IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 37, NO. 4, NOVEMBER 2024 481

Reducing Datacenter Compute Carbon Footprint by
Harnessing the Power of Specialization: Principles,
Metrics, Challenges and Opportunities

Tamar Eilam

, Pradip Bose™, Life Fellow, IEEE, Luca P. Carloni

, Fellow, IEEE, Asaf Cidon,

Hubertus Franke™, Martha A. Kim, Eun K. Lee, Mahmoud Naghshineh™, Pritish Parida™, Member, IEEE,

Clifford S. Stein, and Asser N. Tantawi

Abstract—Computing is an indispensable tool in addressing
climate change, but it also contributes to a significant and steadily
increasing carbon footprint, partly due to the exponential growth
in energy-demanding workloads, such as artificial intelligence
(AI). While hardware specialization has become the primary
driver of operational energy efficiency improvements, it intro-
duces new challenges including increased embodied emission, and
a rise in complexity of operations of heterogeneous and dynamic
datacenters. We posit that while specialization is necessary for
sustainable computing, to fully harness its power, the academic
and technical community must address the specific challenges
arising from embracing it. We enumerate and analyze key
challenges that specialization introduces across software, system
design, and operations, and their potential impact on carbon cost,
and propose a way forward for each identified area. Furthermore,
we argue that intricate relationships exist across the life-cycle
of compute systems, which must be understood, modeled, and
analyzed to identify the most beneficial Pareto frontiers for
carbon life-cycle efficiency. We analyze these trade-offs and
offer an approach to address them using a unified metric and
framework.

Index Terms—Carbon footprint, chiplet design, energy effi-
ciency, eBPF, low power consumption, runtime optimization,
specialization, sustainable computing.

I. INTRODUCTION

LIMATE change is arguably the biggest threat that

humanity is facing today [1]. Datacenters are an increas-
ing source of carbon emissions which has two components:
operational emissions, comprising the carbon footprint of the
machines plus cooling and power distribution overheads, and
embodied emissions, incurred by the design and manufacturing
of computing systems [2]. Datacenters already account for

Manuscript received 21 February 2024; revised 6 June 2024; accepted
28 June 2024. Date of publication 31 July 2024; date of current version
20 November 2024. (Corresponding author: Tamar Eilam.)

Tamar Eilam, Pradip Bose, Hubertus Franke, Eun K. Lee, Mahmoud
Naghshineh, Pritish Parida, and Asser N. Tantawi are with IBM
T. J. Watson Research Center, Yorktown Heights, NY 10598 USA
(e-mail: eilamt@us.ibm.com; pbose@us.ibm.com; frankeh@us.ibm.com;
eunkyung.lee@us.ibm.com; mahmoud@us.ibm.com; prparida@us.ibm.com;
tantawi@us.ibm.com).

Luca P. Carloni, Asaf Cidon, Martha A. Kim, and Clifford S. Stein
are with Columbia University, New York, NY 10027 USA (e-mail:
luca@cs.columbia.edu; asaf.cidon@columbia.edu; martha@cs.colmbia.edu;
cliff@ieor.columbia.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TSM.2024.3434331.

Digital Object Identifier 10.1109/TSM.2024.3434331

, Life Senior Member, IEEE

1-2% of global electricity consumption, and their share is
dramatically increasing. Global datacenter electricity con-
sumption reached 460 TWh in 2022 (more than doubling since
2018) and is expected to exceed 620 TWh in 2026 [3].

A confluence of trends contribute to this acceleration in
datacenter carbon emissions. First is an increased demand for
computing in general, and particularly for power-hungry Al
workloads, including large language models, foundation mod-
els, and generative Al [4]. Model sizes have grown steeply,
from the 110 million parameters in the BERT base model
(2018) [5], to 175 billion parameters in GPT-3 (2020) [6],
and trillions of parameters (speculated) in GPT-4 (2023). The
energy consumed in data preparation, training, adaptation and
inference has grown with parameter count. Strubell et al. [7]
equate the training of a single large language model with the
carbon emissions of five cars through their life time. Recently
there have been multiple attempts to quantify the energy usage
and carbon emissions of models throughout all phases of their
life cycle, including the manufacturing of specialized systems
required to run Al, and operational phase activities including
data preparation, training, alignment, and inference [8], [9],
[10], [11].

The second trend is the demise of Dennard scaling [12]
combined with the slowing of Moore’s Law. In anticipation
of this outlook, early work by Brooks et al. [13] highlighted
the need to invest in power-aware microarchitecture design,
aided by associated pre-silicon power-performance modeling
methodologies. Much later, in a seminal paper [14], Horowitz
established that we had reached the physical limits of power
density, and thus energy had become the bottleneck in scaling
performance of CMOS devices. This reality, coupled (of late)
with the intense computational demands posed by Al, fuels the
rush to design specialized systems that can reduce the energy
per operation, albeit for a subset of computations. Accelerators
such as Graphics Processing Units (GPUs), Tensor Processing
Units (TPUs), Al Units (AIUs), and fixed-function hardware
modules are much more efficient in Al training and inference
than general-purpose CPUs. Consequently, integrated-circuit
designers have moved towards system-on-chip (SoC) archi-
tectures that combine a heterogeneous mix of these
components.

Given the exponential growth in energy-hungry workloads
and the flattening of Dennard scaling, we posit that to fully

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-0912-0776
https://orcid.org/0000-0002-1380-5671
https://orcid.org/0000-0001-5600-8931
https://orcid.org/0009-0005-0150-1055
https://orcid.org/0009-0004-3023-880X
https://orcid.org/0000-0003-4722-7854
https://orcid.org/0000-0001-6598-8863

482 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 37, NO. 4, NOVEMBER 2024

harness the power of specialization, we must adopt a holistic
approach addressing all phases of the compute life-cycle. In
doing so, we must analyse and address the unique challenges
that are introduced or exacerbated by specialization and the
ensuing heterogeneity.

