
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001 1059

Theory of Latency-Insensitive Design
Luca P. Carloni, Student Member, IEEE, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli, Fellow, IEEE

Abstract—The theory of latency-insensitive design is presented
as the foundation of a new correct-by-construction methodology to
design complex systems by assembling intellectual property com-
ponents. Latency-insensitive designs are synchronous distributed
systems and are realized by composing functional modules that ex-
change data on communication channels according to an appro-
priate protocol. The protocol works on the assumption that the
modules are stallable, a weak condition to ask them to obey. The
goal of the protocol is to guarantee that latency-insensitive designs
composed of functionally correct modules behave correctly inde-
pendently of the channel latencies. This allows us to increase the
robustness of a design implementation because any delay varia-
tions of a channel can be “recovered” by changing the channel la-
tency while the overall system functionality remains unaffected. As
a consequence, an important application of the proposed theory is
represented by the latency-insensitive methodology to design large
digital integrated circuits by using deep submicrometer technolo-
gies.

Index Terms—Deep submicrometer design, formal methods, la-
tency-insensitive protocols, system design.

I. INTRODUCTION

T HE THEORY of latency-insensitive design formally
separates communication from computation by defining a

system as a collection of computational processes that exchange
data by means of communication channels. The communication
is governed by an abstract protocol, whose main character-
istic is to be insensitive to the latencies of the channels. The
theory may be applied as a rigorous basis to design complex
digital systems by simply composing predesigned and verified
components so that the composition satisfies, formally and “by
construction,” the required properties of synchronization and
communication. In particular, relevant applications may be
found in the design of integrated circuits to be implemented
with the future generations of process technologies. Indeed, for
the so-called deep submicrometer (DSM) technologies (0.1m
and below), where millions of gates will be customary, a design
methodology that guarantees by construction that certain key
properties are satisfied appears as the only hope to achieve
correct designs in short time. Furthermore, the characteristics of
DSM designs will exacerbate thetiming-closure problemthat
is already present with the current technologies: the designers

Manuscript received June 2, 2000; revised April 23, 2001. This work was
supported in part by the Semiconductor Research Corporation, the Consiglio
Nazionale delle Ricerche, Italy, and Cadence Design Systems. This paper was
recommended by Associate Editor M. Papaefthymiou.

L. P. Carloni and A. L. Sangiovanni-Vincentelli are with the Department
of Electrical Engineering and Computer Science, University of California,
Berkeley, CA 94720 USA (e-mail: lcarloni@ic.eecs.berkeley.edu; al-
berto@ic.eecs.berkeley.edu).

K. L. McMillan is with Cadence Berkeley Laboratories, Berkeley, CA 94704
USA (e-mail: mcmillan@cadence.com).

Publisher Item Identifier S 0278-0070(01)06887-7.

of semicustom integrated circuits are forced to iterate many
times between logic synthesis and layout generation because
the two steps are performed independently and synthesis uses
statistical delay models, which badly estimate the postlayout
wire load capacitance [1], [2].

In fact, despite the increase in number of layers and in aspect
ratios, the resistance–capacitance delay of an average metal
line with constant length is getting worse with each process
generation [3], [4]. This effect, combined with the increases in
operating frequency, die size, and average interconnect length,
is making interconnect delay becoming a larger fraction of the
clock-cycle time [5]. Introducing copper metallizationand low-
dielectric insulators helps reducing the interconnect delay, but
these one-time improvements will not suffice in the long run as
feature size continues to shrink [5], [6]. Furthermore, while the
number of gates reachable in a cycle will not change significantly
and the on-chip bandwidth that wires provide will continue to
grow, the percentage of the die reachable within one clock cycle
will decrease dramatically: we will soon reach a point where
more gates can be fit on a chip than can communicate in one cycle
[7]. In particular, it has been predicted that for DSM designs, a
signal will need more than ten clock cycles to traverse the entire
chip area [8]. Also, it has been estimated that only a fraction of
the chip area between 0.4% and 1.4% will be reachable in one
clock cycle [9]. Hence, limiting the on-chip distance traveled by
critical signalswill be the key toguarantee the performanceof the
overall design. However, since precise data on wire lengths are
available only late in the design process, several costly redesigns
become necessary to change the placement or the speed of the
chip modules while satisfying performance and functionality
constraints [2].

The theory of latency-insensitive design provides the founda-
tion for a new design methodology that maintains the inherent
simplicity of synchronous design and yet does not suffer of the
“interconnect-delay problem.” According to our approach, the
system can be thought as completely synchronous, i.e., just as a
collection of modules that communicate by means of channels
having “zero delay,” i.e., a delay negligible with respect to the pe-
riod of the common clock signal (synchronous assumption). We
refer this clock as thevirtual clockand we call a system that is
specified starting from this assumptionstrict. Once the final im-
plementation of the system is derived, its operation is controlled
by areal clockthat has a precise frequency value. Unfortunately,
due the above-mentioned DSM effects, some of the wires imple-
menting these channels on the final layout may likely require a
delay longer than one real clock cycle to transmit the appropriate
signals.However,theproposedtheoryguaranteesthatit isnotnec-
essary to complete costly redesign iterations or to slow down the
real clock. The key idea is borrowed from pipelining [10], [11]:
partition the long wires into segments whose lengths satisfy the

0278–0070/01$10.00 © 2001 IEEE

1060 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

timing requirements imposed by the real clock by inserting logic
blocks calledrelay stations, which have a function similar to the
one of latches on a pipelined data path. While the timing require-
ments imposed by the real clock are now met by construction, the
latency of a channel connecting two modules may end up being
two or more clock cycles. Still, if the functionality of the design
is based on the sequencing of the output signals and not on their
exact timing, then this modificationof the designdoesnot change
its functional correctness provided that all its components arepa-
tient processes. Informally, a module is a patient process if its
behavior does not depend on the latency of the communication
channels because it is compliant with alatency-insensitive com-
munication protocol. The key point of this approach is to relax
timeconstraintsduringtheearlyphasesofthedesignwhencorrect
measures of the delay paths among the modules are not yet avail-
able. Instead, the specification of a complex system is strongly
simplified if performedunder thesynchronousassumption.After
the corresponding physical implementation is completed, if there
aremismatchesbetweenthe timeconstraintsandthe interconnect
delays among the system modules, they can be easily fixed by
inserting the right amount of relay stations. Since every module
works accordingly to the latency-insensitive protocol, no modifi-
cation in the functionality or the layout of the individual modules
is necessary to reflect any necessary changes in wire latencies.
The relevance of this approach for DSM design has been recently
confirmed by the first details that Intel has unveiled on the new
hyperpipelined NETBURST microarchitecture of its Pentium 4
processor. As reported in [12], NETBURST is the first pipeline
containing instances of a stage dedicated exclusively to handle
wire delays: in fact, a so-calleddrive stageis used only to move
signal across the chip without performing any computation and,
therefore, can be seen as a physical implementation of a relay sta-
tion.

In this paper, we introduce these concepts formally and prove
the properties outlined above. Section II discusses background
and related work and, particularly, how the synchronous as-
sumption distinguishes our design methodology from similar
approaches proposed in the asynchronous design community
during the past three decades. In Section III, we give the foun-
dation of latency-insensitive design by presenting the notion of
patient processes. At the core of our theory, originally presented
in [13], lies the definition of latency equivalence. Two systems
are latency equivalent if on every channel, they present the same
data streams, i.e., the same ordered sequence of data, but, pos-
sibly, with different timing. We show that for patient processes,
the notion of latency equivalence is compositional by proving
the following theorems: 1) the intersection of two patient pro-
cesses is a patient process; 2) given two pairs of latency equiv-
alent patient processes, their pairwise intersections are also la-
tency equivalent; and 3) for all pairs of strict processes
and patient processes , if is latency equivalent to
and is latency equivalent to , then their intersections are
latency equivalent. As a consequence, we can derive the major
result of our theory: if all processes in a strict system are re-
placed by corresponding patient processes, then the resulting
system is patient and latency equivalent to the original one.

In Section IV, we define the notion of relay station: we illus-
trate its main properties and we show how in a system of patient

processes, the communication channels can be segmented by in-
troducing relay stations.

Section V discusses the assumption under which a generic
strict system can be transformed into a patient one, i.e., its com-
ponents must bestallable. We also delineate how the present
theory leads to the definition of the latency-insensitive method-
ology for digital integrated circuit design: the methodology is
centered on a simple noniterative design flow that can leverage
common layout and synthesis computer-aided design (CAD)
tools as well as state-of-the art formal verification techniques
[14]. Naturally, the effectiveness of the latency-insensitive de-
sign methodology is strongly related to the ability of main-
taining a sufficient communication throughput in the presence
of increased channel latencies. This problem, which is just one
instance of a more general issue that has to be faced while real-
izing integrated circuits with DSM process technologies, is dis-
cussed in Section V-D together with some techniques that can be
used to handle it. Finally, to experiment the proposed method-
ology, we performed a latency-insensitive design of PDLX, an
out-of-order microprocessor with speculative execution. This
design experiment is discussed in Section VI.

