
EigenEdge: Real-Time Software Execution at the Edge with
RISC-V and Hardware Accelerators

Kuan-Lin Chiu∗
chiu@cs.columbia.edu
Columbia University
New York, NY, USA

Guy Eichler∗
guyeichler@cs.columbia.edu

Columbia University
New York, NY, USA

Biruk Seyoum
biruk@cs.columbia.edu
Columbia University
New York, NY, USA

Luca P. Carloni
luca@cs.columbia.edu
Columbia University
New York, NY, USA

ABSTRACT
An important goal in the field of real-time computation at the
edge is to achieve balance between low-latency requirements and
strict low-power constraints. Into this equation, we would like
to incorporate simple Application Programming Interfaces (APIs)
for software development and utilization of open-source IPs that
encourage reusability in the public domain. One big challenge is
to bridge the gap between APIs that simplify the implementation
of complex algorithms but mostly rely on CPU-centric comput-
ing paradigms, and lightweight heterogeneous hardware architec-
tures designed for the constraints of real-time computation at the
edge. We introduce a hardware/software co-design approach that
combines software applications designed with Eigen, a powerful
open-source C++ library that abstracts linear-algebra workloads,
and real-time execution on heterogeneous System-on-Chip (SoC)
architectures. We use ESP, an open-source SoC design platform
that allows us to integrate the CVA6 RISC-V processor and custom
hardware accelerators. With FPGA-based experiments, we show
that our approach provides significant performance and energy
efficiency gains, while maintaining the simplification provided by
high-level software development.
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1 INTRODUCTION
While the development of Mobile Edge Computing (MEC) and
Internet-of-Things (IoT) is rapidly growing, developers and re-
searchers are trying to find ways to bridge the gaps between com-
plex computation-intensive workloads in popular domains and the
limited resources of constrained IoT platforms [13, 27, 43, 44, 46].
These optimized implementations take advantage of the synergy
between software and hardware development, and maximize the po-
tential of limited hardware resources for the exponentially growing
need in computational abilities [2, 5, 6, 17, 18, 47].

New applications tend to rely more on the development with
increasing abstraction, where specialized libraries and benchmarks
allow developers to isolate the implementation of the algorithms
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Fig. 1: The EigenEdge hardware/software co-design approach.

from the infrastructure of the system. These libraries provide opti-
mized and configurable implementations for commonly used ker-
nels, and allow the developers to focus on the performance of the
application as a whole [12, 26, 29, 37].

One popular library is Eigen [29]. It provides linear-algebra (LA)
methods that can be used for various applications in the fields of
Quantum Computing, Robotics, Healthcare, and more [7, 11, 28, 30,
35, 39]. The Eigen syntax enables developers to perform fundamen-
tal LA operations (matrix and vector manipulation, factorization,
decomposition, etc.) with minimal lines of code. In addition, the
library is highly optimized for commercial processors, and supports
multi-threading with OpenMP [3].

To evaluate the performance of Eigen under different levels of
parallelism, we conducted an analysis on Intel Xeon platforms with
different numbers of processor cores and a clock frequency of 2.2
GHz. On each platform we ran the same application that uses Eigen
to compute the product of two 1000 × 1000 matrices. We tested the
applications with multi-threading enabled and disabled. The results
of the analysis are summarized in Fig. 2. As expected, enablingmulti-
threading with multiple cores provides better performance. For
instance, with an 8-core processor, the computation takes only 1.8
seconds with multi-threading enabled, and 7.4 seconds with multi-
threading disabled. On a single-core Intel processor, however, multi-
threading provides no substantial benefit over a single-threaded
execution. Nevertheless, lightweight edge devices with a single-
core processor will not benefit from multi-threading with Eigen.
This limitation motivated us to explore alternative solutions for
running Eigen workloads on edge devices as heterogeneous SoCs.

In addition, to exploit the simplifications offered by Eigen for IoT
and MEC requires bridging the gap between software applications
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Fig. 2: Execution on varying numbers of Intel Cores with
OpenMP enabled/disabled.

that use Eigen and lightweight heterogeneous SoC architectures
that are based on low-power processors and specialized hardware
accelerators [5, 8, 41, 42, 47]. As we seek a solution to bridge this gap,
we aim at making it available for open-source projects to support
its accessibility and reusability in the public domain.