The paper is organized as follows. In Section II, we
enumerate four main challenges that specialization and the
ensuing heterogeneity introduce or exacerbate across the life-
cycle of compute, and their potential negative effect on carbon
cost: (1) life-cycle trade-offs, (2) design complexity, and
cost, (3) Bloated, wasteful Operating System (4) heteroge-
neous data-center management complexity. The remaining
sections are dedicated to addressing each of the challenges.
Section VII concludes the paper.

II. SPECIALIZATION: COMPLEXITY AND OPPORTUNITIES

As the demand for energy-efficient computing continues
to grow, chip designers are increasingly turning to special-
ized architectures and SoC designs, where a plurality of
accelerators are introduced along side general purpose CPUs
on a single chip. This is a necessary step in order to
improve the operational efficiency of a diverse set of high-
intensity workloads that exhibit special characteristics, such
as, signal and stream processing, Artificial Intelligence, and
Cryptography. While specialization is necessary for sustained
energy efficiency improvements, the following challenges that
must be understood and addressed in order to fully harness its
power.

Challenge 1: Tradeoffs across the lifecycle By tailoring
the hardware to the software’s needs, heterogeneous designs
can achieve significant improvements in energy efficiency dur-
ing the operational stage of the compute life cycle. However,
as the complexity of single-die SoCs grows, so is the carbon
associated with its design and manufacturing. There are several
factors that contribute to the increase in carbon cost, includ-
ing reduced yield, increase in the number of manufacturing
processing steps required, and increase in required gases,
used for etching, photolithography, and deposition. While the
discussion of sustainable manufacturing is beyond the scope
of this paper, we argue that trade-offs across the life-cycle
between carbon manufacturing cost (contributing to embodied
emission) and operational energy-efficiency gains must be
analyzed and understood in order to identify optimal design
choices for lifetime carbon efficiency. In Section III we discuss
these trade-offs and offer a unified metric and a conceptual
framework to meaningfully address them.

Challenge 2: Sustainable design Heterogeneity increases
the complexity of the design process in terms of hardware-
software interactions, access to shared resources, and
diminished regularity of the design [15]. This complexity
contributes to an increase in energy spent on designing new
specialized chips. The problem is exacerbated by the design
irregularity and the lack of means for an effective reuse of
existing intellectual property (IP) blocks in designing new
chip by composition, rather than re-invention. In Section IV,
we discuss an approach to address these challenges, by

using an open-source platform that encourages and facilitates
modularity and reuse in SoC design. We analyse the benefits
of this approach with a real-life use case.

Challenge 3: Sustainable operating systems Existing
datacenter system software, and in particular widely-used
operating systems (OSes) and hypervisors, have no awareness
of sustainability when allocating resources and scheduling
applications. In fact, existing OS resource allocation policies,
which generally aim to keep computing resources fully uti-
lized, may lead to increased operational carbon emissions, for
example by unnecessarily keeping “cold” pages in memory to
maximize memory utilization. In addition, due to their gener-
ality and need to support legacy applications and interfaces,
OSes are bloated, wasting many cycles synchronizing and
traversing software layers, rendering them poorly-equipped to
take advantage of specialized hardware. Indeed, it has been
estimated that about 20% of datacenter cycles go to waste
in Linux’s various software layers alone [16]. In Section V,
we explore a promising approach to make system software
sustainability-aware, by exploiting extensibility frameworks
(eBPF) supported by Linux and Windows. These frameworks
can be used to expose sustainability-related metrics to applica-
tions, bypass expensive OS software layers, and to customize
OS behavior to reduce operational emissions and take full
benefit of heterogeneous datacenter resources to optimally run
a diverse set of workloads.

Challenge 4: Sustainable datacenters A heterogeneous
datacenter incorporates multiple different types of chips,
memory, storage, and network, organized in layers spanning
power sources, hardware systems, operating systems, manage-
ment software, and applications frameworks. Such a datacenter
is used to run a dynamic and a diverse set of workloads, where
every workload is associated with a service level objective
(SLO) defining latency, bandwidth, energy and cost goals.
A careless allocation of resources to workloads may result
in inefficiencies, due to underutilized, or stranded resources.
Because hardware components span orders of magnitude in
performance and efficiency, optimization algorithms and their
implementations are essential at multiple levels: at the bottom,
to control power caps and device partitions to respect power
budgets, higher up to map workloads within and across racks
for efficient cooling and job completion. An optimal use of
datacenter resources must factor-in aspects such as the specific
characteristics of the compute systems and workloads, as well
as other factors such as cooling, which is a major source
of energy cost. Section VI further delves into heterogeneity’s
impact on runtime optimization in datacenters, giving special
attention to the unique challenges and opportunities introduced
by AI workloads.

III. ADDRESSING TRADE-OFFS ACROSS THE LIFE-CYCLE

As single-die SoCs grow in complexity, so does the carbon
associated with their manufacturing. The number of processing
steps increases and fabrication yields drop, increasing the
amortized carbon cost per chip. This situation is not unique
to processing chips, but also applies to memory, storage and

EILAM et al.: REDUCING DATACENTER COMPUTE CARBON FOOTPRINT

Workload

@ Jobs (i.e., cleaning, pretraining, inference, finetuning)

iService Level Requirements

e Software (i.e., 0S, VMs, scheduler)
Management

@ Hardware (i.e., CPUs, GPUs, accelerators)

Operational Phase (with Operational Carbon Costs)

New systems with new characteristics

Fig. 1.
emissions in a comprehensive manner.

network systems. Take as an example a solid-state drive (SSD),
whose reliability depends on the number and frequency of
write operations and thus drops over time. This shortens
its useful lifespan and increases the amortized carbon cost
per operation. Redundancy is a common remedy for this
situation. By incorporating redundant components, such as
extra memory cells or controller circuits, designers can ensure
that a device continues to function even if some components
fail. This, in turn, amortizes the embodied emissions asso-
ciated with the device’s production over a longer lifetime,
thereby improving its lifetime carbon efficiency at the expense
of increased carbon cost during manufacturing. A holistic
life-cycle carbon analysis is thus necessary to meaningfully
identify the optimal design point, balancing the carbon cost
of redundant hardware with the increased amortization thanks
to an extended device lifetime. Generalizing this principle, we
argue that it is important to analyse system design choices, by
taking into account both the expected operational efficiency
gains and the embodied cost losses leading to optimal life-
cycle carbon efficiency.