II. BACKGROUND AND RELATED WORK

The theory of latency-insensitive design is clearly rem-
iniscent of many ideas which have been proposed in the
asynchronous design community during the past three decades
[15], [16]. In particular, the idea of a design methodology which
is inherently modular is already present in the work by Clark
and Molnar [17], [18]. To separate the design of these modules
from the design of the system and make the entire process
amenable to automation, the modules must be implemented as
delay-insensitive circuits [19], [20]. A delay-insensitive circuit
is designed to operate correctly regardless of the delays on its
gates and wires (unbounded delay model) [21]. However, it has
been proven that almost no useful delay-insensitive circuits can
be built if one is restricted to a class of simple logic gates [22],
[23]. To be able to build complex systems, one must use more
complex components, which are “externally” delay insensitive,
while “internally” are designed by carefully verifying their
timing and avoiding or tolerating metastability [20], [24], [25].
By slightly relaxing the unbounded delay model and allowing
“isochronic forks,”1 practicalquasi-delay-insensitivecircuits
can be built using simple logic gates [26]. A further relaxation
leads tospeed-independentcircuits, which operate correctly
regardless of gate delays, while wire delays are assumed to be
negligible [27]–[29].

In 1985, Van de Sneupschet observed that the decreasing fea-
ture size of very large scale integration devices would have lead
to “a decrease of the propagation speed of electrical signals rel-
ative to the switching speed,” and proposed the use of suitable
communication protocols to obtain chip designs whose correct
operation is independent of the propagation speed [30]. This
work has more than one contact point with the present paper,
but differs on the basic fact that leads to the choice of speed-in-
dependent circuits over synchronous circuits. Dill has also pro-

1A bounded skew is allowed between the different branches of a net.

CARLONI et al.: THEORY OF LATENCY-INSENSITIVE DESIGN 1061

posed a trace theory for modeling and specifying speed-inde-
pendent circuits that is the basis for a hierarchical verification
approach [28]. Parallels with our paper can also be found in
some of the ideas that have been proposed in the field of high-
level synthesis to schedule the sequential execution of inter-
acting processes under unbounded timing constraints [31], [32].

As we move toward the design of integrated circuits to be
realized with DSM technologies, the delays of long intermodule
wires are becoming dominant with respect to both the delays of
the intramodule wires and those of the logic gates. More impor-
tantly, intermodule delays are difficult to predict or to control
during the different phases of the design of a chip, leading to an
exacerbation of the timing closure problem. Delay-insensitive
approaches as well as the latency-insensitive methodology allow
thedesigner tospecifyand implement thesystemwhileassuming
that intermodule wire delays may vary arbitrarily. However,
while a delay-insensitive system is based on the assumption that
the delay between two subsequent events on a communication
channel is completely arbitrary, in the case of a latency-insen-
sitive system, this arbitrary delay is forced to be amultiple of
the clock period. The key point is that this kind ofdiscretization
allows us to leverage well-accepted design methodologies for
the design and validation of synchronous systems. In fact, the
basic distinction between any of the previous asynchronous
design methodologies and the latency-insensitive approach is
essentially that a latency-insensitive system is specified as a syn-
chronous system. Notice that we say “specified” because from an
implementation viewpoint, a latency-insensitive communication
protocol can also be realized usinghand-shaking signaling
techniques (such as request/acknowledge protocols), which
are typically asynchronous.2 However, from a specification
point of view, each module (as well as the overall system) is
viewed as a synchronous system relying on the previously cited
synchronous assumption. Now, to specify a complex system as a
collection of modules whose state is updated collectively in one
“zero-time” step is naturally simpler than specifying the same
system as the interaction of many components whose state is
updated following an intricate set of interdependency relations.
Furthermore, the synchronous specification allows us to modify
the traditional semicustom design methodology slightly by
simply inserting a step to encapsulate each synchronous module
within a so-calledshell process. Finally, the impact is very
different also from a validation point of view because simulation
is naturally a less complex task for a synchronous system than
an equivalent asynchronous one. In conclusion, the theory of
latency-insensitive design leads to a methodology that can be
implemented on top of a commonly adopted design flow, while
any asynchronous approach forces the designers to use new
tools and, more importantly, to think of the digital system in a
completely different way.

III. L ATENCY INSENSITIVITY

To develop our theory formally, we adopt thetagged-signal
model, which has been proposed recently by Lee and Sangio-

2Here, the communication bandwidth would be limited by the inverse of the
longest of the round trip times between pairs of communicating relay stations.

vanni-Vincentelli, to represent complex systems as collections
of signals and processes [33].

A. Tagged-Signal Model

Given a set ofvalues and a set oftags , an eventis a
member of . Two events aresynchronousif they have the
same tag. Asignal is a set of events. Two signals are syn-
chronous if each event in one signal is synchronous with an
event in the other signal and vice versa. Synchronous signals
must have the same set of tags.

The set of all -tuples of signals is denoted . A process
is a subset of . A particular -tuple satisfies the

process if . A -tuple that satisfies a process is called
a behaviorof the process. Thus, a process is a set of possible
behaviors.3 A composition of processes(also called asystem)

is a new process defined as the intersection of
their behaviors . Since processes can be defined
over different sets of signals, we need to extend the set of signals
over which each process is defined to contain all the signals of
all processes to form the composition. Note that the extension
changes the behavior of the processes only formally.

Let be an ordered set of inte-
gers in the range . The projection of a behavior

onto is .
The projection of a process onto is

. A connection is a
particularly simple process, where two (or more) of the signals
in the -tuple are constrained to be identical. For instance,

,
with .

An input to a process is an externally imposed con-
straint such that is the total set of acceptable
behaviors. The set of all possible inputs is a further
characterization of a process. Given a process, if ,
then the set of acceptable behaviors is and the
process does not have input constraints (the process isclosed).
Commonly, one considers processes having input signals and
output signals. In this case, given process, the set of signals
can be partitioned into three disjoint subsets by partitioning the
index set as , where is the ordered
set of indexes for the input signals of is the ordered set of
indexes for the output signals andis the ordered set of indexes
for the remaining signals (also called irrelevant signals with re-
spect to). A process isfunctionalwith respect to if for
all behaviors and , implies

. Hence, given a function
, we can completely characterize a functional processby

the tuple . A process is determinateif for any input
, then either or . Otherwise, it is

nondeterminate.
In a synchronous system, every signal in the system is

synchronous with every other signal. In atimed system, the
set of tags, also calledtimestamps, is a totally ordered set.
The ordering among the timestamps of a signalinduces a
natural order on the set of events of. A functional process

3For N � 2, processes may also be viewed as a relation between theN

signals ins = (s ; . . . ; s).

1062 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

Fig. 1. Strict signals and a stalled signals .

is (strictly) causal if two outputs can only differ at times-
tamps that (strictly) follow the timestamps when the inputs
producing these outputs show a difference. More formally,
given a metric on the set of -tuples of signals,4

we have the following: a functional process
is causal if ;
a functional process is strictly causal if

.

B. Informative Events and Stalling Events

A latency-insensitive systemis a synchronous timed system
whose set of values is equal to , where is the set
of informative symbols, which are exchanged among modules
and is a special symbol, representing the absence of
an informative symbol. The absence of an informative symbol
may result from either lack of valid data to transmit or back-
pressure, i.e., a request to delay a transmission. From now on,
all signals are assumed to be synchronous. The set of timestamps
is assumed to be in one-to-one correspondence with the set
of natural numbers. An event is calledinformativeif it has an
informative symbol as value.5 An event whose value is a
symbol is said to be astalling event(or event).6

Definition III.1: denotes the set of events of signal,
while and are the set of informative events and the
set of stalling events of, respectively. Theth event of
a signal is denoted . denotes the set of timestamps
in signal , while is the set of timestamps corresponding
to informative events.

Processes exchange “useful” data by sending and receiving
informative events. Ideally, only informative events should be
communicated among processes. However, in a latency-in-
sensitive system, a process may not have data to output at a
given timestamp, thus requiring the output of a stalling event at
that timestamp. Alternatively, it may happen that a down-link
process that is not ready to receive new data requests the up-link
process to avoid sending them and, as a consequence, the latter
reacts by emitting a stalling event (back-pressure).

Definition III.2: The set of all sequences of elements in
is denoted by . The length of a sequenceis if it

is finite, otherwise it is infinity. The empty sequence is denoted
as and, by definition, . The th term of a sequence is
denoted .

Definition III.3: Function takes a
signal and an ordered pair of times-
tamps and returns a sequence

4For instance, in [33], it is considered the Cantor metricd(s ; s) =
supf(1=2) j s (t) 6= s (t); t 2 T g.

5We use subscripts to distinguish among the different informative symbols of
� : � ; � ; � ;

6The use of the� event is similar to the role played by theabsencesymbol?
in the synchronous language SIGNAL [34].

s.t.7 . The sequence of values of a
signal is denoted . The infinite subsequence of values cor-
responding to an infinite sequence of events starting fromis
denoted .

For example, considering signal

we have8

and , respectively.
To manipulate sequences of values, we define the following

filtering operators.
Definition III.4: returns a sequence

s.t.

if
otherwise

Definition III.5: returns a sequence
s.t.

if
otherwise

For instance, if , then
and . Obviously,

. Latency-insensitive systems are
assumed to have a finite horizon over which informative events
appear, i.e., for each signal, there is a greatest timestamp

that corresponds to the “last” informative event.
However, to build our theory, we need to extend the set of sig-
nals of a latency-insensitive system over an infinite horizon by
adding a set of timestamps such that all events with timestamp
greater than have values.

Definition III.6: A signal is strict if and only if all infor-
mative events precede all stalling events, i.e., iff there exists a

s.t. and . A
signal that is not strict is said to be delayed (or stalled).

Fig. 1 illustrates the sequences associated to two signals pre-
senting ten informative events each: is a strict signal with
greatest timestamp equal to ten, whileis a stalled signal with
greatest timestamp equal to 21.

