MindCrypt: The Brain as a Random Number Generator for SoC-Based Brain-Computer Interfaces

Guy Eichler

Biruk Seyoum Kuan-Lin Chiu Luca Carloni

ICCD 2023

Brain-Computer Interfaces?

- A Brain-Computer Interface (BCI) is a system that establishes a connection between the brain and the outside world
 - The goal: improve the quality of life aid with disabilities
- Main components:
 - Implanted neural Interface (ECoG) recording and stimulation
 - Wearable relay-station for real-time computations
 - Additional high-performance processing in a distant machine
- Main guidelines when designing BCI systems:
 - Sufficient resolution and throughput of neural data
 - Real-time computation within the boundaries of the reaction time of the brain for BCI applications
 - Meet low-power constraints for wearable devices in a bodyarea network (BAN)

Randomness and BCI applications

- BCI applications running on BCI devices
 - Adaptive ML Reinforcement Learning uses randomness
 - Secure communication random keys

RBG

Problem: unstable under a constantly changing environment

High throughput

01000100111...

RNG

Sensor-based PUFs

High Entropy

- Lightweight and based on random bit generation algorithms compute on sensor data
- Can we create a sensor-based PUF in the BCI system?

Adaptive ML

Key generation

Brain Data into Random Bits

- BrainBit algorithm Szczepanski et al. 2004
- BrainMod algorithm MindCrypt`23 (this work)
 - Hardware efficient

- Real brain data from the visual cortex of a non-human primate
 - > 78 million data points, 64 electrodes, 41 minutes
- Evaluation with the NIST statistical test suite
 - NIST SP 800-22

1: global variables: σ, μ, R, L, d, h 2: function BRAINBIT(x)10: function BRAINMOD(x)Initialize: result = NoneInitialize: result = None11: 3: if $|x - \mu| \leq R\sigma$ then if $|x - \mu| < R\sigma$ then 12: 5: $y = x - (\mu - R\sigma)$ 13: $y = x - \mu$ 6: $z = 2 \times R\sigma$ $z = y \times 2^d$ 14: $w = \lfloor (y/z) \times L) \rfloor$ $w = \lfloor z \rfloor \mod 2^h$ 7: 15: 8: $result = w \mod 2$ $result = (\sum_{b} w_{b})$ 16: $\mod 2$ 9: return result 17: return result

Notations:

- R, L, d, h are user defined parameters
- μ is the estimated average over all values
- σ is the estimated standard deviation over all values
- w_b are the bits of the variable w

Random Bit Generation Algorithms - Performance

10 11 12 13 14 15

5

----h=14

→h=8

System-on-Chip for BCI – MindCrypt SoC

- BCI is a subset of the Internet-of-Things (IoT) domain
- Mobile edge devices constraints in area in power
 - How to get real-time performance?
- Solution: Design heterogeneous Systems-on-Chip (SoCs) with hardware accelerators for BCI - MindCrypt
- SoC design platform ESP
 - Tile-based architecture
 - Supports P2P and DPR

MindCrypt SoC

RBG

RSA

AES

RBG Hardware Accelerator – BrainMod (BrainBit)

- C/C++ Vivado HLS
- 3-modules structure: load, compute, store
- Generates random bit-streams of configurable fixed-lengths (keys)
- Configuration registers:
 - key_len bit-length of the key
 - key_base upper bound for number of keys
 - key_num number of keys to generate
 - ► $R, d, h, \sigma, \mu(, L)$ configure the computation
- Input/output offset control in case certain values didn't pass the filter condition
- Synchronization between the modules

Configuration Parameters Input_offse sync store Filter update $|x - \mu| \leq R\sigma$ output_offset Distance from average Calc. Bit -Output - store load Input $y = x - \mu$ result = s[0]Sum bits Integer part 占 Shift $\bigvee s = sum(w[h-1:0])$ w = |z|sync load $= y \ll d$ compute key_len key_base $R d h \sigma \mu$ key_num

BrainMod Accelerator

Evaluation – MindCrypt SoC

- Prototypes of the MindCrypt SoC on Xilinx Virtex UltraScale+ VCU118 FPGA
 - @ 78MHz, 64-bit CVA6 RISC-V
 - RBG accelerators:
 - BrainMod, BrainBit
 - Crypto accelerators:
 - AES, RSA, SHA2 (from HARDROID`22)
- TABLE I: Resource and Power consumption in MindCrypt SoC.

