An Energy-Efficient Kalman Filter
Architecture with Tunable Accuracy
for Brain-Computer Interfaces

Guy Eichler, Joseph Zuckerman, Luca Carloni

80 CS& i e ( ‘
Columeia =5 COMPUTER SCIENCE
UNIVERSITY

TO SYSTEMS :
SPONSORED BY GFE[B)A % 3



Brain Computer Interface (BCI)

A Brain-Computer Interface (BCI) is a system that establishes ~
a connection between the brain and the outside world

* The goal is to improve quality of life — aid with disabilities
* Real-time computation within the boundaries
of the reaction time of the brain (~0.18 seconds)

* Meet low-power constraints for wearable devices Mol ' tod W bl
in the body-area network (~200 mW) mplante earable
Chip Relay station

Our Focus: predicting motion from neural data recordings
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Kalman Filter (KF)

One of the most popular algorithms for motion prediction in BCI
* Returns a motion prediction at each time step
* Main bottleneck is the computation of a matrix inverse

Existing implementations of the KF — not tailored to process neural data under the
constraints of real-world BCI systems

1: function KALMAN_FILTER(F,Q, H, R, Zn—1,Pn—1,2n)
2: //Predict

3 Tn =F - -Tn_1

4 Pn:F'Pn—l'Ft‘+‘Q

S: //Update

6: Yy = Zn — (H - Zy,) //Innovation

7: S=H-P,-H'"+ R

8 K = P, - H* - S—1}//Compute Kalman Gain

9 Tn =Tn + K-y

0 P,=({I—-K-H)-Pn

1 return 7,,, P,




Comparing Matrix Inverse Approaches

* Gaussian elimination (Gauss) is the standard method to calculate the matrix inverse
 Floating-point divisions and Internal data dependencies - not ideal for hardware

* We want to accelerate the KF with specialized hardware

* We can approximate the matrix inverse
« With reasonable error (~10%)

* Integration of different methods inside the KF — tested with animal brain data
* Newton-Raphson method (Newton) provides the best results

Accuracy Metric Gauss [50] IFKF [23] Taylor [22] SSKF [31] Newton [29]
MSE 3.8x10 12 53.8 0.05 0.1 6.6x10°
MAE 7x10~7 2.7 0.08 0.06 0.0004
*Max. Difference (%) 0.008 2.2x10% 9.7x10? 5.3%107 4
*Avg. Difference (%) 0.0001 350 9 4.8 0.035

*These scores are normalized with respect to the KF output from [Glaser et al. eNeuro 2020]



KalmMind

A framework and architecture for the agile development and design-space
exploration of configurable KF hardware accelerators specialized for BCI

* A new algorithm-hardware technique that
uses approximations

* A unique feature of tunable
accuracy/latency/energy efficiency

* Leveraging spatiotemporal correlation of
neural data

* High configurability for diverse neural data
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Configurable Accelerator Architecture

Create a KalmMind-based hardware accelerator!

Top Level - \
Load .
|batchesl > ‘ x_dim
T »| DMARead [ =]
|chunks| L 1 J_| z_dim |
Compute |«
ot
a |
> DMA Write

| . -

* Combination of matrix inverse approximation and
calculation

* Approximations are efficient but less accurate
Calculations are more accurate but less efficient

* Configuration for interleaving
calculation/approximation patterns
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Compute Level
Loop start (n=1)

[Double buffer] [ Local Memory]

> IComputing Enginel [In\.rerse Datapathl
L Mul + Add |
n:F*Pn—l*Ft'l'Ql

Sub + Mul

[ Mul + Add ]
g J =2y — (H * %)
l ' I

=H=+P,*H'+R

Sub + Mul

P,=(U—Kx*H)*B,||X, =X, + K =y
Pﬂ fn

______

calc_ fre _-n-_ Loop end (n=chunks*batches)
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Results — Accuracy Analysis

MSE MAE MAX DIFF
Motor 2.1x10-¥-1.1x10-" 2x10-7—1.6x10-1 4.3x10-°-1.91
Soma. 2.2x107 ¥ -99x 10" 23x1077=51x10"1 3.5x107°-53
Hippo. 3.1x10- 17 1x10-1 1.2%1075-22x10"" B2x10-7-2.1x10~4
Baseline | 4.8x1071%, 3x 10713, 3.5 1071 | 2.7x1077, 2.Tx10°7, 1.4x107°% | 1.1x107%, 8.5% 1075, 3.8x10~1

Three animal neural datasets

Configuring different interleaving patterns between
Gauss calculation/Newton approximation

