SpikeHard

Efficiency-Driven Neuromorphic Hardware for Heterogeneous Systems-on-Chip

Judicael Clair, Guy Eichler, and Luca P. Carloni, Columbia University, New York, USA.

&5 COLUMBIA | ENGINEERING

CASES 23 7 v The Fu Foundation School of Engineering and Applied Science 20th Se ptember 2023

Popular Proprietary Neuromorphic Chips
P

Introduction

o Neuromorphic Computing mimics biological brains. TrueNorth [1] Loihi2 [2] Akida (3]
e Human brain only consumes as much energy as a light bulb.
e Promising approach to energy-efficient embedded Al.

o We expect future embedded neuromorphic apps to depend on non-neuromorphic computations.
o Sensory input pre-processing, e.g.:
m Fast Fourier Transform (FFT) [4].

m 2D Convolution (CONV2D) [5].

Heterogeneous
Many-Accelerator
Systems-on-Chip (SoCs)

[1] Akopyan et al. TrueNorth: Design and tool flow of a 65 mW 1 Million neuron programmable neurosynaptic chip. IEEE TCAD 34, 10 (2015), 1537-1557.

[2] Intel. https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf

[3] BrainChip. https://brainchip.com/wp-content/uploads/2023/03/BrainChip_second generation_Platform_Brief.pdf

[4] Arsalan et al. 2022. RadarSNN: A resource efficient gesture sensing system based on mm-Wave radar. T-MTT 70, 4 (2022), 2451-2461.

[5] Chandarana et al. 2021. An adaptive sampling and edge detection approach for encoding static images for spiking neural networks. In Proc. of IGSC. 1-8.

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://brainchip.com/wp-content/uploads/2023/03/BrainChip_second_generation_Platform_Brief.pdf

Open-Source Alternatives

o RANC: Reconfigurable Architecture for Neuromorphic Computing [6]
o Highly configurable at design time = great for testing new architectural optimizations.
o Similar architecture to TrueNorth and Loihi = good algorithmic compatibility.

o Deployable on FPGA = fast prototyping.

e SpikeHard (our work) is based on RANC.

[6] Mack et al. 2021. RANC: Reconfigurable architecture for neuromorphic computing. IEEE TCAD 40, 11 (2021), 2265-2278.

Limitations of RANC that SpikeHard Solves

e Lacks a standard interface:
o New interface required for integration in a heterogeneous many-accelerator SoC.

o Not runtime-programmable:
o Model specified at design time = immutable at run time.

o Model generation tool includes mapping model to hardware. But,
o Suboptimal resource utilization.
o Performance, energy efficiency, and resource usage vary based on hardware architecture.

o Hence, we created a new tool that:
m Minimizes resource usage for a given architecture.
m Enables architectural design-space exploration (DSE).

Grey = unused resource
Colored =» used resource

Spiking Neural Network (SNN)

Learning model used in neuromorphic computing is the Spiking Neural Network (SNN).

L

— Axon Communication channel
@ Neuron Computational element

I, Spike Time-sensitive pulse (i.e. event) sent between neurons

Example SNN - MNIST Image Classification [7]

e For each greyscale pixel € [0, 1], if rounded = 1, then spike generated for that pixel.
e Multiple neurons can receive spikes from same pixel.
e Each class assigned a set of neurons. Predicted class is the one with the most output spikes.

(0.6 —>‘—L>
Class t1
0.4 _.‘_A__. Predicted
Pixels <
0.8 Class #2

Hidden Layers —>‘—L>

Input Layer Output Layer

[7] Yepes et al. 2017. Improving Classification Accuracy of Feedforward Neural Networks for Spiking Neuromorphic Chips. In Proc. of IJCAI. 1973-1979.

--» Spike

(O Neuron Computational element

Axon Communication channel

Time-sensitive event

Hardware Implementation

Axon-Neuron Crossbar

Lo
VoV v oy

‘-—»
‘-—>

Graph Representation

Neuromorphic Processor Architecture
o Multiple interconnected cores.

e Each core implements a crossbar.

Spike Timing

« Spike is received at a particular tick.

o Tick Period: Time elapsed between ticks.
o Mainly depends on core architecture.

o Minimize to maximize performance.

Model Restructuring

Model is already mapped to a hardware
architecture (e.g. model generated by RANC).