We present EigenEdge (Fig. 1), a software architecture that al-
lows any C++ application that uses Eigen to take advantage of spe-
cialized hardware accelerators embedded in a heterogeneous SoC.
EigenEdge maintains the abstraction in the syntax of Eigen, while
decoupling the system-level integration from the development of
the application. EigenEdge simplifies hardware/software co-design
and combines the open-source Eigen C++ library, the ESP SoC de-
sign platform [33], the CVA6 RISC-V processor [45], and hardware
accelerators. FPGA-based experiments show that offloading com-
putations from Eigen to the accelerators results in performance and
energy-efficiency gains over similar Eigen workloads running on
CVA6 alone. With the integration of more hardware accelerators,
EigenEdge can close the gap among abstract software, efficient
hardware, and real-time computation at the edge.

2 BACKGROUND AND RELATEDWORK
This section provides a summary of the main projects we combined
for the design of EigenEdge and a discussion of related work in the
field of hardware/software co-design.

Eigen C++ Linear-Algebra Library. Linear-Algebra (LA) is the
basis of almost all areas in mathematics. LA provides concepts that
are used in many areas of computer science as graphics, cryptog-
raphy, machine learning, computational biology, and more. The
Eigen library provides a clean C++ API for using LA objects and
methods. Eigen is a public library and has been widely used in
the backend of several application domains including AI [39], vi-
sion/graphics [1, 28], quantum computing [30], robotics [38], and
healthcare [11]. Eigen contains a benchmark of LA operations with
support for dense matrices and vectors of varying sizes, which
can be decided statically or dynamically. While providing limited
support for operations on sparse matrices, Eigen has been extended
to support several specialized features, such as non-linear optimiza-
tion [14], polynomial solvers, FFT, etc [29].

Eigen uses C++ expression templates to optimize the code at
compile time. It uses the OpenMP library to enable multi-threading,
as well as automatic vectorization for several compilers and archi-
tectures that support SIMD instructions. Eigen achieves superior
performance by applying optimization techniques that avoid re-
dundant memory accesses, allocate memory statically for fixed-size
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Fig. 3: EigenEdge software architecture.

matrices, support lazy compiler evaluations, and globally-optimized
compilation. Finally, Eigen has also been extended to support other
programming languages such as Python, Java, and R [25].

The ESP Platform. ESP is an open-source research platform
for heterogeneous SoC design [33]. ESP combines a scalable archi-
tecture and a flexible methodology [9]. The tile-based architecture
includes accelerator tiles, processor tiles, memory tiles (each con-
taining a channel to main memory), and I/O tiles. The methodology
supports several flows for the design of hardware accelerators, and
simplifies the integration of third-party accelerators [16]. The pro-
cessor tiles can contain one of the following cores: RISC-V 64-bit
CVA6 [45], SPARC 32-bit LEON3 [15], and RISC-V 32-bit Ibex [31].
Each tile has a socket that interfaces it with a multi-plane packet-
switched network-on-chip (NoC) with a 2D-mesh topology.

Related work. Hardware/software co-design techniques help
achieve broader exploration of the design space at the system level
and better implementations in terms of performance and energy ef-
ficiency [5, 6, 17, 36, 47]. This approach has been adopted in several
works on a variety of application domains. In edge computing, co-
design approaches have already been used in the implementations
of several applications including image processing [23], multimedia
and signal processing [4, 20], smart-networks [10], mapping for nav-
igation [19, 32], and more. The booming world of AI and machine
learning is also taking advantage of this approach [6, 24, 34, 40],
and there is a strong trend in adding intelligence into the edge [6].
Our work can be leveraged by many projects in these fields that
use embedded systems for computational problems at the edge.

3 SOFTWARE ARCHITECTURE
Fig. 3 presents the software architecture of EigenEdge. The design
is based on three main components: (1) a C++ shared library, (2) a
C interface, and (3) device drivers to control hardware accelerators
at runtime. The software architecture in Fig. 3 implements a link
between the C application and the C++ shared library, and two
other links with the device drivers. All the links are created at
compilation time.

The C++ Shared Library. As part of the EigenEdge software
architecture (Fig. 3) we created a shared library (eigen_run.so).
This library is the key to run any software application that uses
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Fig. 4: Performance of matrix-matrix multiplications.

