
SpikeHard
Efficiency-Driven Neuromorphic Hardware for Heterogeneous Systems-on-Chip

Judicael Clair, Guy Eichler, and Luca P. Carloni, Columbia University, New York, USA.

20th September 2023CASES ’23

[1] Akopyan et al. TrueNorth: Design and tool flow of a 65 mW 1 Million neuron programmable neurosynaptic chip. IEEE TCAD 34, 10 (2015), 1537–1557.
[2] Intel. https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
[3] BrainChip. https://brainchip.com/wp-content/uploads/2023/03/BrainChip_second_generation_Platform_Brief.pdf
[4] Arsalan et al. 2022. RadarSNN: A resource efficient gesture sensing system based on mm-Wave radar. T-MTT 70, 4 (2022), 2451–2461.
[5] Chandarana et al. 2021. An adaptive sampling and edge detection approach for encoding static images for spiking neural networks. In Proc. of IGSC. 1–8.

● Neuromorphic Computing mimics biological brains.
● Human brain only consumes as much energy as a light bulb.
● Promising approach to energy-efficient embedded AI.

Introduction
Popular Proprietary Neuromorphic Chips

1

● We expect future embedded neuromorphic apps to depend on non-neuromorphic computations.
○ Sensory input pre-processing, e.g.:

■ Fast Fourier Transform (FFT) [4].
■ 2D Convolution (CONV2D) [5].

TrueNorth [1] Loihi 2 [2] Akida [3]

Heterogeneous
Many-Accelerator

Systems-on-Chip (SoCs)

https://download.intel.com/newsroom/2021/new-technologies/neuromorphic-computing-loihi-2-brief.pdf
https://brainchip.com/wp-content/uploads/2023/03/BrainChip_second_generation_Platform_Brief.pdf

Open-Source Alternatives

● RANC: Reconfigurable Architecture for Neuromorphic Computing [6]

○ Highly configurable at design time ➔ great for testing new architectural optimizations.

○ Similar architecture to TrueNorth and Loihi ➔ good algorithmic compatibility.

○ Deployable on FPGA ➔ fast prototyping.

● SpikeHard (our work) is based on RANC.

2[6] Mack et al. 2021. RANC: Reconfigurable architecture for neuromorphic computing. IEEE TCAD 40, 11 (2021), 2265–2278.

3

● Lacks a standard interface:
○ New interface required for integration in a heterogeneous many-accelerator SoC.

● Not runtime-programmable:
○ Model specified at design time ➔ immutable at run time.

● Model generation tool includes mapping model to hardware. But,
○ Suboptimal resource utilization.
○ Performance, energy efficiency, and resource usage vary based on hardware architecture.

○ Hence, we created a new tool that:
■ Minimizes resource usage for a given architecture.
■ Enables architectural design-space exploration (DSE).

Grey ➔ unused resource
Colored ➔ used resource

Limitations of RANC that SpikeHard Solves

4

Learning model used in neuromorphic computing is the Spiking Neural Network (SNN).

Axon

Neuron

Spike

Communication channel

Computational element

Time-sensitive pulse (i.e. event) sent between neurons

Spiking Neural Network (SNN)

● For each greyscale pixel ∊ [0, 1], if rounded = 1, then spike generated for that pixel.
● Multiple neurons can receive spikes from same pixel.
● Each class assigned a set of neurons. Predicted class is the one with the most output spikes.

5

Example SNN – MNIST Image Classification [7]

0.6

0.4

0.8

…

Input Layer Output Layer

Pixels

Class #1

Class #2

Predicted

Hidden Layers

[7] Yepes et al. 2017. Improving Classification Accuracy of Feedforward Neural Networks for Spiking Neuromorphic Chips. In Proc. of IJCAI. 1973–1979.

6

Axon

Neuron

Spike

Communication channel

Computational element

Time-sensitive event

Axon-Neuron Crossbar Graph Representation

Neuromorphic Processor Architecture

●Multiple interconnected cores.

● Each core implements a crossbar.

Spike Timing

●Spike is received at a particular tick.

●Tick Period: Time elapsed between ticks.

○ Mainly depends on core architecture.

○ Minimize to maximize performance.

Hardware Implementation

7

Minimal Connected Components (MCCs)
Smallest disjoint subsets of connected
neurons and axons in a core.

Model is already mapped to a hardware
architecture (e.g. model generated by RANC).

Goal
Use minimum number of cores.

Integer Linear Program (ILP)
Problem similar to bin packing. Objective and
constraints can be described as an ILP. Use
standard ILP solver to find optimal solution.

Partitioning

Packing

Core #1
Axons Neurons

MCC #1 MCC #2 MCC #3

Core #2
Axons Neurons

Core
Axons Neurons

MCC #1

MCC #2

MCC #3

Model Restructuring

8

Additional Goal
Optimally remap to a different hardware
architecture (e.g. smaller cores).

Mini Core #1 Mini Core #2

Packing

Model Restructuring

Partitioning

Core #1
Axons Neurons

MCC #1 MCC #2 MCC #3

Core #2
Axons Neurons

9
wr_req

rs
t_

m
od

el

I/O
Core

output spikes

rs
t_

ne
t

co
re

_c
on

f

Broadcast

input spikes

DMA Handler

irq wr_resp w
ri

te

base addr

Cfg Reg

flush

tic
k

rd_resp re
ad

rd_reqbase addr

Cfg Reg

DMA Writer DMA Reader

Controller

fr
am

e

Decoder

st
op

Neuromorphic Processor

in
te

rc
on

ne
ct

Model Restructuring

Grey ➔ unused resource
Colored ➔ used resource

SpikeHard Accelerator

● Controller decodes input data.
● Commands are broadcasted to all cores.