In a comprehensive carbon reduction ecosystem (depicted
in Figure 1), operational and manufacturing concerns are ana-
lyzed together to co-evolve hardware and software to minimize
the life-cycle carbon footprint. During the Operational Phase,
management software will allocate resources to arriving jobs,
based on the type of job, its SLO, and the properties of
the resources. Such management software must rely on on-
line quantification (such as [17]) to understand the current
state and behavior of the infrastructure. In the Design Phase,
system designers will design the next iteration of hardware and
software, potentially optimizing either one to run a particular
class of workloads based on understanding of their runtime
characteristics. At this point, it is crucial for designers to antic-
ipate the impact of introducing a new hardware or software
product. Will the runtime reductions in carbon emissions be
enough to offset the carbon emissions from developing the
product? Or, will the carbon cost of creating the product in
the first place swamp any savings when the product comes
online?

@ Quantification and

483

Requirements and characteristics
of emerging workloads

e Software Architecture Design

Validation of
assumptions
and design
choices

@ Agile Hardware Design

Design Phase (with Embodied Carbon Costs)

v

Manufacture Phase (with Embodied Carbon Costs)

Our vision for sustainability, where the coupled concerns of chip design, manufacture, and operation are considered together to reduce carbon

To inform new system design, we require comprehensive
metrics that reflect the shared metrics reflecting operational
carbon and embodied carbon costs. Here we put forth expres-
sions that quantify and relate embodied and operational carbon
footprint, both of which we quantify using units of carbon
dioxide equivalent (§CO»e).

We start with the job sustainability cost (JSC), defined by
Gandhi et al. [18]. The JSC of a job includes the total carbon
footprint of all of the systems participating in the execution
of that job, including indirect support systems that provide
cooling and power distribution. Because a job might run on
multiple machines, we quantify its JSC piece by piece.

The expression below, JCS(j, m) is the operational carbon
emissions of the portion of job j that runs on machine m.
It starts with the number of operations to be executed on
m (Ops(j, m)) and multiplies that number by the efficiency
of machine m (%;(m)). This product gives the total Joules
needed by job j on machine m, which is then converted
to Joules needed by factoring in the power usage efficiency
(i:j;‘;) of the datacenter. This energy cost is converted to
carbon cost based on the cleanliness of the energy source,
i.e., the mix of energy sources and their associated carbon
emissions (%).

Jneeded(m) Jused
Op J, needed

CO,
X

JSC(j, m) = Ops(j, m) x
Jused

The first two of these terms are within the sphere of control
for hardware and software designers. Thus, their objective is
to minimize the total energy needed for the job (Jyeedeq, the
product of the first two terms). In so doing, system designers
can minimize carbon emissions regardless of the datacenter
design (third term) or energy source (fourth term).

To this operational carbon cost, the amortized sustainability
cost (ASC) [18] layers in the amortized carbon cost of
manufacturing each machine m involved in completing job j:

Ops(j, m)

ASC(j) = Z(JSC(]’, m) + Opstr)

mej

X EMC(m))

484 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 37, NO. 4, NOVEMBER 2024

Here, EMC(m) is the embodied cost for manufacturing m.
So, to the baseline JSC, we are adding a share of the embodied
carbon cost of m, with this share calculated as a proportion of
the operations executed on m due to job j (Ops(j, m)) to the
total operations completed by m over its lifetime (Ops(m)).
These definitions can be generalized to factor in different types
of operations performed on m in the execution of a job j, where
each operation type consumes a different amount of energy.

Finally, Dennard et al. [12] extend the notion of an embod-
ied cost from hardware to software, defining the embodied
product cost (EPC), which quantifies the carbon cost of a
software product. For example, an Al model m is a software
product whose EPC is the sum of all ASC(j) for all j involved
in the development, test, pre-training, and other jobs executed
in order to deliver m.

To understand how these expressions capture the key
dynamics, let us consider a real-world example of hard-
ware reuse. DDR4 memory devices are not supported by
the memory bus interface of modern server platforms.
However, major datacenter operators, including Meta [20]
and Microsoft [21], plan to reuse old DDR4 DIMMs by
connecting them via the new CXL memory interface, and
leaving the memory bus to newer DDRS memory. In this
particular example, if DDR4 CXL memory comprises 40%
of the total server memory capacity, which is projected to
be a typical server configuration in certain datacenters [22],
operators expect to reduce server emissions by more than 20%
thanks to the recycled DDR4s [21]. Recycling DIMMs in this
way effectively extends their lifetime. If this is anticipated
early, it can be reflected in an increased Ops(m) value. If it is
not anticipated, the embodied cost of the DIMM is paid off
over the original lifetime, after which the only carbon cost to
using the DIMM is the operational JSC.

IV. AGILE DESIGN FOR SUSTAINABILITY

In the late CMOS design era, energy-efficient performance
is achieved by realizing domain-specific SoC architectures that
are heterogeneous because they combine CPU cores with a
large variety of specialized hardware accelerators. However,
as discussed in Section I, the price of heterogeneity is an
increase in design complexity. Indeed, the net cost of design,
programming and verification of heterogeneous SoCs is a
major contributor to embodied carbon costs (Figure 1).