C. Latency Equivalence

Two signals are latency equivalent if they present the same
sequence of informative events, i.e., they are identical except
for different delays between two successive informative events.

7Notice that� (s) denotes the value of the event att .
8In this paper, we assume8t 2 T (s); 8t 2 T (s); t � t , i � j.

CARLONI et al.: THEORY OF LATENCY-INSENSITIVE DESIGN 1063

Fig. 2. Sequences of values of three latency equivalent signals.

Definition III.7: Two signals are latency equivalent
iff .

Thereference signal of a class of latency equivalent sig-
nals is a strict signal obtained by assigning the sequence of in-
formative values that characterizes the equivalence class to the
first timestamps.

For instance, Fig. 2 reports the sequences associated to three
signals that belong to the same latency equivalent class: signal

is also the reference signal of the class.
Latency equivalent signals contain the same sequences of in-

formative values, but with different timestamps. Hence, it is
useful to identify their informative events with respect to the
common reference signal: theordinal of an informative event
coincides with its position in the reference signal.

Definition III.8: The ordinal of an informative event
is defined as .

Let and be two latency equivalent signals: two infor-
mative events and are said
to be corresponding events iff .
The slack between two corresponding events is defined as

. Hence, if is strict, the ordinal
of an informative event coincides with its position on .
Observe that if and are latency equivalent signals, then
corresponding informative events in and have the same
ordinals (while they may have different timestamps).

We extend the notion of latency equivalence to behaviors in
a componentwise manner.

Definition III.9: Two behaviors and
are latency equivalent iff . A

behavior is strict iff every signal is
strict. Every class of latency equivalent behaviors contains only
one strict behavior. This is called thereference behavior.

Definition III.10: Two processes and are latency
equivalent if every behavior of one is latency
equivalent to some behavior of the other. A processis strict
iff every behavior is strict. Every class of latency equiv-
alent processes contains only one strict process: thereference
process.

Definition III.11: A signal is latency dominated by an-
other signal iff and with

.
Hence, referring to the example of Fig. 2, signalis domi-

nated by signal since while . Notice that a
reference signal is latency dominated by every signal belonging
to its equivalence class. Latency dominance is extended to be-
haviors and processes as in the case of latency equivalence.

D. Ordering the Set of Informative Events

A total order among events of a behavior is necessary to de-
velop our theory. In particular, we introduce an ordering among
events that is motivated by causality: events that have a smaller

ordinal are ordered before the ones with larger ordinals.9 In ad-
dition, to avoid combinational cycles that may be created by pro-
cessing events with the same ordinal, we rely on a well-founded
order over the set of signals. This order in real-life designs cor-
responds to input–output combinational dependencies as they
can be found, for instance, in the implementation of Mealy’s fi-
nite-state machines. We cast this consideration in the most gen-
eral form possible to extend maximally the applicability of our
method by giving the following definition.

Definition III.12: Given a behavior ,
symbol denotes a well-founded order on its set of signals.
The well-founded order induces alexicographic order over
the set of informative events of, s.t. for all pairs of events

with and

(1)

The following function returns the first informative event (in
signal of behavior) following an event with respect
to the lexicographic order .

Definition III.13: Given a behavior and
an informative event , the functionnextEventis
defined as

A stall movepostpones an informative event of a signal of a
given behavior by one timestamp. The stall move is used to ac-
count for long delays along communication channels (i.e., wires
on the chip) and to add delays where needed to guarantee func-
tional correctness of the design.

Definition III.14: Given an informative event
in a behavior , a stall move

returns a behavior ,
s.t. for all

A procrastination effectrepresents the “effect” of a stall move
on other signals of behaviorin correspondence

of events following in the lexicographic order. The pro-
cesses will “respond” to the insertion of stalls in some of their
signals by “delaying” other signals that are causally related to
the stalled signals. Given a behaviorfor each stall move on
events of , we have a corresponding set of behaviors (the pro-
crastination effect set).

Definition III.15: A procrastination effect is a point-to-set
map that takes a behavior
resulting from the application of a stall move on event
of behavior and returns a set of behaviors

s.t. iff the fol-
lowing three conditions hold:

1) ;

9Think of a strict process where the ordinal is related to the timestamp; the
order implies that past events do not depend on future events.

1064 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

Fig. 3. Behaviorb = stall(e (s)) is obtained stalling the fifth event of signals of behaviorb.

2) and
, where is the timestamp of event

;
3) finite s.t.

.

Each behavior in is obtained from by possibly
inserting other stalling events in any signal of, but only at
“later” timestamps, i.e., to postpone informative event that
follows with respect to the lexicographic order .
Observe that a procrastination effect returns a behavior that
latency dominates the original behavior.

E. Compositionality of Patient Processes

We are now ready to define the notion of patient process,
which lies at the core of the theory. A patient process can take
stall moves on any signal of its behaviors by reacting with the
appropriate procrastination effects. Patience is the key condition
for the intellectual property (IP) blocks to be combinable ac-
cording to our method. The following theorems guarantee that
the notion of latency equivalence of processes for patient pro-
cesses is compositional .

Definition III.16: A process is patient iff

Hence, the result of a stall move on one of the events of a patient
process may not satisfy the process, but one of the behaviors of
the procrastination effect corresponding to the stall move does
satisfy the process, i.e., if we stall a signal on an input to a func-
tional block, the block will be forced to delay some of its outputs
or if we request an output signal to be delayed then an appro-
priate delay may be added to some of its incoming inputs.

Lemma III.1: Let and be two patient processes. Let
be two behaviors with the same lexicographic

order s.t. . Then, there exists a behavior
.

Proof (Constructive):Let and
be the two behaviors with the same

lexicographic order. Since and are latency equivalent, each
event in has a corresponding event in and vice versa (see
Definition III.8). Let . Let

be the set of ordinals associated to pairs of corresponding

events of and whose timestamps differ. Define the distance
between behaviors as

if
otherwise

This distance is reminiscent of the Cantor metric. Thus,
and have distance equal to zero if all pairs of corre-

sponding events arealigned.10 In this case, and are
identical, i.e., they are the same behavior that belongs to

. Now, suppose that .
In this case, is the smallest ordinal among those which
are associated to unaligned pairs of corresponding events.
Without loss of generality, let be the
pair of corresponding events whose ordinal is equal to
and let . Apply a stall move to to obtain a new
behavior . Obviously,

. Note
that is not necessarily a behavior of . However, since

is patient, there exists
s.t. . Since, by defini-
tion of procrastination effect, , then also

. Since
the procrastination effect may postpone only events following

in the lexicographic order , then all the pairs
of corresponding events of and with ordinal smaller
than are still aligned. Now, there are two possibilities: if

, then one more pair has been
aligned and ; otherwise, we can reduce by
one this slack by repeating the same procedure starting from
behavior . In any case, after steps of the procedure
outlined above, we obtain a behavior that satisfies

and s.t. because one more pair of
corresponding events has been aligned. We say that we have
performed analignment step.

Now, if , then there are no more unaligned pairs,
the two behaviors are identical, and the lemma is proven since

. Instead, if , then we con-
sider the next unaligned pair of corresponding events and
we execute a second alignment step. Note that at theth step,
while aligning pair with ordinal , we may increase the
slack of some of the pairs following in the lexicographic
order, but we keep aligned all the pairs preceding. During
this sequence of alignment steps, we obtain two sequences of
behaviors (one of behaviors in latency equivalent to and
one of behaviors in latency equivalent to) whose distance
is decreasing monotonically. Since bothand contain the

10A pair of corresponding events is saidalignedif the events are synchronous
or, according to Definition III.8, if their slack is zero.

CARLONI et al.: THEORY OF LATENCY-INSENSITIVE DESIGN 1065

Fig. 4. Sketch for proof on compositionality of latency equivalence.

same finite number of informative events,11 the set of pairs
of unaligned corresponding events is also finite. The slack of
each of these pair is also a finite number. At theth step, we
have at most substeps to align , where is the starting
slack for . In the worst case, each behaviorobtained during
the substeps of the alignment step may have slacks of all the
remaining unaligned pairs increased by at most(see Defi-
nition III.15). Hence, at the end of theth step, has been
decreased by one, while all the slacks of its remaining elements
have been increased by at most , a finite number. Thus,
for , the new slacks for the remaining unaligned
pairs is . Globally, we perform in the worst
case alignment steps and for each of them we have a finite
number of substeps. Hence, the two sequences of behaviors are
also finite and the last elements of these sequences do not have
unaligned pairs and, therefore, have distance equal to zero.

Theorem III.1: If and are patient processes, then
is a patient process.
Proof: Let be a behavior in

. Consider behaviors
and , s.t. . For all

and for all , let . Since
, then and . Let

. Similarly,
and . Since is patient there exists
a behavior s.t. and since is
patient, there exists a behavior s.t. .
Notice that implies that . However, it is
not necessarily the case that . In fact, procrastination
effects may have misaligned pairs of corresponding infor-
mative signals that come after with respect
to lexicographic order . Since share the same
lexicographic order, by Lemma III.1, there exists a behavior

s.t. . The construction of
given in the proof of Lemma III.1 involves only unaligned
pairs of corresponding events betweenand and all these
unaligned pairs correspond to informative events that come
after with respect to lexicographic order . Further,
since the number of informative events is finite, the number
of unaligned pairs is also finite. Hence, each signalof
is obtained by inserting a finite number of stalling events not
earlier than timestamp with .
Therefore, by Definition III.15, . Since
we have already seen that , then is a
patient process.

Fig. 4 illustrates the above proof for the case when the two
behaviors are just 1-tuple signals.

