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Popular Proprietary Neuromorphic Chips
P

Introduction

o Neuromorphic Computing mimics biological brains. TrueNorth [1]  Loihi2 [2] Akida (3]
e Human brain only consumes as much energy as a light bulb.
e Promising approach to energy-efficient embedded Al.

o We expect future embedded neuromorphic apps to depend on non-neuromorphic computations.
o Sensory input pre-processing, e.g.:
m Fast Fourier Transform (FFT) [4].

m 2D Convolution (CONV2D) [5].

Heterogeneous
Many-Accelerator
Systems-on-Chip (SoCs)
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Open-Source Alternatives

o RANC: Reconfigurable Architecture for Neuromorphic Computing [6]
o Highly configurable at design time = great for testing new architectural optimizations.
o Similar architecture to TrueNorth and Loihi = good algorithmic compatibility.

o Deployable on FPGA = fast prototyping.

e SpikeHard (our work) is based on RANC.

[6] Mack et al. 2021. RANC: Reconfigurable architecture for neuromorphic computing. IEEE TCAD 40, 11 (2021), 2265-2278.



Limitations of RANC that SpikeHard Solves

e Lacks a standard interface:
o New interface required for integration in a heterogeneous many-accelerator SoC.

o Not runtime-programmable:
o Model specified at design time = immutable at run time.

o Model generation tool includes mapping model to hardware. But,
o Suboptimal resource utilization.
o Performance, energy efficiency, and resource usage vary based on hardware architecture.

o Hence, we created a new tool that:
m Minimizes resource usage for a given architecture.
m Enables architectural design-space exploration (DSE).
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Spiking Neural Network (SNN)

Learning model used in neuromorphic computing is the Spiking Neural Network (SNN).

L

— Axon Communication channel
@ Neuron Computational element

I, Spike  Time-sensitive pulse (i.e. event) sent between neurons



Example SNN - MNIST Image Classification [7]

e For each greyscale pixel € [0, 1], if rounded = 1, then spike generated for that pixel.
e Multiple neurons can receive spikes from same pixel.
e Each class assigned a set of neurons. Predicted class is the one with the most output spikes.

(0.6 —>‘—L>
Class t1
0.4 _.‘_A__. Predicted
Pixels <
0.8 Class #2

Hidden Layers —>‘—L>

Input Layer Output Layer

[7] Yepes et al. 2017. Improving Classification Accuracy of Feedforward Neural Networks for Spiking Neuromorphic Chips. In Proc. of IJCAI. 1973-1979.
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(O Neuron Computational element

Axon Communication channel

Time-sensitive event

Hardware Implementation

Axon-Neuron Crossbar
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Graph Representation

Neuromorphic Processor Architecture
o Multiple interconnected cores.

e Each core implements a crossbar.

Spike Timing

« Spike is received at a particular tick.

o Tick Period: Time elapsed between ticks.
o Mainly depends on core architecture.

o Minimize to maximize performance.




Model Restructuring

Model is already mapped to a hardware
architecture (e.g. model generated by RANC).

Goal
Use minimum number of cores.

Minimal Connected Components (MCCs)
Smallest disjoint subsets of connected
neurons and axons in a core.

Integer Linear Program (ILP)

Problem similar to bin packing. Objective and
constraints can be described as an ILP. Use
standard ILP solver to find optimal solution.
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Model Restructuring
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Additional Goal
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architecture (e.g. smaller cores).
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SpikeHard Accelerator

Grey = unused resource

Colored = used resource
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SpikeHard Accelerator

Neuromorphic Processor
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SpikeHard Accelerator

Neuromorphic Processor
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Accelerator Interface

e Input Stream of Frames
o Input spikes (e.g. input image to classify).
o Commands (e.g. for model loading).

e Output Stream of Frames

o Output spikes (e.g. predicted image class).

e Frame
o 128-bit header:
m 3 bits encode frame type.
m Remaining bits frame-type specific.
o Optional payload adjacent to header.
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Accelerator Interface
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Frame Type Description
Reset Reset dynamic state (rst_net) or unload model (rst_model).
Core Data Configure model parameters for a given core (core_conf).
Input Spikes | Send spikes to specific axons (e.g. input image to classify).

Output Spikes

Output spikes for a given tick (e.g. predicted image class).

Tick

Proceed to next algorithmic time step (tick).

Terminate

End-of-File token.
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configure & invoke Third-Party
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We used ESP [8], an open-source SoC design platform. p .

Spike.Hard was integrated as part of a standalone SoC containing: AcceFlgator Aé%'l\'e\g?or
e Third-party accelerators: FFT and CONV2D. ; @ @ <
o General-purpose 64-bit RISC-V CVA6 processor: RISC-V Memory

: Processor Controller
o Orchestrates accelerator execution. N s SR IN Y,
o Runs Linux from which app invokes the accelerators. (Y ) d
: . SpikeHard I/.O an
o We tested parallel execution of SpikeHard, FFT, and CONV2D. Il Peripherals )

o SpikeHard no longer a performance bottleneck after DSE.

[8] SLD Group at Columbia University. https:/ /www.esp.cs.columbia.edu/ 14
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e Deployed SoCs on the Xilinx VCU128 FPGA with 75 MHz clock frequency.
e Model estimates Vector-Matrix Multiplication (VMM) for a 6 by 6 matrix.

e Original mapping from RANC: 64x64.

e AxN: each core has A axons and N neurons.

e Varied A & N via model restructuring.
e Tested: VA, N € {32, 64, 128, 256, 512}.

e Larger cores = better resource usage.
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e Smaller cores = better performance and energy-efficiency.
e Restructuring to smallest core capacity (32x32) improved:

o Performance by 3.3x (89x)
o Energy efficiency by 6.3x (170x)

HLUTS, #FFs (, #BRAMs = 0)

} w.r.t. original with(out) tuned tick period.
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Larger VMMs
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e Restructuring to smallest core capacity improved:

o Performance by 1.90 - 3.73x.
o Energy efficiency by 1.97 - 6.96x.

e Larger matrix => larger and more numerous MCCs (bigger model).
e Larger MCCs = worse performance and energy-efficiency.

10000

16



Conclusion

e We developed SpikeHard, a neuromorphic hardware accelerator that is:
o Programmable at runtime.

o Easy to integrate into a heterogeneous many-accelerator SoC.
m Suitable for embedded apps with both neuromorphic and non-neuromorphic kernels.

e We devised an optimization algorithm (model restructuring) that:
o Minimizes resource utilization for a particular neuromorphic architecture.
o Enables a model to be optimally remapped to different architectures.

e We performed broad DSE on FPGA:
o Significant improvements in performance and energy-efficiency over baseline.

e We have released the contributions of this work in the public domain:
o https://github.com/sld-columbia/spikehard

Thank You!
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