Agile SoC design methodologies [23] can play a crucial
role in carbon footprint reduction by simplifying design reuse
and increasing the productivity of the design team. The ESP
project [15], [19], [24], developed at Columbia University, has
evolved rapidly to become an open-source design platform
that enables the design, emulation, and silicon tape-out of
complex heterogeneous SoCs in less than thirty person-
months [25], [26]. Figure 2 shows a high-level view of the
ESP methodology, which supports a number of front-ends
for design specifications: from register-transfer level (RTL)
specifications expressed in hardware description languages
such as SystemVerilog, to higher-level specification expressed
in SystemC that can be synthesized to hardware with high-
level synthesis tools. Furthermore, for the critical domain of

Al, ESP leverages the hls4ml open-source project [27], [28] to
provide a domain-specific design flow from higher-level speci-
fications expressed in frameworks like PyTorch. A key enabler
of agile design is the support for the reuse of IP blocks through
libraries of hardware and software components that combine
ESP-native elements (developed with the various design flows)
with external IP blocks acquired from the open-source world.
The ESP methodology provides almost “push-button” capabil-
ities for integrating multiple, heterogeneous IP blocks into a
single, tiled-based SoC architecture [24]. Tiles are connected
by a scalable, multi-plane twp-dimensional mesh network-on-
chip, which provides them with a set of pre-designed platform
services [15]. ESP simplifies the generation of an integrated
bitstream for FPGA implementation; or, eventually, an inte-
grated RTL that drives the backend ASIC design flow [29].
The agility of the ESP approach was demonstrated with the
realization of the EPOCHS-1 chip in a 12nm technology
process [26]. The design of this SoC, which features a variety
of open-source hardware components (14 different types of
accelerators next to 4 RISC-V cores capable of running many
simultaneous applications on top of a Linux-SMP OS) was
carried out by a small team of PhD students, postdocs, and
industry researchers in 3 months.

To compensate the slow-down of technology scaling and
maintain competitive growth in performance, the sizes of
chips tend to increase, especially processor chips for high-
end server- and mainframe-class processors. An increase in
chip size negatively affects the yield, thus resulting in cost
escalation. This is clearly not a sustainable proposition for
the chip industry. In this context, chiplet-oriented design with
heterogeneous integration (HI) packaging technology has the
potential of starting a new era of computing [30]. This cost-
effective and carbon-friendly design trend promises to sustain
the next-generation growth in datacenter footprint across the
globe. Taking advantage of chiplet/HI packaging technol-
ogy requires that agile SoC design methodologies evolve
to support system-in-package (SiP) designs with advanced
degrees of design automation. In particular, agile SoC+SiP
design methodologies can reduce operational carbon costs by
enabling modular and scalable on-system power-management
architectures (Figure 1). A proof point of this claim is
BlitzCoin [31], the novel distributed hardware power man-
ager (DHPM) that was implemented in the EPOCHS-1 chip
by using the ESP methodology [26] BlitzCoin gets rid of
the centralized bottleneck posed by classical global power-
management architectures in multi-core processors. As it
fosters scalability, DHPM is the way forward for many-core
designs with or without heterogeneity. With this approach,
each processor or accelerator tile is designed to support its
own power control mechanism, guided by its allocation of
power tokens. The DHPM manages the dynamic exchange
of tokens across neighboring tiles, driven by changing work-
load demands. Its novel algorithm maximizes system-level
performance for a given power budget, which is determined
by the maximum number of power tokens in the system [31].

In ongoing work that builds on the BlitzCoin approach, we
have shown that the decentralization of power management
can be architected hierarchically, from chips to servers and

+
Keras =
) PyTorch his(4)ml Cﬂ:‘
€ ONNX
HLS
Design
Flows
d Vivado HLS
Stratus HLS
Catapult HLS EII}I

SYSTEMC

cHSeO
RTL
SysemMeriiog Design
e

Verilog Flows

VHDL

REDUCING DATACENTER COMPUTE CARBON FOOTPRINT

T
v
% accelerators
o~ N
_/
third-party
v
third-party

P TS EE
HW IP Library

—
—

__ Linux apps
.2 bare-metal apps
device drivers

>\—/<
v

third-party

SW Library

SoC Configuration
-0x
Acc ¥ Acc ¥ | Memw

SoC HW

Integration CPUW| Acc ¥ CPUW

Memw I/0 ¥ Acc W

SoC Generation

FPGA ASIC
Prototyping Design

LLL

SoC =
Sw Build ' JFPGAE :“ASIC

III‘
1

485

Fig. 2. Agile SoC design with the ESP platform [19].

all the way up to the datacenter level. With the onset of the
modular, chiplet-oriented design era, we envision the use of
reusable power management chiplets that would be instantiated
in a SiP to monitor and control the power consumption of
the other compute and memory chiplets. The modular reuse
of chiplets, coupled with heterogeneous integration, points to
cost-effective design with reduced carbon emission over time.

V. SUSTAINABILITY-AWARE OPERATING SYSTEM

While hardware systems have always been designed with
power (and energy) as a first class citizen, system software
has almost no awareness of power or energy. In particular, the
OS, which sits at the core of datacenter resource allocation,
whose primary function is to assign hardware resources (CPU,
memory, I/O bandwidth) to applications, does not take sustain-
ability into account in its decisions. Instead, the implicit goal
of the OS is typically to keep all hardware resources (e.g.,
CPU/GPU cores, memory) fully utilized, while maintaining
some degree of fairness across applications. While in some
cases a policy of high hardware resource utilization does lead
to lower carbon emissions, in many cases it does not. For
example, over time, the Linux OS will end up allocating all
of its available memory capacity to long-running applications,
even if the application “working set” (i.e., the amount of
memory they need to achieve reasonable performance) is
much smaller than the total memory capacity. In contrast, a
sustainability-aware OS may choose to use a lower amount
of memory, and even power down idle energy-hungry DRAM
banks. Such a policy could even allow the datacenter operator
to deploy fewer DRAM DIMMs (or reuse older, low capacity
DIMMs), reducing not only operational carbon emissions, but
also embedded ones.