11Recall that the number of informative events for every behavior considered
in latency-insensitive designs is finite.

Theorem III.2: For all patient processes , if
and then .

Proof: Let be a behavior in .
Latency equivalence implies that there must be behaviors

and such that
. Since and are latency equivalent and

and are patient, Lemma III.1 guarantees that there must be a
latency equivalent behavior . The other direction
of the proof is symmetric.

Therefore, we can replace any process in a system of pa-
tient processes by a latency equivalent process, and the resulting
system will be latency equivalent. A similar theorem holds for
replacing strict processes with patient processes.

Theorem III.3: For all strict processes and all patient
processes , if and , then

.
Proof: The argument that every behavior in has

an equivalent in is as in Theorem III.2. For the other
direction, let be a behavior in . Latency equivalence
implies that there must be behaviors and such
that . Since and are strict, and
are also strict. Being latency equivalent, they must, therefore,
be equal. Thus, .

This means that we can replace all processes in a system of
strict processes by corresponding patient processes and the re-
sulting system will be latency equivalent to the original one.
This is the core of our idea: take a design based on the assump-
tion that computation in one functional module and communica-
tion among modules “take no time” (synchronous hypothesis),12

i.e., the processes corresponding to the functional modules and
their composition are strict and replace it with a design where
communication does take time (more than one clock cycle) and,
as a result, signals are delayed, but without changing the se-
quence of informative events observed at the system level, i.e.,
with a set of patient processes.

IV. PATIENT PROCESSES ANDRELAY STATIONS

As explained in Section I, one of the goals of the latency-in-
sensitive design methodology is to be able to “pipeline” a com-
munication channel by inserting an arbitrary amount of memory
elements. In the framework of our theory, this operation corre-
sponds to adding some particular processes, calledrelay sta-
tions, to the given system. In this section, we give the formal
definition of a relay station and we show how patient systems
(i.e., systems of patient processes) are insensitive to the inser-
tion of relay stations. In Section IV-A, we discuss under which

12In other words, communication and computation are completed in one clock
cycle.

1066 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

assumption a generic system can be transformed into a patient
system.

A. Channels and Buffers

The tagged signal model provides the notion of channel to
formalize the composition of processes [33]. Achannelis a con-
nection13 constraining two signals to be identical.

Definition IV.1: A channel is a
process s.t.

As the following lemma formally proves, a channel is not a
patient process because it lacks the capacity of storing an event
and delaying its communication between two processes.

Lemma IV.1: A channel is not a patient
process.

Proof: Let be a behavior of a channel
and, without loss of generality, suppose that .

Consider a pair of corresponding informative events in
and and . Since

, then and, therefore, .
Moreover, implies that ,
since . Without
loss of generality, suppose that and are
followed by stalling events, i.e., formally,

.
Then, consider informative event . By
Definition III.13, . Now, let

be the behavior obtained by
applying a stall move on . At timestamp , presents
a stalling event, while the event of corresponding to
is , which occurs at timestamp .
Then, consider any behavior . By
Definition III.15, since ,
then . In par-
ticular, and, therefore,

, which, finally, implies that .
Hence, and, by Definition III.16,

is not patient.
Hence, to formally model communication delays as well as

pipeline stages, we introduce the notion of buffer: a buffer is a
process relating two signals of a behavior and is defined
by means of three parameters: capacity, minimum forward la-
tency , and minimum backward latency. A buffer forces sig-
nals to be latency equivalent and to satisfy the following
relationships for all natural numbers.

1) The difference between the amount of information events
seen at from timestamp zero to timestamp and the
amount of informative events seen atfrom timestamp
zero to timestamp is greater or equal than zero.

2) The difference between the amount of information events
seen at from timestamp zero to timestampand the
amount of informative events seen atfrom timestamp
zero to timestamp is at most .

13See Section III-A for the definition of connection.

Definition IV.2: A buffer with capacity ,
minimum forward latency , and minimum backward la-
tency is a process s.t.

iff and

(2)

(3)

By definition, given a pair of indexes , for all
, all buffers are latency equivalent. Ob-

serve also that buffer coincides with channel
and, therefore, is not a patient process. In particular, we are in-
terested in buffers having unitary latencies and we want to estab-
lish under which conditions such buffers are patient processes.

Lemma IV.2: If are two signals s.t. and
, then

1) s.t. , is
the corresponding event of in ;

2) s.t.
, where is the corresponding

event of in .

Proof: Let be the corresponding event of .
By Definition III.8, . By
Definition III.12, since , then .
For all informative events, with is
clearly . Instead, for all informative events

with , we have .
However, is clearly the minimum ordinal informative
event of that follows with respect to the lexi-
cographic order and, therefore, by Definition III.13,

. The second relation can
be easily proven using the previous relation. We know that

, where and are
corresponding events. Let be .
Then, necessarily, .
Since , then, by Definition
III.12, . Furthermore, is also the min-
imum ordinal event of , which comes after according
to lexicographic order and, therefore, by Definition III.13,

.
Fig. 5 illustrates the previous lemma.
Theorem IV.1:Let . For all , is

patient iff .
Proof: First, if , then inequalities (2) and (3)

become

(4)

(5)

Only If: By contradiction, we prove that if , then
is not a patient process. Suppose . For all

, let be a behavior of s.t.
and . Let

with .

CARLONI et al.: THEORY OF LATENCY-INSENSITIVE DESIGN 1067

Fig. 5. Sketch to illustrate Lemma IV.2.

Clearly, because inequality (4) does not hold
for since . Further, for all

, we can prove that . In fact,
since iff . However,
consider that and, since ,
then . Further, .
Therefore, . Recall
that by Definition III.15 of procrastination effect,

, where is the timestamp
of event . Hence, in our case,

and . Since ,
. This implies

that . Hence,
and is not patient.

If : We prove that if , then is patient. For
all , let be a behavior of . We
must analyze three distinct cases in which we, respectively, stall
an informative signal of and with .

1) For all , such that , let
. Since

iff inequality (4) does not
hold for some . In fact, satisfies the other
two conditions of Definition IV.2 because and
to insert a stalling event on (while remains the
same) cannot induce a violation of inequality (5). Now,
suppose first that satisfies also inequality (4) for all

: then, there exists at least a behavior that belongs
to and this behavior is
because . A more
interesting case is when inequality (4) does not hold:
in this case, . Then, consider a behavior

s.t. ,
while is obtained from by inserting a stalling
event at timestamp , where is also the timestamp
of event . Clearly, this
construction guarantees that .
It remains to be proven that . First, by
construction, . Then, check whether
satisfy inequalities (4) and (5) for all . First,
since and , by Lemma IV.2,

is the corresponding event of
in . Hence,

and, recalling Definition
III.8, . Since, by
hypothesis, satisfy inequality (4) for all ,
then . Compare and , respectively, with and

: has been derived by inserting a at , while

has been derived by inserting a at . Hence, we can
derive the following four equations. Further, each term in
these equations can be bounded using the fact that
satisfy inequalities (4) and (5) for all

(6)

(7)

(8)

(9)

Now, keeping in mind that , it is easy to prove that:

a) using (8) and (6), satisfy (4), ;
b) using14 (8) and (7), satisfy (4),

;
c) using (9) and (7), satisfy (4), ;
d) using (6) and (8), satisfy (5), ;
e) using (7) and (9), satisfy (5), ;
f) using (7) and (9), satisfy (5), .

Therefore, .
2) Consider now ,

where for all . Let
and be the corresponding

event of in : then, since and ,
by Lemma IV.2, .
Now, construct in such a way that

, while is obtained
from by inserting a stalling event at timestamp,
where . Hence,
if , then , else .
In both cases, this construction guarantees that

. It remains to be proven
that . First, by construction, .
Then, check whether satisfy inequalities (4) and
(5) for all . Compare and , respectively, with

and : has been derived by inserting a at

14Recall that� (s) = � .

1068 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

Fig. 6. Comparing two possible behaviors of finite buffersB (s ; s) andB (s ; s).

, while has been derived by inserting a at .
Hence, previous relations (6)–(9) hold also in this case.
Now, keeping in mind that here , it is easy to prove
that:

a) using (8) and (6), satisfy (4), ;
b) using (9) and (6), satisfy (4), ;
c) using (9) and (7), satisfy (4), ;
d) using (6) and (8), satisfy (5), ;
e) using15 (6) and (8), satisfy (5),

;
f) using (7) and (9), satisfy (5), .

Therefore, in this case, too.
3) Finally, for all let

, where for
all . Then, trivially,

.
In conclusion, combining all three cases, we have

Hence, is patient.
Consider a strict system with strict sig-

nals . As explained in Section III-A, processes can
be defined over different signal sets and to compose them we
may need to formally extend the set of signals of each process
to contain all the signals of all processes. However, without
loss of generality, consider the particular case of composing

processes that are already defined on the samesignals.
Hence, any generic behavior of is
also a behavior of iff for all , process

contains a behavior s.t.
. In fact, we may assume to derive system by

connecting the processes with channel processes
, where and . Fur-

ther, we may also assume to “decompose” any channel process
with an arbitrary number of channel processes

by adding aux-
iliary signals, each of them forced to be equal to . The
theory developed in Section III guarantees that if we replace
each process with a latency equivalent patient
process and each channel with a patient buffer ,
we obtain a system , which is patient and latency equiva-
lent to . In fact,having a patient buffer in a patient system
is equivalent to having a channel in a strict system. Since “de-
composing” a channel has no observable effect on a
strict system, we are, therefore, free to add an arbitrary number

15Recall that� (s) = � .

of patient buffers into the corresponding patient system to re-
place this channel. Since we use patient buffers with unitary la-
tencies, we can distribute them along that long wire on the chip
which implements in such a way that the wire gets de-
composed in segments whose physical lengths can be spanned
in a single real clock cycle (as anticipated in Section I).

