MasterMind
Many-Accelerator SoC Architecture for Real-Time BCI
ICCD 2021
Paper ID: 142
Guy Eichler, Luca Piccolboni, Davide Giri, Luca Carloni
Columbia University, New York, USA
Introduction

• Brain-Computer Interfaces (BCI) enable the bidirectional interaction between brains and computers

• We want BCI systems/devices that can work in a body area network (BAN):
 (1) Real-time goal imposed by the 0.18 sec reaction time of the brain
 (2) Ultra-low power constraint of 200mW on an average workload (for BCI wearables)

• We used a system-on-chip (SoC) design platform called ESP

• MasterMind is a configurable accelerator-based SoC architecture designated for the execution of BCI algorithms (HiWA)

• We contributed our broad design-space exploration (DSE) including efficient implementations of the hardware accelerators and the SoC

• We released MasterMind into the public domain

ESP - https://esp.cs.columbia.edu/
MasterMind - https://github.com/GuyEichler/esp/tree/mastermind
Background

- Hierarchical Wasserstien Alignment (HiWA) was presented at NeurIPS 2019
- Machine learning algorithm
 → Successfully matches neural activity from the brain to body movements
- We profiled the original implementation of HiWA
- The loop that invokes Sinkhorn and SVD contains most of the computation of the algorithm and can be isolated
 → Offload into hardware

The Target System (SoC)

(1) Data are stored in a database

(2) Neural interface attached to the brain

(3) Wireless communication between the implanted chip and the SoC

(4) Our heterogeneous tile-based SoC executes the algorithm

(5) HiWA receives data from the brain after factor analysis + data from the database

(6) MasterMind outputs a resolution in real-time

Accelerators Design and Data-Flow

- 3-modules structure: load, compute, store
- SVD → C/C++, Vivado HLS
- Sinkhorn → SystemC, Stratus HLS
- P2P communication between accelerators → Minimal interaction with main memory
- DSE at the accelerator level and at the SoC level

SVD Accelerator

Main Memory

Sinkhorn Accelerator

Sinkhorn Accelerator

• First iteration only
• Last iteration only

High-level data-flow on the SoC
Evaluation – SoC Configurations

- Evaluated against 3 platforms: **Intel i7**, ARM Cortex-A53, and RISC-V CVA6
- Clock frequencies: FPGA @ 78MHz, ARM @ 1.2 GHz, Intel @ 3.7GHz
- Optimized multi-threaded software applications in C++ running on the general-purpose processors
- P2P provides **over 90% memory accesses savings** ➔ Minimizes off-chip energy consumption
- An ASIC projection with a clock frequency of 1GHz ➔ **13x speedup and 79x better energy efficiency** over the FPGA prototype

→ Meets the thresholds for real-time energy-efficient BCI

CVA6 RISC-V CPU - https://github.com/openhwgroup/cva6
Conclusions

• We designed MasterMind with the goal of advancing the system-level design research in SoC architectures for brain-computer interfaces (BCI), a field of computer engineering that is growing remarkably in importance.

• MasterMind is inherently flexible, as it can seamlessly accommodate the integration of many other accelerators.

• MasterMind is scalable, as it supports efficient point-to-point communication schemes among accelerators that improve performance and energy efficiency by reducing memory accesses.

• We released the contributions of this work to the public domain: https://github.com/GuyEichler/esp/tree/mastermind
Thank you!
Questions?

MasterMind
Many-Accelerator SoC Architecture for Real-Time BCI
Speaker: Guy Eichler
Columbia university, NY