Table 1: System setup for the experiments

Processor CVA6, RISC-V, 64-Bit, 78 MHz
L1 Cache ICache: 16KB, DCache: 32KB
Accelerator 1 General Matrix Multiplication (gemm)
Memory 2.5 GB DDR4-2400 memory
Evaluation Board proFPGA Virtex UltraScale XCVU440
Operating System Linux v4.20.0
HLS Tool Cadence Stratus 20.25
Synthesis Tool Xilinx Vivado 2019.2

Eigen on an embedded edge device. In EigenEdge, the applications
simply need to be added to the shared library as new functions,
and declared within an extern "C" linkage symbol that allows
them to be accessed by a function call from a C application (Fig. 3).
The extern "C" symbol is necessary because parts of the software
architecture are written in C, while the applications are written in
C++. The C parts are compiled with a gcc compiler while the C++
parts are compiled with a g++ compiler. This required a non-trivial
solution for linking the different parts of the project.

The shared library includes Eigen and allows any application
to use all the features and methods Eigen provides. However, the
shared library contains the implementation of customized opera-
tors (product, addition, subtraction, division, etc.) that overload the
built-in operators in Eigen. The new operators interface with Eigen
data types as matrices and vectors, extract their parameters, and
establish the connection with the hardware accelerators on the SoC.
The operators are able to configure the relevant hardware acceler-
ators according to the specific task by having a variable access to
the C interface (Fig. 3). The operators also invoke the accelerators
through function calls to the device drivers. This feature is enabled
by the link between the ESP device drivers library (esp_driver.a)
and eigen_run.so. Specifically, we used the extern "C" symbol
inside eigen_run.so to declare a linkage to specific functions in-
side esp_driver.a, so the operators could call these functions.

The C Interface. As shown in Fig. 3, the EigenEdge architecture
includes a C interface. This interface can execute the applications
inside eigen_run.so through regular function calls, thanks to the
mentioned extern "C" linkage that was used in the declarations
of the functions inside the shared library.

The C interface allocates the memory space for each accelerator
in the SoC and initializes the data structures that hold the param-
eters to configure each accelerator. Base memory addresses and
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Fig. 5: Performance of matrix-vector multiplications.

pointers to the parameters inside the data structures are passed as
arguments to the C++ functions in eigen_run.so, and accessed
later by the device drivers when the accelerators are invoked (Fig. 3).
When a function from eigen_run.so is called, the addresses and
the pointers are stored in global variables. Following that, the rele-
vant operators that are used in the applications can dynamically
configure and invoke the accelerators with the function calls to the
device drivers.

The Device Drivers. The ESP platform [33] provides the in-
frastructure to interface with hardware accelerators through Linux
device drivers. The library that includes the device drivers is im-
plemented in C and exposes the ESP runtime API that allows soft-
ware applications to configure and invoke the accelerators through
function calls. For EigenEdge, we did not need to modify the de-
vice drivers but only link them properly to the C++ shared library
(eigen_run.so), and integrate the function calls within the cus-
tomized operators.

In addition, ESP provides optimized hardware accelerators which
were utilized in our experiments (Section 4). As mentioned, these
accelerators are invoked transparently in EigenEdge thanks to the
specialized operators that we added to the shared library.

4 EXPERIMENTAL RESULTS
Experimental Setup. We designed a heterogeneous SoC by using
ESP. We used an FPGA-based experimental setup with the main
characteristics summarized in Table 1. The SoC is equipped with
a RISC-V CVA6 processor, a memory channel, an I/O tile, and a
general matrix-matrix multiplication accelerator (gemm) provided
from ESP. The accelerator was designed in synthesizable SystemC
by using Cadence Stratus HLS 20.25.

The complete SoC was synthesized with Xilinx Vivado 2019.2
with a target clock frequency of 78 MHz. We deployed the design
on a Xilinx Virtex Ultrascale XCVU440 FPGA board. All evaluations
reported in this section were performed by implementing custom
Linux software applications that follow the EigenEdge approach
and use the same software structure described in Section 3. We first
implemented unit tests to investigate the effect of different sizes
of matrix multiplications on the overall performance and energy
efficiency. We then extended this concept to a real-world algorithm:
Extended Kalman Filter [21], whose computation also relies on
matrix multiplications.
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Table 2: Power consumption in the SoC

CPU Accelerator Memory I/O
0.2W 0.077W 0.064W 0.089W
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Fig. 6: Energy efficiency of matrix-matrix multiplications.