B. Relay Stations

Lemma IV.3 proves that no behaviors in may con-
tain two informative events of , which are synchronous,
i.e., there cannot be any timestamp for which bothand
present an informative event. This implies that the maximum
achievable throughput across such a buffer is 0.5, which may
be considered suboptimal. Instead, buffer is the min-
imum capacity buffer that is able to “transfer” one informative
unit per timestamp, thus allowing, in the best case, to commu-
nicate with maximum throughput equal to one. Fig. 6 compares
two possible behaviors of these buffers.

Lemma IV.3: is the minimum capacity buffer with
s.t. for all , closed intervals of

(10)

Proof: Relation (10) says that is the minimum
capacity buffer with containing a behavior ,
where and present consecutive pairs of synchronous
informative events (i.e., the two informative events of each a pair
have the same timestamp) for all , closed intervals of .
Notice that the only buffer with having capacity less
than is . We first show that con-
tains at least one behavior satisfying relation (10) and then
we prove that the same is not true for any behavior of .
It is easy to construct an example of such a behavior for any.
For instance, consider a behavior s.t.

and that
Clearly, and inequalities (4) and (5) (with) are
satisfied for any . Hence, . Moreover, at all
timestamps , both and present an informa-
tive event.

Now, consider . If , combining inequalities (4)
and (5), we obtain that

CARLONI et al.: THEORY OF LATENCY-INSENSITIVE DESIGN 1069

Fig. 7. Example of a behavior of an equalizerE with I = f1; 2; 3g andO = f4; 5; 6g.

Hence, for all behaviors , sig-
nals are not only latency equivalent, but also correlated
according to a very regular pattern (see Fig. 6), which can be
summarized in two properties: 1) there are no two synchronous
informative events in and 2) for all timestamps, informa-
tive events appear alternately onand on (possibly, at not
consecutive timestamps). Property 1 is a negation of relation
(10).

Definition IV.3: The buffer is called arelay station.

V. LATENCY-INSENSITIVE DESIGN

In this section, we formally present the notion of latency-
insensitive design as an application of the concepts previously
introduced. To do so, we assume that:

1) the predesigned functional modules are synchronous
functional processes;

2) the processes are strictly causal;
3) the processes belong to a particular class of processes

calledstallable, a weak condition to ask the processes to
obey.

The basic ideas are as follows. Composing a set of predesigned
synchronous functional modules in the most efficient way is
fairly straightforward if we assume that the synchronous hy-
pothesis holds. This composition corresponds to a composition
of strict processes since there isa priori no need of inserting
stalling events. However, as we have argued in the introduc-
tion, it is very likely that the synchronous hypothesis will not
be valid for communication. If indeed the processes to be com-
posed are patient, then adding an appropriate number of relay
stations yields a process that is latency equivalent to the strict
composition. Hence, if we use as the definition of correct be-
havior the fact that the sequences of informative events do not
change, the addition of the relay stations solves the problem.
However, requiring processes to be patient at the onset is def-
initely too demanding from a practical point of view. Still, in
practice, a patient system can bederivedfrom a strict one as
follows: first, we take each strict process and we compose it
with a set of auxiliary processes to obtain an equivalent patient
process . To be able to do so, all processes must satisfy
a simple condition (the processes must be stallable) that is for-
mally specified in the next section. Then, we put together all
patient processes by connecting them with relay stations. The
set of auxiliary processes implements a “queuing mechanism”
across the signal of in such a way that informative events are
buffered and reordered before being passed to: informative
events having the same ordinal are passed tosynchronously.

In the sequel, we first introduce the formal definition of func-
tional processes. Then, we present the simple notion of stallable
processes and we prove that every stallable process can be en-
capsulated into a wrapper process which acts as an interface to-
ward a latency-insensitive protocol.

A. Stallable Processes

In the sequel, we consider only strictly causal processes and
for each of them we assume that the well-founded order
of Definition III.12 subsumes the causality relations among its
signals, i.e., formally .

Definition V.1: A process with and
is stallable iff for all its behaviors

and for all

Hence, while a patient process tolerates arbitrary distributions
of stalling events among its signals (as long as causality is pre-
served), a stallable process demands more regular patterns:
symbols can only be inserted synchronously (i.e., with the same
timestamp) on all input signals and this insertion implies the
synchronous insertion of symbols on all output signals at the
following timestamp. To assume that a functional process is stal-
lable is quite reasonable with respect to a practical implementa-
tion. In fact, most hardware systems can be stalled: for instance,
consider any sequential logic block that has agated clockor
a Moore finite state machine with an extra input, which, if
equal to , forces to stay in the current state and to emitat
the next cycle.

B. Encapsulation of Stallable Processes

Our goal is to define a group of functional processes that
can be composed with a stallable processto derive a patient
process which is latency equivalent to. We start considering
a process that aligns all the informative events across a set of
channels.

Definition V.2: An equalizer is a process with
and , such that

for all behaviors , we
have that and :

1) ;
2) .

The first relation forces the output signals to have stalling events
only synchronously, while the second guarantees that at every
timestamp the number of informative events occurred at any
output is always equal to the least number of informative events
seen by any input signal up to that timestamp. Fig. 7 illustrates
a possible behavior of an equalizer. Notice how the the presence
of a stalling event at a certain input at a given timestamp does not
necessarily force the presence of a stalling event on all outputs at
the same timestamp. For instance, while the two stalling events
on and at timestamps do force stalling events on all
output signals at , instead the stalling event present onat

does not result in any timestamp on the output signals: this is
due to the fact that at timestamp, all input signals have seen

1070 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

Fig. 8. Encapsulation of a stallable processP into a wrapperW (P).

at least one informative event while no output event have been
occurred on the output signal up to.

Definition V.3: An extended relay station is a process
with and s.t. signals
are related by inequalities (2) and (3) of Definition IV.2 (with

and) and

if
otherwise

Definition V.4: A stalling signal generator is a
process with and s.t.

and

if
otherwise

As illustrated in Fig. 8, any stallable processcan be com-
posed with an equalizer, a stalling signal generator, and some
extended relay stations to derive a patient process that is latency
equivalent to .

Definition V.5: Let be a stallable process with
and . A wrapper

process(or shell process) of is the process with
and , which is

obtained by composing with the following processes:

1) an equalizer with and
;

2) extended relay stations s.t.
and , with

3) astalling signal generator with
and .

Theorem V.1:Let be the wrapper process of Defini-
tion V.5. Process is a patient process
that is latency equivalent to .

Proof: Throughout the proof, we follow the index notation
of Definition V.5.

: Let be a
behavior of and

one of . Let
be

the corresponding behavior of . Then, by Definition V.2

of equalizer , and, by definition of relay
station, . Therefore, .

W Patient: Recalling Definition III.16, we need to prove
that

Consider first stalling any input signal of : for
all and all , let

. Two
cases may happen.

1) There exists a signal , s.t.
. As a conse-

quence, by Definition V.2, no additional stalling events
are added at the output of nor, ultimately, on the output
signals of . Hence, while stall move does
not affect any other signal, but , still and

(the stall move is “absorbed” by
the equalizer). Therefore, .

2) is a signal of s.t.
. In this case, the insertion of a stalling

event on at implies that all the output signals of
equalizer have a stalling event at . Then, by analyzing
the interrelationships among the components of, it is
easy to verify that . In fact, all the output signals
of are forced to have a stalling event at and,
similarly, all the output signals to have it
at . Hence, must be
also stalled. Then, since move does not
affect any other signal, but . However, since

, the insertion
of one stalling event on each of the wrapper outputs at
is compatible with the definition of procrastination effect
and, therefore, .

Next, consider stalling any output signal of : for
all and all , let

. By
definition of stall move, and

. Hence, again, . In
fact, the insertion of a stalling event on signal at has an
impact on signal of , which isconstrainedto stall the
input event occurring timestamps later.16

As a consequence, all the outputs of the stallable processmust
have a stalling event at . While no other stalling events are
forced on of at , all the remaining relay stations

must stall their .
Hence, because does not affect any
other signal, but . However, , since

, where
, then .

Hence, the insertion of one stalling event on each wrapper
output at is compatible
with the definition of procrastination effect. Therefore,

.

16Note that, by Definition IV.3,e (s) must be stalled even though8k 2

[h + 1; h + l � 1]; (� (s) = �)

CARLONI et al.: THEORY OF LATENCY-INSENSITIVE DESIGN 1071

C. Latency-Insensitive Design Methodology

By putting together the ideas discussed in the previous sec-
tions, we can derive the following guidelines for the definition
of the new design methodology.

1) Begin with a system of stallable processes and channels.
2) Encapsulate each stallable process to yield a corre-

sponding wrapper process that is patient and latency
equivalent to the original one.

3) By inserting the required amount of relay stations on each
channel, the latency of the communication among any
pair of processes now can be arbitrarily varied without
affecting the overall system functionality.

This approach clearly “orthogonalizes” computation and
communication: in fact, we can build systems by assembling
functional cores (which can be arbitrarily complex as far as they
satisfy the stalling assumption) and wrappers (which interface
them with the channels, by “speaking” the latency-insensitive
protocol). While the specific functionality of the system is
distributed in the cores, the wrappers can be automatically gen-
erated around them.17 Furthermore, the validation of the system
now can be efficiently decomposed based on assume-guarantee
reasoning and compositional model checking [35]–[38]: each
wrapper is verified assuming a given protocol and the protocol
is verified separately.