Goal
Use minimum number of cores.

Minimal Connected Components (MCCs)
Smallest disjoint subsets of connected
neurons and axons in a core.

Integer Linear Program (ILP)

Problem similar to bin packing. Objective and
constraints can be described as an ILP. Use
standard ILP solver to find optimal solution.

Core i1 Core #2
Axons Neurons Axons Neurons

®
0000

—_——— e e e e e e e e e e — — —

| ——— N o T LSy SESNEEE X

Model Restructuring

Core i1 Core #2
Axons Neurons Axons Neurons
-0~ -

= !
“
=
?QQQ

Additional Goal

|
|

Optimally remap to a different hardware i B0 —@ O
| O

architecture (e.g. smaller cores).

Packing 3 & 3

SpikeHard Accelerator

Grey = unused resource

Colored = used resource

J

Model Regtructuring

Neuromorphic Processor

Controller
Broadcast
A A A A
i =
" (o)) o
e 1/0 < g S :I
= | + Pl
8 A
3 PR]]] Decoder =
= output spikes | 'MPUt SPIKES T
\ 4
DMA Handler =] ol S
11 n
Y flush =l v
DMA Writer < DMA Reader

[
»

Wt g
irq [base addr wr_req wr_resp EJ[

marnli= HfT =

v

base addr rd_req rd_resp

read,

SpikeHard Accelerator

Neuromorphic Processor

. Controller
e Controller decodes input data. ﬁ S
roadcas
e Commands are broadcasted to all cores. y S S w—
o] b | = ‘=
. ol Bl «| S
o 1/0 < sl © o
= | + —
8 A m
] - - Decoder
E output spikes | 'MPUtspikes
\ 4
DMA Handler = @ §
(1] (%2}
5 flush =
DMA Writer < DMA Reader
A A A A
\ 4
[[goreg | 5 [fg Reg =
1 v 1

' v g
irq [base addr wr_req wr_resp E] [base addr rd_req rd_resp

read,

10

SpikeHard Accelerator

Neuromorphic Processor

)) Controller
Broadcast
A | = ‘=
: ol Bl ~«I| S
| = o
8 7 N m
3 - - Decoder
k= output spikei input spikes Y
DMA Handler = o g
. . c| @
e Main memory accessed via DMA. Y ueh = R
e Base addresses provided at the start.-<J}\L DMA Writer I _ DMA Reader
e irq asserted at the end to notify CPU. |[
q y (g reg > CfgReg =]
AN v T =
irq| base addr wr_req wr_resp E]|base addr rd_req rd_resp 2

Accelerator Interface

e Input Stream of Frames
o Input spikes (e.g. input image to classify).
o Commands (e.g. for model loading).

e Output Stream of Frames

o Output spikes (e.g. predicted image class).

e Frame
o 128-bit header:
m 3 bits encode frame type.
m Remaining bits frame-type specific.
o Optional payload adjacent to header.

Input Stream Output Stream
Relset :
Core Dlata #1 :
. |
Core Data #n !
Input :Spikes
Ticll< by Output Spikes
block uhtil tick OutputISpikes
Input Spikes 0utputl Spikes
Ticll< #2 Outputl Spikes
block u:ntil tick Output Spikes
T
Termlinate Termlinate

12

Accelerator Interface

tick period #1 <

tick period #2<

Input Stream

Reset

Core Data #1

Core Data #n

Input Spikes

Output Stream

Tick #1

T
block until tick
|

Output Spikes

Output Spikes

Input Spikes

Output Spikes

Tick #2

Output Spikes

T
block until tick
~ |

Output Spikes

Terminate

Terminate

J_

- #1

> 12

Frame Type Description
Reset Reset dynamic state (rst_net) or unload model (rst_model).
Core Data Configure model parameters for a given core (core_conf).
Input Spikes | Send spikes to specific axons (e.g. input image to classify).

Output Spikes

Output spikes for a given tick (e.g. predicted image class).

Tick

Proceed to next algorithmic time step (tick).

Terminate

End-of-File token.

13

configure & invoke Third-Party
. interrupt t
SoC Integratlon O TEARES _fccelerator Ef}
memory access :
RISC-V D> RISC-V D> Main
| PO —)@ Processor Memory
Main
I G Lo
/—\<:l;:| /ﬁ
SpikeHard SpikeHard
) ~ \ / %/l:&\ /

We used ESP [8], an open-source SoC design platform. p .

