDS summing to zero;

• physical — constraints induced by device physics, such as VGS-VDS relation
to enforce saturation or gm-ID relations;

• performance — constraints on circuit performances, such as minimum gain
or minimum phase margin, that can be achieved.

Additional constraints can be added as designers’ understanding of circuit im-
proves. The more constraints we add, the smaller the interesting configuration
space K. However, if a constraint is tight, i.e., it either defines lower dimen-
sional manifolds for example when the constraint is an equality, or the measure
of the manifold is small, the more likely it is to introduce some bias in the

3 more in general, a union of a finite number of connected sets

27

Select new topologySelect new topology

Derive ACG and Derive ACG and
nominal configurationnominal configuration

Generate Generate

Select new topologySelect new topology

Derive ACG and Derive ACG and
nominal configurationnominal configuration

Generate Generate

……

Define behavioralDefine behavioral
modelmodel

Define performance Define performance
model model

Fig. 8. Bottom-Up phase for generating Analog Platforms

sampling mechanism because of the difficulty in selecting points in these man-
ifolds. To eliminate this ill-conditioning effect, we “relax” these constraints to
include a larger set of interesting parameters. We adopt a statistical means
of relaxing constraints by introducing random errors with the aim of dither-
ing systematic errors and recovering accuracy in a statistical sense. Given an
equality constraint f(κ) = 0 and its approximation f̃(κ) = 0, we derive a re-
laxation |f̃(κ)| ≤ ε. For each constraint f some statistics have to be gathered
on ε so as to minimize the overhead on the size of K for introducing it.

Once we have this set of constraints, we need to take them into account to
define the space of interesting parameters. Analog Constraint Graphs (ACGs)
are introduced as a bipartite graph representation of configuration constraints.
One set of nodes corresponds to equations, the other to variables κ. Bipartite
graphs are a common form for dealing with system of equations [9]. A maximal
bipartite matching in the ACG is used to compute an evaluation order for
equations that is then translated into executable code capable of generating
configurations in K by construction. In our experience, even with reasonably

straightforward constraints, ratios of the order of 10−6 were observed for size(K̂)
size(K)

with K ⊂ R16.

When we deal with the intersection of achievable performance and perfor-
mance constraints in the top-down phase of the design, we can add to the
set of constraints we use to restrict the sampling space the performance con-
straints so that the results reported above are even more impressive.

28

np−input

Wideband

Active−L

LNA

Tuned PT (G,NF, P, IP3, f0, Q)

PL(G,NF, P, IP3, f0, Q, δQ)

P(G,NF, P, IP3)

Pnp(G,NF, P, IP3, f0, Q, IP2)

PW (G,NF, P, IP3, f−3dB)

Fig. 9. Sample model hierarchy for an LNA platform. The root node provides per-
formance constraints for a generic LNA, which is then refined by more detailed P
for specific classes of LNAs.

6.3 Mixed-Signal Design Flow with Platforms

The essence of platform-based design is building a set of abstractions that fa-
cilitate the design of complex systems by a successive refinement/abstraction
process. The abstraction takes place when an existing set of components form-
ing a platform at a given level of abstraction is elevated to a higher level by
building appropriate behavioral and performance models together with the ap-
propriate validity laws. This process can take either components at a level of
abstraction and abstract each of them, or abstract a set of platform instances.
Since both platform instances and platform components are described at the
same level of abstraction the process is essentially the same. What changes is
the exploration approach. On the other side of the coin, the top-down phase
progresses through refinement. Design goals are captured as constraints and
cost function. At the highest level of abstraction, the constraints are inter-
sected with the feasible performance set to identify the set of achievable per-
formance that satisfy design constraints. The cost function is then optimized
with respect to the parameters of the platform instances at the highest level of
abstraction ensuring they lie in the intersection of the constraint and the fea-
sible performance set. This constrained optimization problem yields a point in
the feasible performance space and in the parameter space for the platform in-
stances at the highest level of abstraction. Using the inverse of the abstraction
map φy, these points are mapped back at a lower level of abstraction where
the process is repeated to yield a new point in the achievable performance set
and in the parameter space until we reach a level where the circuit diagrams
and even a layout is available. If the abstraction map is a conservative map,
then every time we map down, we always find a consistent solution that can be
achieved. Hence the design process can be shortened considerably. The crux
of the matter is how many feasible points are not considered because of the
conservative approximation. Thus the usual design speed versus design quality
trade-off has to be explored.