With regard to the design of digital integrated circuits, the
theory of latency-insensitive design can be used as the formal
basis for defining thelatency-insensitive design methodology
that is centered around the following simple noniterative design
flow.

1) The designers design and validate the chip as a collection
of synchronous modules that can be specified with the
usual hardware-description languages (HDLs).

2) Each module is automatically encapsulated within a block
of control logic (the wrapper) to make it latency insensi-
tive.

3) Traditional logic synthesis and place-and–route steps are
applied.

4) If the presence of unexpectedly large wire delays makes
it necessary, the resulting layout is corrected by simply
inserting the right amount of relay stations to meet the
clock cycle constraints everywhere.

Notice that the design, layout, and routing of individual modules
would not need to be changed to reflect any necessary changes
in wire latencies during the chip-level layout and wiring process.
This may clearly represent a significant advantage for future
system-on-a-chip designs, where the designers completing the
chip-level integration most likely will not work at the same
company as the designers of the individual modules. Further-
more, since it is based on the synchronous assumption, the ap-
proach facilitates the adoption of state-of-the art formal verifi-
cation techniques within a new design flow that, for the rest, can
be built using traditional and well-known layout and synthesis
CAD tools.

17This is the reason why wrappers are also calledshells: they just “protect” the
IP (the pearl) they contain from the “troubles” of the external communication
architecture.

D. Impact on System Performance

Naturally, the effectiveness of the latency-insensitive design
methodology is strongly related to the ability of maintaining
a sufficient communication throughput in the presence of in-
creased channel latencies. However, in the case of integrated cir-
cuit design, this is just one instance of a more general problem
that has to be faced while using DSM technologies. In fact, since
on-chip communication was not an issue with previous process
technologies, the vast majority of chips that have been realized
over the past two decades are based on architectural models re-
lying on low-latency communication to shared global resources.
The advantages of such models is that they provide the most
uniform computational framework and the best utilization of the
functional units. On the other hand, this focus on function rather
than communication is now seen as the fundamental conceptual
roadblock to be overcome in DSM design [7]. In this regard,
the latency-insensitive design methodology represents an inter-
esting approach due to the inherent separation of communica-
tion and computation.

Inserting extra latency stages on a cyclic pipeline does not
necessary translate into a performance hit. For instance, the case
of the Alpha 21264 microprocessor, where the integer unit is
partitioned into two modules and the latency for communicating
between them takes an additional clock cycle [39], shows how
it is possible to pipeline long wires, thereby increasing their la-
tency, while still offering high computational bandwidth. Sim-
ilarly, the presence of so-calleddrive stagesin the new hy-
perpipelined NETBURST microarchitecture [12] suggests that
even for high-end designs, such as the Pentium 4 micropro-
cessor, the insertion of extra stages dedicated exclusively to
handle wire delays may be the result of a precise engineering
choice. From this point of view, the present paper represents
a formal background for the definition of design methodolo-
gies that allow an efficient analysis and exploitation of the la-
tency/throughput tradeoffs at any level of the design flow.

Furthermore, the latency-insensitive approach can be ex-
tended to incorporate other techniques aimed to have the
performance of a design less susceptible to large variations in
channel latency. For instance, a simple technique to make the
design more robust on this respect consists in ensuring that
the design specification contains some “slack” in the form of
unneeded pipeline delays. If there is sufficient “slack” latency
around every cyclic path in the design, then, after the final
layout is derived, the latency-insensitive protocol allows us to
distribute this slack in a completely transparent manner to cover
an increase in wire latency without any changes to the design
or the layout of the modules (a sort ofdynamic retiming).
The overall design becomes more robust in the sense that it
is less likely that some modules would have to be changed to
recover performance lost due to unexpectedly large wire delays.
Nonetheless, there will be cases where cyclic paths of low
latency affecting the overall system throughput are inevitable.
In such cases, techniques typically used for microprocessor
design such asspeculationandout-of-order executionmay be
embodied within a latency-insensitive protocol. For instance,
when a particular data item in not yet computed, while being on
the critical path, it is sometimes possible to “guess” the likely

1072 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

value of this data and to allow the computation to proceed.
Later, this value can be “retracted” if it proves to be incorrect.
Such techniques may dramatically increase the overall system
performance, but they are currently adopted only in high-end
microprocessor design because they are error-prone and quite
difficult to implement. However, their demand is destined to
grow, as wire latencies will keep increasing. On the other hand,
these techniques may be rigorously built into a latency-in-
sensitive protocol that would allow speculation to break the
tight dependency cycles (provided the designer can identify an
appropriate guessing strategy). Being part of the protocol, they
would be isolated from the functional specification and they
would enter the design picture in acorrect-by-construction
manner that would not risk the introduction of a design error or
cause previous simulation work to be invalidated.

VI. CASE STUDY—THE PDLX MICROPROCESSOR

To experiment the proposed methodology, we performed a
“latency-insensitive design” of PDLX, an out-of-order micro-
processor with speculative execution. In the present section, we
first summarize the architectural specification of PDLX, and,
then, we discuss the latency-insensitive design as well as the
experimental results.

A. PDLX Architecture and Instruction Flow

The instruction set of PDLX is the same as the one of the DLX
microprocessor, described in [11]. The PDLX architecture is
based on an extended version of theTomasulo’s algorithm[40],
which combines traditional dynamic scheduling with hardware-
based speculative execution. As a consequence, the data path
of PDLX is similar to the one of some of the most advanced
microprocessor available on the market today [39], [41].

The PDLX architecture is conceptually illustrated by the
block diagram of Fig. 9. At the center of the diagram lies a
set of execution units (gray shaded) that operate in parallel.
Schematically, the PDLX behavior can be summarized as
follows: the branch processing unitsends the next value of
the program counter (PC)to the fetch unit, which fetches the
corresponding instruction from theinstruction cacheand passes
it to the decode unit. Once instruction decoding is completed,
the result arrives to thedispatch unit, which interacts with the
reservation stations (RSs)of the different processing units as
well as with thecompletion unitand thesystem register unit.
Instructions are fetched, decoded, and dispatched sequentially
following the order of the program that gets executed. Once
a new decoded instruction arrives, thedispatch unitstarts
by assigning it to one of the functional categories (integer
arithmetic/logic, floating-point, load, store, branch,) and
then checks whether the following two conditions are verified.

1) There is one entry available in the reorder buffer within
thecompletion unit.

2) There is an available reservation station at the head of a
processing unit matching the function category to which
the instruction belongs.

if one of these conditions is not satisfied thedispatch unitstalls,
otherwise instruction is dispatched: this means that the instruc-
tion is labeled with atag identifying the reorder buffer entry

which has been assigned to it and, at the end of the execution,
will contain the result. Then, operands and opcode of instruc-
tion are loaded into the selected reservation station to start the
execution. In fact, the execution starts immediately only if the
values of the operands which have been read from thesystem
register unitare “currently correct” in the sense that no other
instruction (previously dispatched and still not completed) is
destined to change the value of one of these operands. If this is
indeed the case, for each operand whose value is not yet avail-
able thedispatch unitwrites on the corresponding entry in the
reservation station the tag that identifies the reorder buffer
entry previously assigned to instructionon which the operand
depends. The execution of instructionis procrastined until all
correct values of its operands arrive at the reservation station.
Different instructions may take a different number of clock cy-
cles to execute not only due to this procrastination, but also be-
cause their executions may present different latencies. When the
execution of an instruction ends, the corresponding processing
unit broadcast the result to the reorder buffer entry and to any
reservation station that is awaiting it.

The completion unittracks each instruction from dispatch
through execution and retires it by removing the result from the
bottom entry of the reorder buffer and committing it to update
the system registers. In-order completion guarantees that the
system is in the correct state when it is necessary to recover from
a mispredicted branch or any exception. In the presence of a
conditional branch whose condition cannot be resolved immedi-
ately, thebranch processing unitpredicts the “branch target ad-
dress” and instruction fetching, dispatching and execution con-
tinue from the predicted path. However, these instructions can
not commit and write back results into the system register until
the prediction has been resolved, i.e., determined to be correct.
Instead, when a prediction is determined to be incorrect, the in-
struction from the wrong path are flushed from the datapath and
the execution resumes from the correct path.

B. Latency-Insensitive Design of PDLX

We performed a high-level cycle-accurate design of PDLX
by using BONeS DESIGNER [42], a CAD tool that provides
a powerful modeling and analysis environment for system de-
sign. We first defined a synchronous specification of the PDLX
and we designed each of of the PDLX modules illustrated in
Fig. 9, keeping in mind only the following informal rule to make
the process stallable:at each clock cycle, the execution process
of a module can always be frozen without affecting its internal
state. Independently from the design of the PDLX modules, we
specified also a latency-insensitive protocol library, which con-
tains parameterized components to guide the automatic genera-
tion of different kinds of relay stations and wrappers. Finally,
we encapsulated each module in a wrapper and we obtained
the final system. Obviously, this decomposition of the hardware
implementing the PDLX is not the only possible, let alone the
best, one. Still, while reasonably simple, it presents interesting
challenges to the realization of the proposed latency-insensitive
communication architecture. In particular, modules such as the
fetch unitand thedispatch unitmerge channels coming from
separate sources, and which are likely to have different laten-
cies. Further, each time the predicted value of a conditional

CARLONI et al.: THEORY OF LATENCY-INSENSITIVE DESIGN 1073

Fig. 9. PDLX microprocessor block diagram: conceptual view.

branch is verified a “feedback path” gets activated from the
system register through thecompletion unitto thebranch pro-
cessing unit.