Making matters worse, existing OSes introduce many soft-
ware layers of abstraction that lead applications to waste
a significant percentage of their CPU cycles on “useless”
computation that is not related to the actual application.
Examples include copying memory unnecessarily from one
layer of the OS stack to another, synchronizing across different
layers, and serialization and deserialization. Our prior work
shows that when reading small requests from storage in Linux,

about half of CPU cycles are wasted simply traversing the
multiple layers of Linux’s software stack [32]. The Linux
networking stack is notoriously even more wasteful [33], [34].
This “bloated” software stack leads to both increased oper-
ational and embedded carbon emissions, causing datacenter
operators to over-provision their clusters.

Finally, with the proliferation of specialized hardware, the
task of an OS becomes even harder. It is very difficult for a
monolithic OS, such as Linux or Windows, to anticipate every
possible hardware configuration it will be deployed with, in
order to hide the complexity of those hardware configurations
from applications, and to optimally utilize hardware. While
one approach to solve this problem is to design a “clean
slate” OS that will be sustainability-aware as well as be less
wasteful, it would exorbitantly expensive to migrate the entire
application ecosystem to a new OS.

Fortunately, mainstream OSes (Linux and Windows) now
support a technology, called eBPF [35], that allows us to
customize and extend these OSes. eBPF allows applications
to run custom functions in the kernel. This might allows
applications for example to modify the OS’ scheduling policy
to be sustainability-aware [36], [36], [37], use eBPF to bypass
expensive software layers that lie on the critical path of
the application [32], [38], or use eBPF to take advantage of
new types of programmable hardware accelerators, such as a
smartNIC [39] or smartSSD [40].

Therefore, we envision that by using eBPF, we can
transform standard monolothic OSes like Linux to become
sustainability-aware, reduce their overhead and better utilize
the plethora of hardware accelerators that will become avail-
able in the coming years. However, there are significant open
obstacles in realizing this vision.

We group these obstacles into three categories: (a) lack
of software-level telemetry to measure sustainability, (b) new
integrations with Linux, and (c) limitations of existing eBPF
framework. The first obstacle is the lack of visibility into
metrics related to sustainability at the software level. Today,
applications have no knowledge of how much energy they
consume or carbon emissions they generate. There have been
initial efforts in this direction, including the open source
Kepler project [17], which provides applications with visibility

486 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 37, NO. 4, NOVEMBER 2024

on how much energy they consume, utilizing existing power
estimation tools provided by Intel and AMD CPUs. However,
there remain significant gaps: energy does not automatically
translate to carbon (especially embodied carbon) emissions,
and right now we only have visibility on the energy usage of
CPUs, but not of memory, storage or the network.

The second obstacle in making Linux a ‘“sustainable
OS” using eBPF is that it currently has no mechanisms
to incorporate energy (and carbon) in its resource alloca-
tion and scheduling policies. For example, to make Linux
sustainability-aware requires navigating its millions-of-line
code base to find appropriate places to add new tracepoints
(Linux functions that can be observed externally by an
application) and hooks (points in the kernel code where
custom eBPF function can be inserted in runtime) that can
accommodate sustainability-aware policies. For example, to
allow Linux to take advantage of a particular programmable
network or storage device, we need to add hooks in Linux’s
I/O stack that would allow it to offload I/O computations to
the external device. Or in order to make Linux incorporate
energy-consumption into its scheduling decisions, we need to
be able to add hook into its scheduling functions to take into
account energy as an additional metric.

The final obstacle is that eBPF as a programming framework
itself imposes certain limitations, which limit its functionality,
such as the length of functions, its ability to dynamically
allocate and reference memory, etc. These limitations exist
in order for functions to be verified before they run in
privileged kernel space. However, some of these limitations
may constrain our ability to customize Linux to be more
sustainable. For example, in order to offload functions and
data dynamically to external energy efficient devices (e.g.,
programmable NICs), we may need an ability to dynamically
allocate memory in eBPF, and to more efficiently synchro-
nize and share memory between the kernel and userspace
applications.

We have taken a first step in the journey of making
Linux more sustainable, by making the storage datapath be
significantly more energy efficient [32], [41]. Storage is a
significant source of carbon emissions in datacenters, both
directly (i.e., when accessing SSD devices), but also indirectly,
by generating a significant percentage of datacenter network
traffic in the case of networked storage (e.g., accounting for
70% of all network traffic in Azure datacenters [42]), and
consuming a significant percentage of CPU when traversing
the Linux storage stack for I/O intensive applications [32]. We
made the observation that storage-intensive applications (e.g.,
databases, analytics systems) issue series of dependent storage
accesses when they navigate a large on-disk data structure.
Today, these storage accesses require excessive traversals of
the OS storage stack, and even worse, in the case of accessing
a remote networked storage device, they cause many back-
and-forth network requests.

To avoid these back-and-forth requests, we created a new
framework called XRP (eXpress Resubmission Path), which
allows applications to run their storage traversals as eBPF
functions within the operating system. In the case of locally-
attached storage, this reduces unnecessarily traversing Linux’s
storage stack, wasting CPU cycles. In the case of remote storage,

this reduces a significant amount of network traffic (and its
processing). We integrated several storage systems with XRP,
including the widely-used RocksDB and WiredTiger, and showed
that XRP can directly reduce the CPU’s energy consumption
by 37% [41]. Furthermore, due to its much more efficient
operation, XRP allows datacenter operators to deploy their
storage clusters with far less DRAM than they do today without
hurting application performance, thereby significantly reducing
operational emissions and embedded emissions.

VI. SUSTAINABILITY RUNTIME OPTIMIZATION

The goal of minimizing the carbon footprint of datacenters
as they process various types of workloads, without compro-
mising performance or cost, has been considered at various
levels of the datacenter hierarchy [43], [44]. Generically,
datacenter power management is layered, where each layer has
its own, unique controls that are set by independent optimizing
controllers.

Significant work has been done addressing datacenter power
management. However, the proliferation of AI workloads
and the associated specialized hardware, has introduced new
optimization problems. The new specialized hardware tends
to have high power consumption. Al workloads have special
characteristics in terms of resource demand, performance, and
energy. Innovations at the specialized devices, their drivers,
and software stacks, create opportunities to better utilize them.
We aim to tackle some of these many challenges.