Spike.Hard was integrated as part of a standalone SoC containing: AcceFlgator Aé%'l\'e\g?or
e Third-party accelerators: FFT and CONV2D. ; @ @ <
o General-purpose 64-bit RISC-V CVA6 processor: RISC-V Memory

: Processor Controller
o Orchestrates accelerator execution. N s SR IN Y,
o Runs Linux from which app invokes the accelerators. (Y) d
: . SpikeHard I/.O an
o We tested parallel execution of SpikeHard, FFT, and CONV2D. Il Peripherals)

o SpikeHard no longer a performance bottleneck after DSE.

[8] SLD Group at Columbia University. https:/ /www.esp.cs.columbia.edu/ 14

https://www.esp.cs.columbia.edu/

e Original
e Dominated
- Pareto Optimal

[J
40000
Eva uatlon 5 00000 .

30000 _.p_r_ .

25000 * e

20000

15000 + +

0 25 50 75 100 125 150 175
Latency (ms)

200

(excludes points with #BRAMs = 0)
00

00000

30000

25000

e Original
e Dominated
- Pareto Optimal

® Dominated
+ Pareto Optimal

e Deployed SoCs on the Xilinx VCU128 FPGA with 75 MHz clock frequency.
e Model estimates Vector-Matrix Multiplication (VMM) for a 6 by 6 matrix.

e Original mapping from RANC: 64x64.

e AxN: each core has A axons and N neurons.

e Varied A & N via model restructuring.
e Tested: VA, N € {32, 64, 128, 256, 512}.

e Larger cores = better resource usage.

Normalized Metric w.r.t. Origin

o E 60 + e
w2 _‘: %
00 -T-:_ * +
+ . . 20 +
1] 25 50 75 100 125 150 175 200 [} 25 50 5 100 125 150 175 200
Latency (ms) Latency (ms)
74 fici
J ¥ / 29483, 18540 = e
51 26669, 15286
41 33
34 . 25502, 15807
21 Y o1s 14 /
11 1 1 1 0.9
1 I I 0.5 0.5 0.3 0'50 1
N | s 02 w°
Original 32x32 64x64 32x128 128x64 64x128 128x128 128x256
(64x64) Implementation

e Smaller cores = better performance and energy-efficiency.
e Restructuring to smallest core capacity (32x32) improved:

o Performance by 3.3x (89x)
o Energy efficiency by 6.3x (170x)

HLUTS, #FFs (, #BRAMs = 0)

} w.r.t. original with(out) tuned tick period.

15

Larger VMMs

Performance (Ops / s)

=
o
—

102.

—e— QOriginal Model from RANC —e— Qriginal Model from RANC

—&— Restructured to Smallest Core Capacity

matrix size

103_

102,

101,

Energy Efficiency (Ops /)

—&— Restructured to Smallest Core Capacity

2000 4000 6000 8000 10000 0 2000 4000 6000 8000
Maximum MCC Size within Model Maximum MCC Size within Model
e Restructuring to smallest core capacity improved:

o Performance by 1.90 - 3.73x.
o Energy efficiency by 1.97 - 6.96x.

e Larger matrix => larger and more numerous MCCs (bigger model).
e Larger MCCs = worse performance and energy-efficiency.

10000

16

Conclusion

e We developed SpikeHard, a neuromorphic hardware accelerator that is:
o Programmable at runtime.

o Easy to integrate into a heterogeneous many-accelerator SoC.
m Suitable for embedded apps with both neuromorphic and non-neuromorphic kernels.

e We devised an optimization algorithm (model restructuring) that:
o Minimizes resource utilization for a particular neuromorphic architecture.
o Enables a model to be optimally remapped to different architectures.

e We performed broad DSE on FPGA:
o Significant improvements in performance and energy-efficiency over baseline.

e We have released the contributions of this work in the public domain:
o https://github.com/sld-columbia/spikehard

Thank You!

17

https://github.com/sld-columbia/spikehard

	Slide 1: SpikeHard
	Slide 2: Introduction
	Slide 3: Open-Source Alternatives
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Thank You!