10
wr_req

rs
t_

m
od

el

I/O
Core

output spikes

rs
t_

ne
t

co
re

_c
on

f

Broadcast

input spikes

DMA Handler

irq wr_resp w
ri

te

base addr

Cfg Reg

flush

tic
k

rd_resp re
ad

rd_reqbase addr

Cfg Reg

DMA Writer DMA Reader

Controller

fr
am

e

Decoder

st
op

Neuromorphic Processor

in
te

rc
on

ne
ct

SpikeHard Accelerator

● Main memory accessed via DMA.
● Base addresses provided at the start.
● irq asserted at the end to notify CPU.

11
wr_req

rs
t_

m
od

el

I/O
Core

output spikes

rs
t_

ne
t

co
re

_c
on

f

Broadcast

input spikes

DMA Handler

irq wr_resp w
ri

te

base addr

Cfg Reg

flush

tic
k

rd_resp re
ad

rd_reqbase addr

Cfg Reg

DMA Writer DMA Reader

Controller

fr
am

e

Decoder

st
op

Neuromorphic Processor

in
te

rc
on

ne
ct

SpikeHard Accelerator

12

● Input Stream of Frames
○ Input spikes (e.g. input image to classify).
○ Commands (e.g. for model loading).

● Output Stream of Frames
○ Output spikes (e.g. predicted image class).

● Frame
○ 128-bit header:

■ 3 bits encode frame type.
■ Remaining bits frame-type specific.

○ Optional payload adjacent to header.

block until tick

…

Input Spikes

Reset

Core Data #1

Core Data #n

Input Stream Output Stream

Output Spikes

Output Spikes

Output Spikes

Output Spikes

Output Spikes

Tick #1

Input Spikes

Tick #2

……

block until tick

TerminateTerminate

Accelerator Interface

13

Frame Type Description

Reset Reset dynamic state (rst_net) or unload model (rst_model).

Core Data Configure model parameters for a given core (core_conf).

Input Spikes Send spikes to specific axons (e.g. input image to classify).

Output Spikes Output spikes for a given tick (e.g. predicted image class).

Tick Proceed to next algorithmic time step (tick).

Terminate End-of-File token.

block until tick

…

Input Spikes

Reset

Core Data #1

Core Data #n

Input Stream Output Stream

Output Spikes

Output Spikes

Output Spikes

Output Spikes

Output Spikes

Tick #1

Input Spikes

Tick #2

……

tick period #1

tick period #2

#1

#2

tick #1

tick #2
block until tick

TerminateTerminate

Accelerator Interface

14[8] SLD Group at Columbia University. https://www.esp.cs.columbia.edu/

We used ESP [8], an open-source SoC design platform.
SpikeHard was integrated as part of a standalone SoC containing:
● Third-party accelerators: FFT and CONV2D.
● General-purpose 64-bit RISC-V CVA6 processor:

○ Orchestrates accelerator execution.
○ Runs Linux from which app invokes the accelerators.
○ We tested parallel execution of SpikeHard, FFT, and CONV2D.
○ SpikeHard no longer a performance bottleneck after DSE.

RISC-V
Processor

Memory
Controller

I/O and
PeripheralsSpikeHard

FFT
Accelerator

CONV2D
Accelerator

3

6

1

4

RISC-V
Processor

SpikeHard

Main
Memory

configure & invoke

interrupt request

memory access

52
3b

8

1

4

RISC-V
Processor

SpikeHard

Main
Memory

Third-Party
Accelerator 5

2b

2a

6

7

3a

SoC Integration

https://www.esp.cs.columbia.edu/

● Varied A & N via model restructuring.
● Tested: ∀A, N ∊ {32, 64, 128, 256, 512}.

● Deployed SoCs on the Xilinx VCU128 FPGA with 75 MHz clock frequency.
● Model estimates Vector-Matrix Multiplication (VMM) for a 6 by 6 matrix.

● Original mapping from RANC: 64x64.
● AxN: each core has A axons and N neurons.

● Larger cores ➔ better resource usage.
● Smaller cores ➔ better performance and energy-efficiency.
● Restructuring to smallest core capacity (32x32) improved:

○ Performance by 3.3x (89x)
○ Energy efficiency by 6.3x (170x)

(64x64)

15

(excludes points with #BRAMs = 0)

w.r.t. original with(out) tuned tick period.

Evaluation

29483, 18540

26669, 15286

25502, 15807

#LUTs, #FFs (, #BRAMs = 0)

● Restructuring to smallest core capacity improved:
○ Performance by 1.90 – 3.73x.
○ Energy efficiency by 1.97 – 6.96x.

16

● Larger matrix ➔ larger and more numerous MCCs (bigger model).
● Larger MCCs ➔ worse performance and energy-efficiency.

matrix size

Larger VMMs

17

Thank You!

● We developed SpikeHard, a neuromorphic hardware accelerator that is:
○ Programmable at runtime.
○ Easy to integrate into a heterogeneous many-accelerator SoC.

■ Suitable for embedded apps with both neuromorphic and non-neuromorphic kernels.

● We devised an optimization algorithm (model restructuring) that:
○ Minimizes resource utilization for a particular neuromorphic architecture.
○ Enables a model to be optimally remapped to different architectures.

● We performed broad DSE on FPGA:
○ Significant improvements in performance and energy-efficiency over baseline.

● We have released the contributions of this work in the public domain:
○ https://github.com/sld-columbia/spikehard

Conclusion

https://github.com/sld-columbia/spikehard

	Slide 1: SpikeHard
	Slide 2: Introduction
	Slide 3: Open-Source Alternatives
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Thank You!