29

Build System with Build System with APsAPs

Define a formal setDefine a formal set
of conditions for feasibilityof conditions for feasibility

Define an objective Define an objective
function for optimizationfunction for optimization

Optimize system constraining Optimize system constraining
behavioral models to their behavioral models to their

Refine/Add platformsRefine/Add platforms Return optimal performancesReturn optimal performances
and candidate solutionsand candidate solutions

Fig. 10. Top-Down phase for analog design space exploration

In mathematical terms, the bottom-up phase consists of defining an abstrac-
tion ψl that maps the inputs, performance, internal variables, parameters,
behavioral and performance models, and validity laws of a component or plat-
form instance at level l into the corresponding objects at the next level (l+1).
The map is conservative if all feasible performance vectors ŷl+1 correspond to
feasible performance vectors ŷl. Note that if approximations are involved in
defining the models and the maps, this is not necessarily true, i.e., abstraction
maps may be non conservative. In other words, a feasible performance vector
at level l+ 1 may not correspond to a feasible one at level l. A simplified dia-
gram of the bottom-up phase for circuit level components is shown in Fig. 8.
For each library component, we define a behavioral model and a performance
model. Then, a suitably topology is determined, an ACG is derived to con-
strain the configuration space K and a performance model is generated. This
phase can be iterated, leading to a library that can span multiple topologies
as reported in Fig. 9.

The top-down phase then proceeds formulating a top-level design problem as
an optimization problem with a cost function C(ytop) and a set of constraints
defined in the Ytop space, gtop(ytop) ≤ 0 that identifies a feasible set in Ytop.

The complete optimization problem has to include the set Ŷtop that defines
the set of achievable performance at the top level. The intersection of the
two sets define the feasible set for the optimization process. The result of the
process is a ytop

opt. Then the process is to map back the selected point to
the lower levels of the hierarchy. If the abstractions are conservative, the top-
down process is straightforward. Otherwise, at each level of the hierarchy, we

30

have to verify using the performance models, the behavioral models and the
validity laws. In some cases, a better design may be obtained by introducing in
the top-down phase cost functions and constraints that are defined only at a
particular abstraction level. In this case, the space of achievable performances
intersected with this new set of constraints defines the search space for the
optimization process. At times, it is more convenient to project down the cost
function and the constraints of the higher-level abstraction to the next level
down. In this case, then the search space is the result of the intersection of
three sets in the performance space and the cost function is a combination
of the projected cost function and the one defined at this level. A flow chart
summarizing the top-down flow with platforms is shown in Fig. 10. In Fig. 11
the set of configurations evaluated during an optimization run for the UMTS
frontend in [7] is reported visualizing how multiple topologies are exploited in
selecting optimal points.

The peculiarity of a platform approach to mixed signal design resides in the
accurate performance model constraints P that propagate to the top-level
architecture related constraints. For example, a platform stack can be built
where multiple analog implementation architectures are presented at a com-
mon level of abstraction together with digital enhancement platforms (possi-
bly including several algorithms and hardware architectures), each component
being annotated with feasible performance spaces. Solving the system design
problem at the top level where the platforms contain both analog and digital
components, allows selecting optimal platform instances in terms of analog
and digital solutions, comparing how different digital solutions interact with
different analog topologies and finally selecting the best tradeoff.

The final verification step is also greatly simplified by the platform approach
since, at the end, models and performances used in the top-down phase were
obtained with a bottom-up scheme. Therefore, a consistency check of models,
performances and composition effects is all that is required at a hierarchical
level, followed by more costly, low-level simulations that check for possible
important effects that were neglected when characterizing the platform.

6.4 Reconfigurable platforms

Analog platforms can also be used to model programmable fabrics. In the digi-
tal implementation platform domain, FPGAs provide a very intuitive example
of platform, for example including microprocessors on chip. The appearance
of Field Programmable Analog Arrays [26] constitutes a new attempt to build
reconfigurable Analog Platform. A platform stack can be built by exploiting
the software tools that allow mapping complex functionalities (filters, am-
plifiers, triggers and so on) directly on the array. The top level platform,

31

0.0014 0.0082 0.015 0.022 0.029
2.1

3.6

5.2

6.8

8.4

10

Pd

N
F

Optimization Trace

Fig. 11. Example of architecture selection during top-down phase. In the picture,
an LNA is being selected. Circles correspond to architecture 1 instances, crosses
to architecture 2 instances. The black circle is the optimal LNA configuration. It
can be inferred that after an initial exploration phase alternating both topologies,
simulated annealing finally focuses on the architecture 1 to converge.

then, provides an API to map and configure analog functionalities, expos-
ing analog hardware at the software level. By exploiting this abstraction, not
only design exploration is greatly simplified, but new synergies between higher
layers and analog components can be leveraged to further increase the flexi-
bility/reconfigurability and optimize the system. From this abstraction level,
implementing a functionality with digital signal processing (FPGA) or analog
processing (FPAA) becomes subject to system level optimization while expos-
ing the same abstract interface. Moreover, very interesting tradeoffs can be
explored exploiting different partitionings between analog and digital compo-
nents and leveraging the reconfigurability of the FPAA. For example, limited
analog performances can be mitigated by proper reconfiguration of the FPAA,
so that a tight interaction between analog and digital subsystems can provide
a new optimum from the system level perspective.