We specified most PDLX modules based on the assumption
that they communicate by means of point-to-point channels,
whose latencies may be arbitrary. However, due to the particular
structure of a microprocessor such as PDLX and, in particular,
to the parallel organization of its execution units, we decided to
adopt a different type of communication structure to connect the
several relay stations, the execution units and the reorder buffer:
a pipelined ring. A ring, like a bus, inherently supports broad-
cast-based communication: the sender place a packet on the ring
while the other modules inspect (snoop) it as it goes by to see if
it is relevant to them [43]. In our case, the snooping mechanism
is obviously based on identifying the tags associated to the en-
tries of theReorder Buffer, as described in Section VI-A. In gen-
eral, to keep sequential consistency on a ring is more complex
than on a bus since multiple packets may traverse it simultane-
ously. However, the characteristics of our system help us in this
perspective because thecompletion unitguarantees in-order in-
struction commitment together with the correct serial progress
of the state of the system. The linear point-to-point nature of
a ring allows aggressive pipelining and potentially very high
clock rates. A disadvantage is that the communication latency
is high, growing linearly with the number of nodes on the ring.
Overall, based on its characteristics, a ring represents an inter-
esting design solution in the framework of our design method-
ology, where modules are by definition latency insensitive and
pipelining is extensively applied.

C. Experimental Results

To test our design, we took some simple numericalpro-
grams (permutations, binary search,) and we generated the
corresponding DLX assembler code by using DLXCC, a pub-

licly available DLX compiler [44]. Then, we loaded the assem-
bler into the PDLXinstruction cacheand we executed it while
logging every read/write access to thedata cache. Finally, we
compared the “log file” with the one obtained executing the
same assembler code on the DLX simulator DLXSIM to verify
that the functional behavior was indeed the same.

For each program execution, we computed the total number
of clock cycles necessary to complete the execution of the as-
sembler code: this number is equal to , where is the
number of instruction that have been issued,is the number of
cycles lost due to a stall within the execution unit, andis the
number of cycles lost due to pipeline latency. Since the PDLX
is a single-issue multiprocessor, the instruction throughput

is a quantity less than or equal to one. This quantity can be
multiplied by the system clock frequency to obtain theeffective
instruction throughput , which allows us to
compare the execution of the same assembler code on different
PDLX implementations running at different speeds. Fig. 10 il-
lustrates the results obtained running three different assembler
programs: on the axis, we have the instruction throughput on
the bottom chart and the effective instruction on the top chart.
In both charts, each discrete point on theaxis corresponds to
a different PDLX implementation with a different fixed amount
of latency on some communication channels.

For this experiment, we focused on two specific channels on
Fig. 9: channel between theinstruction memory manage-
ment unitand theinstruction cache (I-Cache)and channel
between thedata memory management unitand thedata cache
(D-Cache). We varied the latencies of the two channels as fol-
lows: going from left to right on the axis, each of the 18
data points represents an implementation case and is labeled as

, where and denote the amounts by which the latencies
of channels and have been increased. In particular, we
varied from zero to five and from zero to two. As expected,
the bottom chart confirms that the more we increase the latencies

1074 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

(a)

(b)

Fig. 10. PDLX performance. (a) Throughput. (b) Effective throughput.

between the two caches and the rest of the system, the higher is
the throughput degradation. It is also clear that for this PDLX
implementation, the impact of increasing the D-Cache latency
by one unit while leaving untouched the I-Cache latency (data
point) is more or less equivalent to increase the I-Cache
latency by four units while leaving untouched the D-Cache la-
tency (data-point)

The data illustrated in the above chart of Fig. 10 have been
obtained based on the assumption that the wires grouped in
channels and represent the critical path of the overall
PDLX design and that, after segmenting them (by inserting relay
stations), we could afford to raise the clock frequency appro-
priately. Specifically, for each implementation case, we set the
system clock cycle as . One could argue
that the assumption is too coarse because, for instance, it is un-
likely that all the other modules in the design are able to work
correctly after doubling the clock. However, the main point that
we want to stress here is that within the present methodology,
one may perform an early exploration of the latency/throughput
tradeoffs to guide architectural choices based on a rough es-
timation of the channel latencies and then keep refining these
choices at the different stages of the design flow to accommo-
date various implementation constraints, while relying always
on the property of the latency-insensitive communication pro-

tocol. In this regard, it is important to emphasize that all the
above implementations are functionally equivalent by construc-
tion, being obtained simply by changing the number of relay
stations on the channels and with no need of redesigning any
PDLX module. Furthermore, the insertion of relay stations can
be made at late stages in the design process, after detailed infor-
mation can be extracted from the physical layout, to “fix” those
channels whose latencies are longer than the desired clock cycle.
While performing this operation, it is easy to keep an exact track
of the throughput variations.

VII. CONCLUSION

This paper presents the theory of latency-insensitive design.
Latency-insensitive designs are synchronous distributed sys-
tems composed by functional modules that exchange data on
communication channels according to a latency-insensitive
protocol. The protocol guarantees that latency-insensitive
systems, composed of functionally correct modules, behave
correctly independently of the channel latencies. This allows
us to increase the robustness of a design implementation
because any delay variations of a channel can be “recovered”
by changing the channel latency while the overall system
functionality remains unaffected. The protocol works on the

CARLONI et al.: THEORY OF LATENCY-INSENSITIVE DESIGN 1075

assumption that the functional modules are stallable, a weak
condition to ask the processes to obey.

An important application of the proposed theory is repre-
sented by the latency-insensitive methodology to design large
digital integrated circuits with DSM technologies. The method-
ology is based on the assumption that the design is built by as-
sembling blocks of IPs that have been previously designed and
verified. Thanks to the compositionality of the notion of latency
equivalence, this methodology allows us to orthogonalize com-
munication and computation, while the timing requirements im-
posed by the clock are met by construction. Furthermore, since
it is based on the synchronous assumption, the approach facili-
tates the adoption of formal validation techniques within a new
design flow that, for the rest, can be built using traditional CAD
tools.

ACKNOWLEDGMENT

The authors would like to thank L. Lavagno and A. Saldanha
for the discussions that led to the theory of latency-insensitive
design. They would also like to thank P. Scaglia for his support
and continuous encouragement. Finally, they would also like
to thank the reviewers for their help in improving the overall
quality of the paper.

REFERENCES

[1] J. Cong, “Challenges and opportunities for design innovations in
nanometer technologies,” SRC Design Sciences Concept Paper, Dec.
1997.

[2] H. Kapadia and M. Horowitz, “Using partitioning to help convergence in
the standard-cell design automation method,” inProc. Design Automa-
tion Conf., June 1999, pp. 592–597.

[3] M. T. Bohr, “Interconnect scaling—The real limiter to high performance
ULSI,” in Proc. IEEE Int. Electron Devices Meeting, Dec. 1995, pp.
241–244.

[4] R. Ho, K. Mai, H. Kapadia, and M. Horowitz, “Interconnect scaling im-
plications for CAD,” inProc. Int. Conf. Computer-Aided Design, Nov.
1999, pp. 425–429.

[5] M. T. Bohr, “Silicon trends and limits for advanced microprocessors,”
Commun. ACM, vol. 41, no. 3, pp. 80–87, Mar. 1998.

[6] M. J. Flynn, P. Hung, and K. W. Rudd, “Deep-submicron microprocessor
design issues,”IEEE Micro, vol. 19, pp. 11–13, July 1999.

[7] R. Ho, K. Mai, and M. Horowitz, “The future of wires,”Proc. IEEE, vol.
89, pp. 490–504, Apr. 2001.

[8] D. Matzke, “Will physical scalability sabotage performance gains?,”
IEEE Comput., vol. 8, pp. 37–39, Sept. 1997.

[9] V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger, “Clock
rate versus ipc: The end of the road for conentional microarchitectures,”
in Proc. 27th Annu. Int. Symp. Computer Architecture, June 2000, pp.
248–250.

[10] P. M. Kogge,The Architecture of Pipelined Computers. New York:
McGraw-Hill, 1981, Advanced Computer Science Series.

[11] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quanti-
tative Approach. San Mateo, CA: Morgan Kaufmann, 1996.

[12] P. Glaskowski, “Pentium 4 (partially) previewed,”Microprocessor Rep.,
vol. 14, no. 8, pp. 10–13, Aug. 2000.

[13] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli,
“Latency insensitive protocols,” inProceedings of the 11th Interna-
tional Conference on Computer-Aided Verification, N. Halbwachs
and D. Peled, Eds. New York: Springer-Verlag, 1999, vol. 1633, pp.
123–133.

[14] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-Vin-
centelli, “A methodology for ‘correct-by-construction’ latency insensi-
tive design,” inProc. IEEE Int. Conf. Computer-Aided Design, Nov.
1999, pp. 309–315.

[15] A. Davis and S. M. Nowick, “Asynchronous circuit design: Motiva-
tion, background, and methods,” inAsynchronous Digital Circuit De-
sign, Workshops in Computing, G. Birtwistle and A. Davis, Eds. New
York: Springer-Verlag, 1995, pp. 1–49.

[16] S. Hauck, “Asynchronous design methodologies: An overview,”Proc.
IEEE, vol. 83, no. 1, pp. 69–93, Jan. 1995.