General matrix-matrix multiplication. In linear algebra,
Matrix multiplication is used in a wide range of computations.
Given two matrices 𝐴𝑚×𝑛 and 𝐵𝑛×𝑝 , their product is the matrix
𝐶𝑚×𝑝 = 𝐴∗𝐵, where each element𝐶𝑖 𝑗 is the sum of the dot products
between elements {𝐴𝑖𝑘 }𝑘∈𝑛 and {𝐵𝑘 𝑗 }𝑘∈𝑛 . The general algorithm
for matrix multiplication involves a triple nested loop that iterates
over the rows of 𝐴, the columns of 𝐵, and the multiplied elements.
Loops are good targets for optimizations during hardware design
with high-level synthesis tools, which can unroll and pipeline their
iterations as well as parallelize the execution of the non-dependant
parts of the computation.

We evaluated the performance of the EigenEdge hardware/software
co-design approach by implementing Eigen applications with over-
loaded operators that can invoke the gemm accelerator from ESP.
Specifically, we performed tests under three different scenarios:

• EigenFunc: The program runs with the original Eigen library,
where the matrix multiplication is done with the built-in
Eigen operator for matrix multiplication.

• EigenC: The program runs with a custom operator for the
product between two matrices, that implements the prod-
uct in a native C fashion, and overloads the built-in Eigen
operator.

• EigenAcc: The program runs with a custom operator that
overloads the built-in Eigen operator, but offloads every ma-
trix multiplication to the specialized gemm accelerator.

The execution in EigenFunc and EigenC depends only on the
performance of the software running on the CVA6 processor, while
EigenAcc offloads most of the computation to the gemm accelerator
instead. In each of the above scenarios, we designed tests that
perform matrix multiplications with varying sizes of 𝐴 and 𝐵. All
tests were written with the original Eigen syntax, but the operators
were used according to the scenario (EigenFunc, EigenC, EigenAcc).
The dimensions of the matrices 𝐴𝑚×𝑛 and 𝐵𝑛×𝑝 were set to𝑚 =

𝑛 = 𝑝 = 𝑠𝑖𝑧𝑒 , while the program sweeps all 𝑠𝑖𝑧𝑒 values in the range
of ∈ {1, 1000}.

Fig. 4 shows the normalized performance in logarithmic scale
of EigenAcc and EigenC with respect to EigenFunc. As the size of

Table 3: EKF latency and normalized energy efficiency

Test run Latency Energy Efficiency
EigenFunc 88.78 sec 1.00
EigenC 50.59 sec 1.75
EigenAcc 81.74 sec 2.82

matrix-vector
15.2%

matrix-matrix
48.7%

other
36.1%

Fig. 7: Runtime profiling of the EKF C++ application.

the matrices increase, EigenAcc outperforms the scenarios that de-
pend on the performance of the CVA6 processor alone (EigenFunc
and EigenC). This confirms that the specialized architecture of the
accelerator, which is based on parallelism of the dot products, is
beneficial for large-size matrices. EigenAcc provides 57× maximum
speedup with respect to EigenFunc with 𝑠𝑖𝑧𝑒 = 500 and 11× maxi-
mum speedup with respect to EigenCwith 𝑠𝑖𝑧𝑒 = 900. For small size
matrices (4 ≤ 𝑠𝑖𝑧𝑒 ≤ 15) EigenAcc is outperformed by EigenC, but
still provides a maximum speedup of 2.3×with respect to EigenFunc.
For even smaller matrices (𝑠𝑖𝑧𝑒 < 4), EigenAcc performs worse than
the built-in EigenFunc. The reason for the slowdowns with small ma-
trices is the fact that the computation becomes negligible compared
to the software overhead that is required to invoke the accelerator.

In a similar fashion, we repurposed the gemm accelerator to per-
form matrix-vector multiplications and did a similar sweep on the
matrix sizes as before. As shown in Fig 5, the EigenAcc did not
provide meaningful speedup with respect to the others, and for
large-size matrices, EigenFunc provided the best performance. We
assume that the reason for this result is the design of the gemm
accelerator, which is not optimized for accelerating matrix-vector
multiplications, but only matrix-matrix multiplications. The gemm
accelerator prioritizes reusing the same values from the matrix for
several computations and parallelizes them, while in matrix-vector
computation each value of the matrix is used only once.