Component	LUT	FF	BRAM	DSP	Power[W]	Time[ms]
BrainBit	11441	6730	4	22	0.068	89.8
BrainMod	5929	2379	4	16	0.01	88.3
CVA6	56191	35752	36	27	0.128	N/A
AES	69075	28290	14	3	0.108	4.9
RSA	126973	57941	0	0	0.277	6874.4
SHA2	32796	20756	2	0	0.408	5.1

^{*}Execution time is for 1536 bits

Evaluation – Random Number Generation

- Compared the performance and energy efficiency of random number generation:
 - BrainMod HW and SW
 - BrainBit HW and SW
 - /dev/urandom
 - rand()

Evaluation – Prime Number Generation

- Prime numbers are important for the RSA algorithm
- MindCrypt integrates an RSA accelerator
 - ► The longest runtime among all accelerators

The time that takes BrainMod to generate

Random prime number generation is usually a costly operation

a prime number of a fixed-length BrainMod provides throughput gains of up to 368x – enables fast prime number generation!

TABLE II: Average Amount of Prime Numbers / 1000 Numbers

bit length	BrainBit	BrainMod	/dev/urandom	rand()
256-bit	5.47	5.51	5.6	11
512-bit	2.87	2.83	2.59	6.65
1024-bit	1.16	1.46	1.08	2.74

■256-bit ■512-bit ■1024-bit

Evaluation – Point-to-Point Communication

4 RBGs with 1 AES provide a maximum of Direct point-to-point (P2P) communication between AES 6.1x speedup and 12.4x energy efficiency and the RBG accelerators compared to communication through DMA BrainBit BrainMod Normalied Performance Up to 4 instances for each: 6 BrainMod, BrainBit, and AES 0 256-bit 512-bit 1024-bit 256-bit 512-bit 024-bit 4 RBGs with more than 1 AES causes ■ 1x1 DMA ■ 1x1 p2p ■ 2x1 p2p ■ 3x1 p2p ■ 1x1 DMA ■ 1x1 p2p ■ 2x1 p2p ■ 3x1 p2p diminishing returns ■ 4x1 p2p ■ 4x4 p2p ■ 1x2 p2p ■ 2x3 p2p ■ 4x1 p2p ■ 4x4 p2p ■ 1x2 p2p ■ 2x3 p2p Normalized Energy Efficiency 14 12 10 8 6 256-bit 512-bit 1024-bit 256-bit 512-bit 1024-bit

Evaluation – FPGA Implementation with DPR

- Environmental factors can affect the performance of the neural interface More data will be discarded by BrainMod (filter condition)
 - Solution: Increase RBG throughput by adding more BrainMod instances
 - Problem: BCI SoCs are constrained in area and power
- Low RBG throughout is detected triggers a partial reconfiguration to replace an unused accelerator with BrainMod

Altered brain data – 60% of the values are expected to be discarded

Conclusions and Future Research

- MindCrypt is the first work to provide a complete flow that enables brain-based configurable random number generation for applications on BCI SoCs
- We were able to design and test MindCrypt following the availability of open-source, modern, high-resolution, and high-throughout brain data
- MindCrypt unlocks more research opportunities on brain data by showing how it can be used in a full system
- Potential research directions include:
 - Randomness from the brain under different states (sleep, awake, walking, running, etc.)
 - Randomness extraction from different regions of the brain
 - Statistical analysis of brain data with Cryptanalysis
 - Should we use brain data for randomness outside of the BCI field?

https://github.com/GuyEichler/esp/tree/mindcrypt

Thank you!

Questions?

https://github.com/GuyEichler/esp/tree/mindcrypt