[17] W. A. Clark, “Macromodular computer systems,” inAFIPS Conference
Proceedings: 1967 Spring Joint Computer Conference. New York:
Academic, 1967, vol. 30, pp. 335–336.

[18] W. A. Clark and C. E. Molnar, “The promise of macromodular systems,”
in Proceedings of the 6th Annual IEEE Computer Society International
Conference. Piscataway, NJ: IEEE Press, 1972, pp. 309–312.

[19] C. E. Molnar, T.-P. Fang, and F. U. Rosenberger, “Synthesis of delay-
insensitive modules,” in1985 Chapel Hill Conference on Very Large
Scale Integration, H. Fuchs, Ed. Rockville, MD: Computer Science,
1985, pp. 67–86.

[20] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, and T.-P. Fang,
“Q-modules: Internally clocked delay-insensitive modules,”IEEE
Trans. Comput., vol. 37, pp. 1005–1018, Sept. 1988.

[21] J. T. Udding, “A formal model for defining and classifying delay-insen-
sitive circuits,”Distrib. Comput., vol. 1, no. 4, pp. 197–204, 1986.

[22] J. A. Brzozowski and J. C. Ebergen, “On the delay-sensitivity of gate
networks,”IEEE Trans. Comput., vol. 41, pp. 1349–1360, Nov. 1992.

[23] A. J. Martin, “The limitations to delay-insensitivity in asynchronous
circuits,” in Advanced Research in VLSI: Proceedings of the 6th MIT
Conference, W. J. Dally, Ed. Cambridge, MA: MIT Press, 1990, pp.
263–278.

[24] J. C. Ebergen, “A formal approach to designing delay-insensitive cir-
cuits,” Distrib. Comput., vol. 5, no. 3, pp. 107–119, 1991.

[25] M. B. Josephs and J. T. Udding, “An overview of DI algebra,” inProc.
Hawaii International Conference on System Sciences. Los Alamitos,
CA: IEEE Comput. Soc. Press, 1993, vol. I.

[26] S. M. Burns, “Performance analysis and optimization of asynchronous
circuits,” Ph.D. dissertation, California Inst. Technol., Pasadena, CA,
1991.

[27] P. Beerel and T. H.-Y. Meng, “Automatic gate-level synthesis of speed-
independent circuits,” inProc. IEEE Int. Conf. Computer-Aided Design,
Nov. 1992, pp. 581–587.

[28] D. L. Dill, “Trace Theory for Automatic Hierarchical Verification
of Speed-Independent Circuits,” inACM Distinguished Disserta-
tions. Cambridge, MA: MIT Press, 1989.

[29] A. Kondratyev, M. Kishinevsky, B. Lin, P. Vanbekbergen, and A.
Yakovlev, “Basic gate implementation of speed-independent circuits,”
in Proc. Design Automation Conf., June 1994, pp. 56–62.

[30] J. L. A. van de Snepscheut,Trace Theory and VLSI Design. Berlin,
Germany: Springer-Verlag, 1985, vol. 200, Lecture Notes in Computer
Science.

[31] D. C. Ku and G. De Micheli, “Relative scheduling under timing con-
straints,” inProc. Design Automation Conf., June 1990, pp. 59–64.

[32] D. Filo, D. Ku, C. Coelho, and G. De Micheli, “Interface optimization for
concurrent systems under timing constraints,”IEEE Trans. Computer-
Aided Design, vol. 13, pp. 268–281, Sept. 1993.

[33] E. A. Lee and A. Sangiovanni-Vincentelli, “A framework for comparing
models of computation,”IEEE Trans. Computer-Aided Design, vol. 17,
pp. 1217–1229, Dec. 1998.

[34] A. Benveniste and P. L Guernic, “Hybrid dynamical systems theory and
the signal language,”IEEE Trans. Automat. Contr., vol. 5, pp. 535–546,
May 1990.

[35] E. M. Clarke, D. E. Long, and K. L. McMillan, “Compositional model
checking,” in Proc. 4th Annu. Symp. Logic in Computer Science,
Asilomar, CA, June 1989, pp. 464–475.

[36] K. L. McMillan, “A compositional rule for hardware design refinement,”
in Proc. 9th Int. Conf. Computer-Aided Verification, Haifa, Israel, June
1997, pp. 24–35.

[37] , “Verification of an implementation of Tomasulo’s algorithm
by compositional model checking,” inProc. 10th Int. Conf. Com-
puter-Aided Verification, Vancouver, BC, Canada, July 1998, pp.
110–121.

[38] T. A. Henzinger, S. Qadeer, and R. K. Rajamani, “You assume, we
guarantee: Methodology and case studies,” inProc. 10th Int. Conf.
Computer-Aided Verification, Vancouver, BC, Canada, July 1998, pp.
440–451.

[39] B. A. Giesekeet al., “A 600 MHz superscalar RISC microprocessor with
out-of-order execution,”Tech. Dig. IEEE Int. Solid-State Circuits Conf.,
pp. 176–177, Feb. 1997.

[40] R. M. Tomasulo, “An efficient algorithm for exploiting multiple arith-
metic units,”IBM J. Res. Devel., vol. 11, pp. 25–33, Jan. 1967.

1076 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 9, SEPTEMBER 2001

[41] R. E. Kessler, “The alpha 21 264 microprocessor,”IEEE Micro., vol. 19,
pp. 24–36, Mar. 1999.

[42] S. J. Schaffer and W. W. LaRue, “BONeS DESIGNER: A graphical en-
vironment for discrete-event modeling and simulation,” inProceedings
of the 2nd International Workshop on Modeling, Analysis, and Simula-
tion of Computer and Telecommunication Systems. Los Alamitos, CA:
IEEE Comput. Soc. Press, 1994, pp. 371–374.

[43] D. E. Culler and J. P. Singh,Parallel Computer Architecture: A Hard-
ware/Software Approach. San Mateo, CA: Morgan Kaufmann, 1999.

[44] The DLX Software (1994). [Online]. Available: ftp://max.stan-
ford.edu/pub/hennessy-patterson.software

Luca P. Carloni (S’95) received the Laurea degree
(summa cum laude) in electrical engineering from
the University of Bologna, Bologna, Italy, in 1995,
and the M.S. degree in electrical engineering and
computer sciences from the University of California,
Berkeley, in 1997. He is currently working towards
the Ph.D. degree in electrical engineering and
computer sciences at the same university.

His current research interests include embedded
systems design, high-level synthesis, logic synthesis,
and combinatorial optimization.

Kenneth L. McMillan received the B.S. degree in
electrical engineering from the University of Illinois,
Urbana, in 1984, the M.S. degree in electrical engi-
neering from Stanford University, Stanford, CA, in
1986, and the Ph.D. degree in computer science from
Carnegie Mellon University, Pittsburgh, PA, in 1992.

He has been a Chip Designer, Biomedical Engi-
neer, a Member of the Technical Staff at AT&T Bell
Laboratories, and is currently a Research Scientist at
Cadence Berkeley Laboratories, Berkeley, CA. His
current research interests include computer music,

formal verification, and design methodology.

Alberto L. Sangiovanni-Vincentelli (F’83) received
the Dott. Ing. degree (summa cum laude) in electrical
engineering and computer science from the Politec-
nico di Milano, Milan, Italy, in 1971.

He holds the Edgar L. and Harold H. Buttner Chair
of Electrical Engineering and Computer Sciences at
the University of California, Berkeley, where he has
been on the Faculty since 1976. From 1980 to 1981,
he spent a year as a Visiting Scientist with Mathe-
matical Sciences Department of the IBM T.J. Watson
Research Center, Yorktown Heights, NY. In 1987, he

was a Visiting Professor with the Massachusetts Institute of Technology, Cam-
bridge. He cofounded Cadence Design Systems (where he is currently the Chief
Technology Advisor and Member of the Board of Directors), Synopsys, Inc.
(where he was Chair of the Technical Advisory Board), and Comsilica, a startup
in the wireless communication area (where he is currently the Chairman of the
Board). He also founded the Cadence Berkeley Laboratories and the Kawasaki
Berkeley Concept Research Center, where he is Chairman of the Board. He was
a Director of ViewLogic and Pie Design Systems. He is currently a Member of
the Board of Directors of Sonics Inc., Softface, and Accent. He has consulted
for a number of U.S. companies, including IBM, Intel, AT&T, GTE, GE, Harris,
Nynex, Teknekron, DEC, HP, Japanese companies, including Kawasaki Steel,
Fujitsu, Sony and Hitachi, and European companies, including SGS-Thomson
Microelectronics, Alcatel, Daimler-Benz, Magneti-Marelli, BMW, Bull. He is
the Scientific Director of the Project on Advanced Research on Architectures
and Design of Electronic Systems, a European Group of Economic Interest. He
is on the Advisory Board of the Lester Center of the Haas School of Business
and of the Center for Western European Studies and a member of the Berkeley
Roundtable of the International Economy. He has authored or coauthored over
530 papers and 14 books in the area of design methodologies, large-scale sys-
tems, embedded controllers, hybrid systems and tools.

Dr. Sangiovanni-Vincentelli is a Member of the National Academy of En-
gineering. He received the Distinguished Teaching Award of the University of
California in 1981, the Guillemin-Cauer Award in 1982, the Darlington Award
in 1987, and the 1995 Graduate Teaching Award of the IEEE. He was the Tech-
nical Program Chairperson of the International Conference on Computer-Aided
Design and is currently General Chair and was also the Executive Vice-Presi-
dent of the IEEE Circuits and Systems Society.