Wide accuracy range for each neural datasets

Up to 78% better accuracy

Better accuracy than the baseline (only Gauss)
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Results — Accuracy vs. Latency

Motor Cortex

Suboptimal Configuration
" 10°8 Pareto-Optimal Configuration
lg Baseline (calc_freq=1)
10-11 °
4 6 8“ i : ;(;. - ;; : i .*]..4 . .
Lo-5 . somatosensory Cortex ¢ Fy]| SOC integration of the Gauss/Newton
b e accelerator and a RISC-V CVA6 CPU using ESP
[7)] . . .
= o * Experiments on FPGA using custom Linux-
e s deme s Jeve selses o based software applications
0.7 0.8 0.9 1.0 1.1 1.2 1.3
e 10-1 . Hippocampus o Dagign-space exploration — accuracy vs. latency
6 x 10-11 :
W 5 x 1071 * Up to 55% better accuracy and 4.4x speedup
= 4x1071 . . -~ - .
3x107H 0.7 0.8 0.9 1.0 11
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Results — Accuracy vs. Energy Efficiency

SSKF/Newton achieves
15.3x better energy
efficiency than Gauss-only

Gauss/Newton achieves 10%x
better accuracy than SSKF

c \ Type Method LUT | FF | BRAM | DSP | Power [W] | Perf. [sec] | Energy [J] Accuracy [MSE]
1E+3 + Intel i7 N/A | N/A | N/A | N/A 78.6 0.065 5.1 3.8x10712
SSKF Software T
CVA6 43996 (29922 | 36 | 27 0.177 1927 341 1.3x10
En Gauss/Newton | 22119 | 18725 | 228 |[252| 0.185 28-8.9 | 0.52-1.64 | 1.03x10712-1.1x10°
- Hardware: | Cholesky/Newton |22429 [20126| 360 |268 | 0207 | 2.8-11.5 | 0.58-2.38 | 1.05x107">=1.1x107°
A SSKF/Newton Calc/Approx.|  QR/Newton 24842 (21259 | 385 [ 258 | 0236 | 3.04-9.6 | 0.72-2.27 | 1.02x10712-1.1x10~6
= Tavior Datapath I Gaugs/Newton FX32 | 19646 | 12131] 1955 [ 217 | 0.146 425 0.354 5.9x1072-0.46
2 {E+1 Gauss/Newton 4
=, : Gausg('g'zwton Gauss/Newton FX64 | 34831 [ 26109 | 369 | 534 0.8  [244-11.3]044-2.04 1.9x1075-0.24
Y A LITEFX64 LITE 15591 [ 13405 | 146.5 | 193 | 0.114 2.688 0.306 1.14x107°
5 Gauss-Only LITE LITE FX64 14782 | 8075 | 267 | 347 | 0.1 2.268 0.249 1.14x107°
G 1E+0 ® , Hardware: SSKF/Newton | 18798 | 16961 | 204.5 | 240 | 0.158 [0.53-11.6 | 0.08—1.82 | 9.9x10713-6.3x1073
b= One-way
L Datapath SSKF 8403 | 6752 | 195 | 102 | 0.051 0.03 0.0015 7.63x1073
§ X QR/Newton Gauss/Newton Taylor 15006 | 13437 | 118 | 230 | 0.155 1.203 0.186 2.3x1073
g 1B Intel i7 FX32 Gauss-Only 12386 | 10290 | 1025 | 153 | 0.098 12.507 1.225 131012
] Cholesky/Newton

. A variety of KalmMind-based accelerators — different calculation and

CVAG approximation methods
X
s < ® All accelerators (except Gauss-only) completed 100 KF iterations in
1E-18  1E-11  1E99  1E7  1E5  1E3  1E-1 1E+ under 5 seconds — real-time, consuming up to ~200mW - low-power
Accuracy [MSE] ] o
( ® Wide ranges of accuracy and energy efficiency
@

® Clear advantages over the state-of-the-art



Conclusion

* BCI applications benefit from algorithm-hardware co-design!

* KalmMind provides the first architecture to facilitate the design of configurable KF
hardware accelerators for BCI, offering flexibility and uniquely supporting fine-grained
control over latency and accuracy to address the diversity of brain data.

* The goal of our work is to advance research on hardware architectures for embedded
BCls and to accelerate the development of practical, real-world BCI systems and
applications.

* KalmMind can be extended for other application domains using the Kalman filter.
* The contributions of this work have been released to the public domain:

¢
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https://github.com/GuyEichler/KalmMind

Guy Eichler

Columbia University, PhD
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