Al workloads, especially driven by large language models
(LLMs), may be categorized into three types: training, fine-
tuning, and inference. The needs of these three types of
workloads differ dramatically. Training jobs employ hundreds,
if not thousands, of GPU units for long duration such as
weeks or months. Fine-tuning jobs utilize a few or tens of
Al accelerator units for minutes or hours. Inference workloads
serve a stream of query requests, with varying intensity over
time, each using a whole, multiples, or a fraction of an
accelerator, with millisecond-scale response times required
via SLO. Horizontal, as well as vertical, auto-scaling of the
inference service is needed to react to surges in the request rate
with the goal of achieving guaranteed quality of service for the
various classes of requests. Horizontal auto-scaling involves
the adjustment of the number of replicas serving a particular
LLM inference model, whereas vertical auto-scaling involves
the re-assignment of GPU types, or slice size, to replicas.

Managing the resources for Al workloads opens a number
of optimization problems, which are compounded in the real
world where these workloads are co-mingled. The usage pat-
tern of workloads may incite the sharing of an accelerator unit
among multiple tasks [45]. Finding the optimal partitioning,
whether through time/space-sharing or slicing, among multiple
tasks is a challenging optimization problem [46], [47].

Modern accelerators offer the ability to impose a power
cap - trading off power and performance. Orthogonally,
many accelerators can be spatially partitioned (or “sliced”
using NVIDIA’s Multi-Instance GPU or MIG feature [48])
to allocate sub-accelerator slices to independent work-
loads. Configuring even one accelerator optimally requires
understanding how a workload will respond power and

EILAM et al.: REDUCING DATACENTER COMPUTE CARBON FOOTPRINT

Multi-GPU:

Online job performance profiler GPU allocation

Job Queue

MPS.
."-- :> c::E’
Mem

Energy efficient scheduling using MIG.

({0

Fig. 3.

performance-wise to these settings, and then configuring and
allocating the resources to best match the current workload.
The space becomes richer when multiple accelerator types
are available, as is typical in a datacenter. Furthermore, the
scheduling algorithm that sends a task to a slice of an
accelerator, a whole accelerator, or multiple accelerators, must
be efficient and scalable. Figure 3 illustrates job scheduling on
multiple GPU units, where each unit may be sliced to improve
sharing and minimize power consumption, while satisfying job
performance objectives. Slicing configuration is determined
through profiling, and once a configuration is selected and
deployed, a scheduling algorithm decides on the dispatching
of jobs to the sliced partitions.

We have experimented with the impact of paring down
a GPU via slicing and power capping to understand the
relationship between performance and energy for training
workloads [49]. Our experiments suggest that power increases
proportionally to the size of a GPU slice to a point, after
which it saturates despite the share of the GPU continuing to
increase. This suggests that the optimal operational point for a
GPU is at full utilization, whether via multiple small slices, or
one larger workload that can saturate the device. Further work
is sought to examine a wider array of Al accelerator types.

A hybrid technique of using dynamic workload balancing and
static slicing to arrive at an optimal configuration, that is based on
machine learning, has been suggested [46]. Additionally, once
a particular partitioning configuration is effected, a scheduling
algorithm is needed to take advantage of the heterogeneity in
service rate and arrival pattern [S0], [51]. Further investigation
and experimentation with scheduling algorithms that are both
performance and power aware to schedule Al jobs on accelerator
units with slicing are needed. In general, optimizing accelerator
allocations involve multi-dimensional bin packing problems, as
other resources such as CPU, memory, switches, and accelerator
memory have to be considered, otherwise stranded resources
and/or wasted energy may result [52].

Asnoted, experimental results of profiling power consumption
as a function of utilization suggest that power increases
linearly up to a certain utilization then it saturates, making
the saturation region a desirable operating point. Selecting an
optimal configuration depends on the workload mix as well as the
overhead and penalty involved in conducting a change. We have
conducted experimental research by running training jobs on a
variety of MIG configurations and measured their corresponding
running time and power consumption [49]. Characterizing the
tradeoff between these two measures is crucial in selecting an
optimal configuration for a given workload mix, as well as in
job scheduling.

Pods are units of scheduling that consist of multiple con-
tainers, each placed on a set of resources in a node in the
cluster. At a higher level, the scheduling of pods impacts

487

Single-GPU
Partition Decision
(via RL model)

Schedule within the Partition
(scheduling algorithm)

Job Queue

- EEE

S . E—)

| E——

the power consumption of the datacenter. With Al workloads
and high energy accelerator units, the Kubernetes scheduler
needs to be energy-aware, as well as aware of power capping
and accelerator sharing [53]. Job schedulers, where a job is
a collection of pods, need to consider the trade-off between
energy consumption and job performance, among other fac-
tors. Scheduling across clusters, which may span different
geographical areas, involves taking the carbon intensities into
consideration, and not only energy. Optimized dispatching
across multiple clusters may lead to delaying some jobs,
within some specified timing constraints, to take advantage
of periods of low carbon intensity at some geographical
locations [54]. For inference workloads, hierarchical balancing
across clusters and within a cluster, while considering work-
load characteristics, multiple locations with varying carbon
intensities and multiple types of accelerators, is a challenging
problem [55], [56].

VII. SUMMARY AND OPEN QUESTIONS

In this paper, we offer a vision of how to harness the power
of specialization to reduce the energy and carbon associated
with computing. We posit that in order to harness the full
power of specialization, we must approach the problem area
holistically across the system and software life-cycle and
address the specific challenges that specialization introduces or
exacerbates. We discuss broadly four problem areas: life cycle
efficiency, sustainable design, sustainable operating system,
and sustainable software management. In each of these areas
we analyze the challenges and opportunities, and propose
some direction for future research. This work is based on a
collaboration program between Columbia University and IBM
Research. Our hope is to inspire multi-disciplinary research,
involving algorithms, systems, and Al to address an urgent
need to significantly reduce energy consumption and carbon
emission associated with computing in datacenters.

