

# DESIGN, AUTOMATION AND TEST IN EUROPE

THE EUROPEAN EVENT FOR ELECTRONIC SYSTEM DESIGN & TEST

31 MARCH – 2 APRIL 2025 LYON, FRANCE

ENTRE DE CONGRÈS DE LYON



## KalmMind:

# A Configurable Kalman Filter Design Framework for Embedded Brain-Computer Interfaces

Guy Eichler, Joseph Zuckerman, Luca Carloni Columbia University





#### The KalmMind Framework



#### **Brain-Computer Interface (BCI):**

- The goal is to improve quality of life
- Real-time computation
- Meet **low-power** constraints
- Our Focus: Predicting motion from recorded neural data

#### Kalman Filter Algorithm:

- Main bottleneck is the matrix inverse
- Interleaving approximation and calculation -**Accuracy/Latency Tuning**



#### Results



- Gaussian elimination (Gauss) calculation and Newton-Raphson (Newton) approximation
- Hardware accelerator with Gauss calculation and Newton approximation

#### Comparison between matrix inverse methods

| Accuracy Metric      | Gauss                 | Taylor [11]         | SSKF [12]           | Newton [10]          |
|----------------------|-----------------------|---------------------|---------------------|----------------------|
| MSE                  | $3.8 \times 10^{-12}$ | 0.05                | 0.1                 | $6.6 \times 10^{-6}$ |
| MAE                  | $7 \times 10^{-7}$    | 0.08                | 0.06                | 0.0004               |
| *Max. Difference (%) | 0.008                 | $9.7 \times 10^{2}$ | $5.3 \times 10^{2}$ | 4                    |
| *Avg. Difference (%) | 0.0001                | 9                   | 4.8                 | 0.035                |

#### Accuracy analysis for the Gauss/Newton Accelerator (3 brain datasets)

|          | MSE                                                                 | MAE                                                                | MAX DIFF                                                           |
|----------|---------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|
| Motor    | $2.1 \times 10^{-13} - 1.1 \times 10^{-6}$                          | $2 \times 10^{-7} - 1.6 \times 10^{-4}$                            | $4.3 \times 10^{-5} - 1.91$                                        |
| Soma.    | $2.2 \times 10^{-13} - 9.9 \times 10^{-6}$                          | $2.3 \times 10^{-7} - 5.1 \times 10^{-4}$                          | $3.5 \times 10^{-5} - 5.3$                                         |
| Hippo.   | $3.1 \times 10^{-11} - 7.1 \times 10^{-11}$                         | $1.2 \times 10^{-6} - 2.2 \times 10^{-6}$                          | $8.2 \times 10^{-5} - 2.1 \times 10^{-3}$                          |
| Baseline | $4.8 \times 10^{-13}$ , $3 \times 10^{-13}$ , $3.5 \times 10^{-11}$ | $2.7 \times 10^{-7}$ , $2.7 \times 10^{-7}$ , $1.4 \times 10^{-6}$ | $1.1 \times 10^{-4}$ , $8.5 \times 10^{-5}$ , $3.8 \times 10^{-4}$ |

- Wide ranges of accuracies for each dataset
- · Better accuracies than the baseline
- FPGA tests Up to 55% better accuracy and 4.4x speedup



# The End



## **Thank You!**

guyeichler@cs.columbia.edu