7 Concluding Remarks

We defined platform-based design as an all-encompassing intellectual frame-
work in which scientific research, design tool development, and design practices
can be embedded and justified. In our definition, a platform is simply an ab-
straction layer that hides the details of the several possible implementation
refinements of the underlying layer. Platform-based design allows designers to
trade-off various components of manufacturing, NRE and design costs while
sacrificing as little as possible potential design performance. We presented

32

examples of these concepts at different key articulation points of the design
process, including system platforms as composed of two platforms (micro-
architecture and API), network platforms, and analog platforms.

This concept can be used to interpret traditional design steps in ASIC de-
velopment such as synthesis and layout. In fact, logic synthesis takes a level
of abstraction consisting of HDL representation (HDL platform) and maps
it into a set of gates that are defined in a library. The library itself is the
gate-level platform. The logic synthesis tools are the mapping methods that
select a platform instance (a particular netlist of gates that implements the
functionality described at the HDL platform level) according to a cost func-
tion defined on the parameters that characterize the quality of the elements
of the library in view of the overall design goals. The present difficulties in
achieving timing closure in this flow indicate the need for a different set of
characterization parameters for the implementation platform. In fact, in the
gate-level platform the cost associated to the selection of a particular intercon-
nection among gates is not reflected, a major problem since the performance
of the final implementation depend critically on this. The present solution of
making a larger step across platforms by mixing mapping tools such as logic
synthesis, placement and routing may not be the right one. Instead, a larger
pay-off could be had by changing levels of abstractions and including better
parametrization of the implementation platform.

We argued in this paper that the value of PBD can be multiplied by providing
an appropriate set of tools and a general framework where platforms can be
formally defined in terms of rigorous semantics, manipulated by appropriate
synthesis and optimization tools and verified. Examples of platforms have been
given using the concepts that we have developed. We conclude by mentioning
that the Metropolis design environment [2], a federation of integrated analysis,
verification, and synthesis tools supported by a rigorous mathematical theory
of meta-models and agents, has been designed to provide a general open-
domain PBD framework.

Acknowledgments

We gratefully acknowledge the support of the Gigascale Silicon Research Cen-
ter (GSRC), of the Center for Hybrid Embedded System Software (CHESS)
supported by an NSF ITR grant, of the Columbus Project of the European
Community and the Network of Excellence ARTIST. Alberto Sangiovanni-
Vincentelli would like to thank Alberto Ferrari, Luciano Lavagno, Richard
Newton, Jan Rabaey, and Grant Martin for their continuous support in this
research.

33

We also thank the member of the DOP center of the University of Califor-
nia at Berkeley for their support and for the atmosphere they created for our
work. The Berkeley Wireless Research Center and our industrial partners, (in
particular: Cadence, Cypress Semiconductors, General Motors, Intel, Xilinx
and ST Microelectronics) have contributed with designs and continuous feed-
back to make this approach more solid. Felice Balarin, Jerry Burch, Roberto
Passerone, Yoshi Watanabe and the Cadence Berkeley Labs team have been
invaluable in contributing to the theory of metamodels and the Metropolis
framework.

References

[1] R. Alur, T. Dang, J. Esposito, Y. Hur, F. Ivancic, V. Kumar, I. Lee, P. Mishra,
G. J. Pappas, and O. Sokolsky. Hierarchical Modeling and Analysis of
Embedded Systems. Proc. of the IEEE, 91(1):11–28, January 2003.

[2] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: an integrated electronic system design
environment. IEEE Computer, 36:45–52, April 2003.

[3] Felice Balarin, Massimiliano Chiodo, Paolo Giusto, Harry Hsieh, Attila
Jurecska, Luciano Lavagno, Claudio Passerone, Alberto Sangiovanni-
Vincentelli, Ellen Sentovich, Kei Suzuki, and Bassam Tabbara. Hardware-
Software Co-Design of Embedded Systems: The POLIS Approach. Kluwer
Academic Publishers, Boston/Dordrecht/London, 1997.

[4] M. Baleani, A. Ferrari, L. Mangeruca, A. Sangiovanni-Vincentelli, M. Peri, and
S. Pezzini. Fault-tolerant platforms for automotive safety-critical applications.
In Proc. of the Intl. Conf. on Compilers, Architectures and Synthesis for
Embedded Systems, pages 170–177. ACM Press, 2003.

[5] M. Barborak, M. Malek, and A. Dahbura. The consensus problem in fault-
tolerant computing. ACM Computing Surveys, 25(2):171–220, June 1993.

[6] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic, and
R. de Simone. The Synchronous Language Twelve Years Later. Proc. of the
IEEE, 91(1):64–83, Jan. 2003.