REFERENCES

[1] (U. N. Press, New York, NY, USA). Climate Change ‘Biggest
Threat Modern Humans Have Ever Faced’. 2021. [Online]. Available:
https://press.un.org/en/2021/sc14445.doc.htm

[2] X. Shao, Z. Zhang, P. Song, Y. Feng, and X. Wang, “A review of
energy efficiency evaluation metrics for data centers,” Energy Build.,
vol. 271, Sep. 2022, Art. no. 112308. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0378778822004790

[3] “Electricity 2024.” 2024. [Online]. Available: https://www.iea.org/
reports/electricity-2024

[4] R. Bommasani et al., “On the opportunities and risks of foundation
models,” 2022, arXiv:2108.07258.

[5] J. Devlin et al., “Bert: Pre-training of deep bidirectional transformers
for language understanding,” 2018, arXiv:1810.04805.

[6] T. Brown et al., “Language models are few-shot learners,” in Proc. Adv.
Neural Inf. Process. Syst., 2020, pp. 1877-1901.

488

[7]

[8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]
[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

[30]

[31]

[32]

IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 37, NO. 4, NOVEMBER 2024

E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy consid-
erations for deep learning in NLP,” 2019, arxiv.1906.02243. [Online].
Available: http://

C.-J. Wu et al., “Sustainable AI: Environmental implications, chal-
lenges and opportunities,” in Proc. Mach. Learn. Syst., 2022,
pp- 795-813. [Online]. Available: https://proceedings.mlsys.org/paper_
files/paper/2022/file/462211f67c7d8581663355eft93b745e-Paper.pdf

D. Patterson et al., “Carbon emissions and large neural network training,”
2021, arXiv:2104.10350.

X. Wang et al., “Energy and carbon considerations of fine-tuning BERT,”
2023, arXiv:2311.10267.

T. Eilam et al., “Towards a methodology and framework for Al
sustainability metrics,” in Proc. 2nd Workshop Sustain. Comput. Syst.,
2023, pp. 1-7.

R. H. Dennard et al., “Design of ion-implanted MOSFET’s with very
small physical dimensions,” IEEE Solid-State Circuits Soc. Newslett.,
vol. 12, no. 1, pp. 38-50, 2007.

D. M. Brooks et al.,, “Power-aware microarchitecture: Design and
modeling challenges for next-generation microprocessors,” IEEE Micro,
vol. 20, no. 6, pp. 2644, Jul./Aug. 2020.

M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in Proc. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers
(ISSCC), 2014, pp. 10-14.

L. P. Carloni, “The case for embedded scalable platforms,” in Proc.
Design Autom. Conf., pp. 1-6.

S. Kanev et al., “Profiling a warehouse-scale computer,” in Proc. 42nd
Annu. Int. Symp. Comput. Archit., 2015, pp. 158-169.

M. Amaral et al., “Kepler: A framework to calculate the energy
consumption of Containerized applications,” in Proc. 16th Int. Conf.
Cloud Comput., 2023, pp. 69-71.

A. Gandhi et al., “Metrics for sustainability in data Centers,”
SIGENERGY Energy Inform. Rev., vol. 3, no. 3, pp. 40-46, 2023.
[Online]. Available: https://doi.org/10.1145/3630614.3630622
“Columbia SLD Group.” ESP. 2019. [Online].
www.esp.cs.columbia.edu

(Tech Radar, London, U.K.). AMD, Meta are Working on Revolutionary
Tech that Could Recycle Petabytes Worth of RAM. 2023. [Online].
Available: https://www.techradar.com/pro/amd-meta-are-working-on-
revolutionary-tech-that-could-recycle-petabytes-worth-of-ram-cxl-could-
help-save-hyperscalers-tens-of-millions-of-dollars-while-improving-
performance

J. Lyu et al,, “Myths and misconceptions around reducing carbon
embedded in cloud platforms,” in Proc. HotCarbon Workshop, 2023,
pp. 1-7.

D. S. Berger et al., “Design tradeoffs in CXL-based memory pools
for public cloud platforms,” IEEE Micro, vol. 43, no. 2, pp. 30-38,
Apr. 2023.

A. Rautakoura and T. Hamalainen, “Does SoC hardware development
become agile by saying so: A literature review and mapping study,”
ACM Trans. Embed. Comput. Syst., vol. 22, no. 3, Apr. 2023.

P. Mantovani et al., “Agile SoC development with open ESP,” in Proc.
39th Int. Conf. Comput.-Aided Design (ICCAD), 2020, pp. 1-9. [Online].
Available: https://doi.org/10.1145/3400302.3415753

T. Jia et al., “A 12nm agile-designed SoC for swarm-based perception
with heterogeneous IP blocks,” in Proc. Eur. Solid State Circuits Conf.
(ESSCIRC), 2022, pp. 269-272.

M. Cassel dos Santos et al., “A 12nm Linux-SMP-capable RISC-V SoC
with 14 accelerator types, distributed hardware power management and
flexible NoC-based data orchestration,” in Proc. Int. Solid State Circuits
Conf. (ISSCC), 2024, pp. 262-264.

F. Fahim et al., “hls4ml: An open-source codesign workflow to empower
scientific low-power machine learning devices,” in Proc. Tinyml Res.
Symp., 2021, pp. 1-8.

“hls4ml,” [Online]. Available: https://fastmachinelearning.org/hls4ml
M. Cassel dos Santos et al., “A scalable methodology for agile chip
development with open-source hardware components,” in Proc. Int.
Conf. Comput.-Aided Design (ICCAD), 2022, pp. 1-9.

G. H. Loh and R. Swaminathan, “The next era for Chiplet innovation,”
in Proc. Design Autom. Test Eur. Conf. Exhibit., 2023, pp. 1-6.