Table 2 reports the FPGA power consumption of each tile, in-
cluding CPU, memory, I/O, and the gemm accelerator, which was
obtained from the post-synthesis reports of Xilinx Vivado. The
energy efficiency is defined as the reciprocal of the multiplication
between power and latency. Fig. 6 shows the normalized energy
efficiency in logarithmic scale of EigenAcc and EigenC with respect
to EigenFunc. EigenAcc achieved a maximum of 125× gain in energy
efficiency for 𝑠𝑖𝑧𝑒 = 400, while EigenC achieved a maximum 11× for
𝑠𝑖𝑧𝑒 = 900. EigenAcc provides better energy efficiency than EigenC

as the matrix size grows, starting with a size equal to 3.
Extended Kalman Filter (EKF). We also tested our approach

on real-world applications that can be implemented on edge de-
vices. EKF is a non-linear extension of the Kalman Filter, which
is a widely used algorithm in linear systems [22]. EKF is used in
various applications, including satellite tracking, target tracking,
and autonomous vehicle navigation. EKF C++ is an open-source
implementation of the EKF based in the Eigen library [7]. The ap-
plication fuses LIDAR and RADAR sensor readings to estimate the
location and velocity of a vehicle.
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We profiled the implementation of the application and checked
the relative runtime for operations of matrix-matrix multiplication,
matrix-vector multiplication, and others. As shown in Fig. 7, the
results of the profiling confirm that matrix-matrix multiplication is
the most used operator, taking almost 49% of the total runtime of
the application.

We chose to integrate the EKFC++ application into the EigenEdge
shared library (Section 3) and evaluated it on FPGA.We investigated
the same three scenarios as we did for the matrix multiplication
(EigenFunc, EigenC, and EigenAcc), and focused on performance and
energy efficiency. The results are summarized in Table 3. They
show that EigenAcc provides a latency improvement of 9.2% when
compared to the original (EigenFunc). Even though EigenC achieves
a greater latency improvement of 43%, the normalized energy effi-
ciency of EigenAcc is 61% better than the one for EigenC and 180%
better than EigenFunc. The slowdown with EigenAcc can be ex-
plained by the fact that the EKF C++ application uses only small
matrices, with the largest size being 4×4. According to our analysis
in Fig. 4, we expected EigenC to provide a lower latency. However,
as Fig. 6 suggested, EigenAcc was expected to provide better energy
efficiency even for small-size matrices. Hence, the case study of
EKF C++ application confirms our prior analysis reported in Fig. 4,
while the better energy efficiency of EigenAcc compared to EigenC,
even for small-size matrices, confirms the prior analysis reported
in Fig. 6.

5 FUTUREWORK
In Section 4 we showed that EigenEdge can potentially provide
significant gains in performance and energy-efficiency for the case
of multiplying large-size matrices. In our case study, the EKF C++
application uses relatively small matrices, and did not maximize the
potential of the EigenEdge approach. Applications that use larger-
size matrices, such as ones for graphics and computer vision, may
be a better fit for EigenEdge.

EigenEdge was built to be scalable and adaptable for future needs.
The operators described in Section 3 can call any accelerator that is
present in the SoC, such as ones for Fast Fourier Transform (FFT),
Discrete Wavelet Transform (DWT), Singular Value Decomposi-
tion (SVD), 2D-Convolution, and more. The accelerators can be
integrated into the SoC by using ESP, along with Eigen software ap-
plications that utilize these kernels. We expect to extend EigenEdge
with more operators that invoke hardware accelerators and replace
the built-in CPU-centric operators from Eigen.

Furthermore, complex tasks can be split into multiple kernels,
and run in parallel on multiple specialized accelerators by using a
single operator or method. This will yield further performance and
energy efficiency gains for a variety of computationally-intensive
and power-hungry applications, enabling their execution in real-
time on lightweight edge devices.

6 CONCLUSION
We presented EigenEdge, a software approach that enables hard-
ware/software co-design to balance low-latency requirements and
low-power constraints for real-time computation at the edge. The
seamless development flow of EigenEdge combines a simple API, a

software architecture, and the access to efficient hardware accel-
erators in heterogeneous SoCs. EigenEdge keeps the system-level
integration hidden from the application level, which maintains
abstraction, and supports the promotion of further research and
development of applications for embedded systems.
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