[7] ”F. De Bernardinis, S. Gambini, F. Vinci, F. Svelto, R. Castello, and
A. Sangiovanni Vincentelli”. ”design space exploration for a umts front-end
exploiting analog platforms”. In Proc. Intl. Conf. on Computer-Aided Design,
2004.

[8] F. De Bernardinis, M.I. Jordan, and A.L. Sangiovanni Vincentelli. Support
vector machines for analog circuit performance representation. In Proc. of the
Design Automation Conf., June 2003.

34

[9] Peter Bunus and Peter Fritzson. A debugging scheme for declarative equation
based modeling languages. In Practical Aspects of Decl. Languages : 4th Int.
Symp., page 280, 2002.

[10] Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew McNelly, and
Lee Todd. Surviving the SOC Revolution: A Guide to Platform Based Design,
. Kluwer Academic Publishers, Boston/Dordrecht/London, 1999.

[11] C. Dima, A. Girault, C. Lavarenne, and Y. Sorel. Off-line real-time fault-
tolerant scheduling. In Euromicro 2001, Mantova, Italy, Feb. 2001.

[12] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli. Design of
embedded systems: Formal methods, validation and synthesis. Proc. of the
IEEE, 85(3):266–290, March 1997.

[13] J. Eker, J.W. Janneck, E.A. Lee, J. Liu, J. Ludwig, S. Neuendorffer, S. Sachs,
and Y. Xiong. Taming heterogeneity—the ptolemy approach. Proc. of the
IEEE, 91(1):127–144, January 2003.

[14] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin,
Michael Schmidt, Henrik Theiling, Stephan Thesing, and Reinhard Wilhelm.
Reliable and precise WCET determination for a real-life processor. Lecture
Notes in Computer Science, 2211:469–485, 2001.

[15] A. Ferrari and A. L. Sangiovanni-Vincentelli. System Design: Traditional
Concepts and New Paradigms. In Proc. Intl. Conf. on Computer Design, pages
1–12, October 1999.

[16] Brasileiro FV, Ezhilchelvan PD, Shrivastava SK, Speirs NA, and Tao S.
Implementing fail-silent nodes for distributed systems. IEEE Transactions on
Computers, 45(11):1226–1238, November 1996.

[17] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Embedded control systems
development with Giotto. In Proc. of Languages, Compilers, and Tools for
Embedded Systems, pages 64–72. ACM Press, 2001.

[18] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli.
System level design: Orthogonalization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 19(12), December 2000.

[19] H. Kopetz and G. Grundsteidl. TTP - A Protocol for Fault-Tolerant Real-Time
Systems. IEEE Computer, 27:14–23, January 1994.

[20] H. Kopetz and D. Millinger. The transparent implementation of fault tolerance
in the time-triggered architecture. In Dependable Computing for Critical
Applications, San Jose, CA, 1999.

[21] Lamport L. and Melliar-Smith P. Byzantine clock synchronization. In 3rd
ACM Symposium on Principles of Distributed Computing, pages 68–74, New
York, 1984. ACM.

35

[22] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Trans. on Progr. Languages and Systems, 4(3):382–401, July 1982.

[23] J.C. Laprie, editor. Dependability : basic concepts and terminology in English,
French, German, Italian and Japanese, volume 5 of Series title: Dependable
computing and fault-tolerant systems. Springer–Verlag, New York, 1992.

[24] E. A. Lee. What’s ahead for embedded software? Computer, 33(9):18–26, 2000.

[25] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for comparing models
of computation. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 17(12):1217–1229, December 1998.

[26] I. Macbeth. Programmable Analog Systems: the Missing Link. In EDA Vision
(www.edavision.com), July 2001.

[27] C. Pinello, L. P. Carloni, and A. Sangiovanni-Vincentelli. Fault-tolerant
deployment of embedded software for cost-sensitive real-time feedback-control
applications. In Proc. European Design and Test Conf. ACM Press, 2004.

[28] J. Platt. Sequential minimal optimization: A fast algorithm for training support
vector machines. Technical Report MSR-TR-98-14, Microsoft Research, 1998.

[29] A. L. Sangiovanni-Vincentelli. Defining Platform-Based Design. In EEDesign.
Available at www.eedesign.com/story/OEG20020204S0062), February 2002.

[30] Marco Sgroi. Platform-based Design methodologies for Communication
Networks. PhD thesis, University of California, Berkeley, Electronics Research
Laboratory, December 2002.

[31] H.S. Siu, Y.H. Chin, and W.P. Yang. Reaching strong consensus in the presence
of mixed failure types. Trans. Parallel and Distr. Systems, 9(4), April 1998.

[32] A. J. Wellings, L. Beus-Dukic, and D. Powell. Real-time scheduling in a generic
fault-tolerant architecture. In Proc. of RTSS’98), Madrid, Spain, Dec 1998.

36