M. Cochet et al.,, “BlitzCoin: Fully Decentralized hardware power
management for accelerator-rich SoCs,” in Proc. Int. Symp. Comput.
Archit. (ISCA), 2024.

Y. Zhong et al., “XRP: In-kernel storage functions with eBPF,” in Proc.
16th USENIX Symp. Oper. Syst. Design Implement. (OSDI 22), 2022,
pp. 375-393. [Online]. Available: https://www.usenix.org/conference/
osdi22/presentation/zhong

Available:

(33]

[34]

(35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

I. Zhang et al, “The Demikernel datapath OS architecture for
microsecond-scale datacenter systems,” in Proc. 28th Symp. Oper. Syst.
Princ., 2021, pp. 195-211. [Online]. Available: https://doi.org/10.1145/
3477132.3483569

G. Prekas, M. Kogias, and E. Bugnion, “ZygOS: Achieving low tail
latency for microsecond-scale networked tasks,” in Proc. 26th Symp.
Oper. Syst. Princ., 2017, pp. 325-341.

“eBPF.” https://ebpf.io/

K. Kaffes et al., “Syrup: User-defined scheduling across the stack,”
in Proc. ACM SIGOPS 28th Symp. Oper. Syst. Princ., 2021,
pp. 605-620.

J. T. Humphries et al., “ghOSt: Fast & flexible user-space delegation
of Linux scheduling,” in Proc. 28th Symp. Oper. Syst. Princ., 2021,
pp. 588-604.

“XDP.” https://www.iovisor.org/technology/xdp

M. S. Brunella et al., “hXDP: Efficient software packet processing
on FPGA NICs,” in Proc. Symp. Oper. Syst. Design Implement.
(0OSDI), 2020, pp. 973-990. [Online]. Available: https://www.usenix.
org/conference/osdi20/presentation/brunella

N. Hedam et al., “Delilah: EBPF-offload on computational storage,” in
Proc. 19th Int. Workshop Data Manage. New Hardw., 2023, pp. 70-76.
I. Zarkadas et al., “BPF-oF: Storage function pushdown over the
network,” 2023, arXiv:2312.06808.

W. Bai et al., “Empowering azure storage with RDMA,” in Proc.
20th USENIX Symp. Netw. Syst. Design Implement. (NSDI), 2023,
pp. 49-67. [Online]. Available: https://www.usenix.org/conference/
nsdi23/presentation/bai

B. Acun et al., “Carbon explorer: A holistic framework for designing
carbon aware datacenters,” in Proc. Int. Conf. Archit. Support Program.
Lang. Oper. Syst. (ASPLOS), 2023, pp. 118-132. [Online]. Available:
https://doi.org/10.1145/3575693.3575754

T. Anderson et al., “Treehouse: A case for carbon-aware data-
center software,” SIGENERGY Energy Inform. Rev., vol. 3, no. 3,
pp. 64-70, Oct. 2023. [Online]. Available: https://doi.org/10.1145/
3630614.3630626

J. Zhang et al., “Model-Switching: Dealing with fluctuating work-
loads in machine-learning-as-a-service systems,” in Proc. 12th USENIX
Workshop Hot Topics Cloud Comput., 2020, pp. 1-8. [Online]. Available:
https://www.usenix.org/conference/hotcloud20/presentation/zhang

B. Li et al, “MISO: Exploiting multi-instance GPU capabil-
ity on multi-tenant GPU clusters,” in Proc. 13th Symp. Cloud
Comput., 2022, pp. 173-189. [Online]. Available: https://doi.org/10.
1145/3542929.3563510

F. Xu et al., “iGniter: Interference-aware GPU resource provisioning for
predictable DNN inference in the cloud,” IEEE Trans. Parallel Distrib.
Syst., vol. 34, no. 3, pp. 812-827, Mar. 2023.

“NVIDIA multi-instance GPU user guide.” 2022. [Online]. Available:
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/index.html

C. Espenshade et al., “Characterizing training performance and energy
for foundation models and image classifiers on multi-instance GPUs,”
in Proc. 4th Workshop Mach. Learn. Syst., 2024, pp. 47-55. [Online].
Available: https://doi.org/10.1145/3642970.3655830

Q. Weng et al., “Beware of fragmentation: Scheduling GPU-sharing
workloads with fragmentation gradient descent,” in Proc. USENIX Annu.
Tech. Conf., 2023, pp. 995-1008. [Online]. Available: https://ww.usenix.
org/conference/atc23/presentation/weng

P. Oberholzer, “Scheduling for MIG-capable GPUs: Accelerator-aware
operating system scheduling,” M.S. thesis, ETH Zurich, Dept. Comput.
Sci., Ziirich, Switzerland, 2021.

J. R. Gunasekaran et al., “Cocktail: A multidimensional optimization
for model serving in cloud,” in Proc. 19th USENIX Symp. Netw. Syst.
Design Implement., 2022, pp. 1041-1057. [Online]. Available: https://
www.usenix.org/conference/nsdi22/presentation/gunasekaran
“PEAKS: Power efficiency aware Kubernetes scheduler.”
https://github.com/sustainable-computing-io/peaks

T. Bahreini, A. Tantawi, and A. Youssef, “A carbon-aware workload
dispatcher in cloud computing systems,” in Proc. Int. Conf. Cloud
Comput. (CLOUD), 2023, pp. 212-218.

A. Dhakal, S. G. Kulkarni, and K. K. Ramakrishnan, “GSLICE:
controlled spatial sharing of GPUs for a scalable inference platform,”
in Proc. ACM Symp. Cloud Comput., 2020, pp. 492-506. [Online].
Available: https://doi.org/10.1145/3419111.3421284

L. Wang et al., “Morphling: Fast, near-optimal auto-configuration
for cloud-native model serving,” in Proc. ACM Symp. Cloud
Comput., 2021, pp. 639-653. [Online]. Available: https://doi.org/10.
1145/3472883.3486987

2024.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

