

Brain Computer Interface (BCI)

A Brain-Computer Interface (BCI) is a system that establishes a connection between the brain and the outside world

- The goal is to improve quality of life aid with disabilities
- Real-time computation within the boundaries of the reaction time of the brain (~0.18 seconds)
- Meet low-power constraints for wearable devices in the body-area network (~200 mW)

Our Focus: predicting motion from neural data recordings

Kalman Filter (KF)

One of the most popular algorithms for motion prediction in BCI

- Returns a motion prediction at each time step
- Main bottleneck is the computation of a matrix inverse

Existing implementations of the KF – **not** tailored to process neural data under the constraints of real-world BCI systems

```
1: function Kalman_Filter(F, Q, H, R, \vec{x}_{n-1}, P_{n-1}, \vec{z}_n)
2: //Predict
3: \vec{x}_n = F \cdot \vec{x}_{n-1}
4: P_n = F \cdot P_{n-1} \cdot F^t + Q
5: //Update
6: \vec{y} = \vec{z}_n - (H \cdot \vec{x}_n) //Innovation
7: S = H \cdot P_n \cdot H^t + R
8: K = P_n \cdot H^t \cdot S^{-1} //Compute Kalman Gain
9: \vec{x}_n = \vec{x}_n + K \cdot \vec{y}
10: P_n = (I - K \cdot H) \cdot P_n
11: return \vec{x}_n, P_n
```


Comparing Matrix Inverse Approaches

- Gaussian elimination (Gauss) is the standard method to calculate the matrix inverse
 - Floating-point divisions and Internal data dependencies → not ideal for hardware
- We want to accelerate the KF with specialized hardware
- We can approximate the matrix inverse
 - With reasonable error (~10%)
- Integration of different methods inside the KF tested with animal brain data
 - Newton-Raphson method (Newton) provides the best results

Accuracy Metric	Gauss [50]	IFKF [23]	Taylor [22]	SSKF [31]	Newton [29]
MSE	3.8×10^{-12}	53.8	0.05	0.1	6.6×10^{-6}
MAE	7×10^{-7}	2.7	0.08	0.06	0.0004
*Max. Difference (%)	0.008	2.2×10^4	9.7×10^{2}	5.3×10^2	4
*Avg. Difference (%)	0.0001	350	9	4.8	0.035

^{*}These scores are normalized with respect to the KF output from [Glaser et al. eNeuro 2020]

KalmMind

A framework and architecture for the agile development and design-space exploration of configurable KF hardware accelerators specialized for BCI

- A new **algorithm-hardware technique** that uses approximations
- A unique feature of tunable accuracy/latency/energy efficiency
- Leveraging spatiotemporal correlation of neural data
- High configurability for diverse neural data

Configurable Accelerator Architecture

Create a KalmMind-based hardware accelerator!

- Combination of matrix inverse approximation and calculation
 - Approximations are efficient but less accurate
 - Calculations are more accurate but less efficient
- Configuration for interleaving calculation/approximation patterns

Results – Accuracy Analysis

	MSE	MAE	MAX DIFF		
Motor	$2.1 \times 10^{-13} - 1.1 \times 10^{-6}$	$2 \times 10^{-7} - 1.6 \times 10^{-4}$	$4.3 \times 10^{-5} - 1.91$		
Soma.	$2.2 \times 10^{-13} - 9.9 \times 10^{-6}$	$2.3 \times 10^{-7} - 5.1 \times 10^{-4}$	$3.5 \times 10^{-5} - 5.3$		
Hippo.	$3.1 \times 10^{-11} - 7.1 \times 10^{-11}$	$1.2 \times 10^{-6} - 2.2 \times 10^{-6}$	$8.2 \times 10^{-5} - 2.1 \times 10^{-3}$		
Baseline	$4.8 \times 10^{-13}, 3 \times 10^{-13}, 3.5 \times 10^{-11}$	2.7×10^{-7} , 2.7×10^{-7} , 1.4×10^{-6}	$1.1 \times 10^{-4}, 8.5 \times 10^{-5}, 3.8 \times 10^{-4}$		

- Three animal neural datasets
- Configuring different interleaving patterns between Gauss calculation/Newton approximation
- Wide accuracy range for each neural datasets
- Better accuracy than the baseline (only Gauss)
- Up to 78% better accuracy

Results – Accuracy vs. Latency

- Full SoC integration of the Gauss/Newton accelerator and a RISC-V CVA6 CPU using ESP
- Experiments on FPGA using custom Linuxbased software applications
- Design-space exploration accuracy vs. latency
- Up to 55% better accuracy and 4.4x speedup

Results – Accuracy vs. Energy Efficiency

Type	Method	LUT	FF	BRAM	DSP	Power [W]	Perf. [sec]	Energy [J]	Accuracy [MSE]
Software	Intel i7	N/A	N/A	N/A	N/A	78.6	0.065	5.1	3.8×10 ⁻¹²
	CVA6	43996	29922	36	27	0.177	1927	341	1.3×10 ⁻¹²
Hardware: Calc./Approx. Datapath	Gauss/Newton	22119	18725	228	252	0.185	2.8-8.9	0.52 - 1.64	$1.03 \times 10^{-12} - 1.1 \times 10^{-6}$
	Cholesky/Newton	22429	20126	360	268	0.207	2.8-11.5	0.58-2.38	$1.05 \times 10^{-12} - 1.1 \times 10^{-6}$
	QR/Newton	24842	21259	385	258	0.236	3.04-9.6	0.72-2.27	$1.02 \times 10^{-12} - 1.1 \times 10^{-6}$
	Gauss/Newton FX32	19646	12131	195.5	217	0.146	4.25	0.354	$5.9 \times 10^{-2} - 0.46$
	Gauss/Newton FX64	34831	26109	369	534	0.18	2.44-11.3	0.44-2.04	$1.9 \times 10^{-5} - 0.24$
Hardware: One-way Datapath	LITE	15591	13405	146.5	193	0.114	2.688	0.306	1.14×10^{-6}
	LITE FX64	14782	8075	267	347	0.11	2.268	0.249	1.14×10^{-6}
	SSKF/Newton	18798	16961	204.5	240	0.158	0.53-11.6	0.08 - 1.82	$9.9 \times 10^{-13} - 6.3 \times 10^{-5}$
	SSKF	8403	6752	19.5	102	0.051	0.03	0.0015	7.63×10^{-3}
	Taylor	15006	13437	118	230	0.155	1.203	0.186	2.3×10^{-3}
	Gauss-Only	12386	10290	102.5	153	0.098	12.507	1.225	1.3×10 ⁻¹²

A variety of KalmMind-based accelerators – different calculation and approximation methods

- All accelerators (except Gauss-only) completed 100 KF iterations in under 5 seconds – real-time, consuming up to ~200mW – low-power
- Wide ranges of accuracy and energy efficiency
- Clear advantages over the state-of-the-art

Conclusion

- BCI applications benefit from algorithm-hardware co-design!
- KalmMind provides the first architecture to facilitate the design of configurable KF hardware accelerators for BCI, offering flexibility and uniquely supporting fine-grained control over latency and accuracy to address the diversity of brain data.
- The goal of our work is to advance research on hardware architectures for embedded BCIs and to accelerate the development of practical, real-world BCI systems and applications.
- KalmMind can be extended for other application domains using the Kalman filter.
- The contributions of this work have been released to the public domain: https://github.com/GuyEichler/KalmMind

Questions?

Guy Eichler

Columbia University, PhD guyeichler@cs.columbia.edu

