
Runtime Reconfigurable Memory Hierarchy
in Embedded Scalable Platforms

Davide Giri, Paolo Mantovani, Luca Carloni
Department of Computer Science

Columbia University in the City of New York

24th Asia and South Pacific Design Automation Conference (ASPDAC), January 21-24, 2019

Heterogeneous Architectures Are Emerging Everywhere

©Luca Carloni – Columbia University 2

[Source:
https://cloudplatform.googleblog.com/]

[Source: www.microsoft.com/]

[Source: https://aws.amazon.com/ec2/instance-types/f1/]

[Source: www.mobileye.com/]

[Source: “Xeon+FPGA Tutorial @ ISCA’16”] [Source: www.xilinx.com/]

[Source: https://blogs.nvidia.com/]

A (Perhaps Easy?) Prediction:
No Single Architecture Will Emerge as the Sole Winner

• The migration from homogeneous multi-core architectures to
heterogeneous System-on-Chip architectures will accelerate,
across almost all computing domains
– from IoT devices, embedded systems and mobile devices to data

centers and supercomputers specialization will be the key to realize
competitive systems

• A heterogeneous SoC will combine an increasingly diverse set
of components
– different CPUs, GPUs, hardware accelerators, memory hierarchies,

I/O peripherals, sensors, reconfigurable engines, analog blocks…

• The set of heterogeneous SoCs in production in any given
year will be itself heterogeneous!
– no single SoC architecture will dominate all the markets

Page 3©Luca Carloni – Columbia University

Where the Key Challenges in SoC Design Are…

Page 4©Luca Carloni – Columbia University

• The biggest challenges are (and will increasingly be) found in the
complexity of system integration
– How to design, program and validate scalable

systems that combine a very large number of
heterogeneous components to provide a
solution that is specialized for a target class
of applications?

• How to handle this complexity?
– raise the level of abstraction to System-Level Design

– adopt compositional design methods with the Protocol & Shell Paradigm

– promote Design Reuse

Embedded Scalable Platforms (ESP)

Page 5©Luca Carloni – Columbia University

• The flexible architecture
simplifies the integration of
heterogeneous components
by

• balancing regularity and
specialization

• relying on the Protocol &
Shell paradigm and
scalable communication
infrastructure

Modular
Socket
Interface

[L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016]

Application
Specification

Application
Requirements

Profiling & Kernel Identification

Accelerator IP
Encapsulation

Specification
Refinement

HLS & Micro-Architectural Choices

Processor IP
Instancing

w/ SW Sockets

Accelerator IP Instancing
w/ HW Sockets

Interconnect &
Tile Configuration
w/ ESP Services

Application-Driven System Specification

IP Block Development and Reuse

System Integration

Accelerator IP
Encapsulation

Specification
Refinement

Physical
Constraints

• The system-level design
methodology promotes
HW/SW co-design and is
supported by

• a mix of commercial and
in-house CAD tools

• a growing library of
reusable IP blocks

The ESP Scalable Architecture Template

Template Properties
• Regularity

– tile-based design
– pre-designed on-chip

infrastructure for communication
and resource management

• Flexibility
– each ESP design is the result of a

configurable mix of
programmable tiles and
accelerator tiles

• Specialization
– with automatic high-level

synthesis of accelerators for key
computational kernels

• Processor Tiles
– each hosting at least one configurable processor

core capable of running an OS

• Accelerator Tiles
– synthesized from high-level specs

• Other Tiles
– memory interfaces, I/O, etc.

• Network-on-Chip (NoC)
– playing key roles at both design and run time

Possible Instance of an ESP Chip

6©Luca Carloni – Columbia University

Our System-Level Design Approach: Key Ingredients

• Develop Platforms, not just Architectures

– A platform combines an architecture and a companion design methodology

• Raise the level of abstraction

– Move from RTL Design to System-Level Design

– Move from ISA simulators to Virtual Platforms

– Move from Verilog/VHDL to SystemC, also an IEEE standard

– Move from Logic Synthesis to High-Level Synthesis (both commercial and in-house tools), which is the
key to enabling rich design-space exploration

• Adopt compositional design methods

– Rely on customizable libraries of HW/SW interfaces to simplify the integration of heterogeneous
components

• Use formal metrics for design reuse

– Synthesize Pareto frontiers of optimal implementations from high-level specs

• Build real prototypes (both chips and FPGA-based full-system designs)

– Prototypes drive research in systems, architectures, software and CAD tools
7©Luca Carloni – Columbia University

Example of an ESP Based-Design:
FPGA Prototype to Accelerate Wide-Area Motion Imagery

Page 8©Luca Carloni – Columbia University

• Design: Complete design of WAMI-App
running on an FPGA implementation of
an ESP architecture

– featuring 1 embedded processor,
12 accelerators, 1 five-plane NoC,
and 2 DRAM controllers

– SW application running on top of
Linux while leveraging multi-
threading library to program the
accelerators and control their
concurrent, pipelined execution

– Five-plane, 2D-mesh NoC efficiently
supports multiple independent
frequency domains and a variety of
platform services

input output

Motion Detection from
WAMI-Application

NoC Planes Traffic

Power per Domain

SoC Map

Sampling Window

Frame Buffer

Console Interface

FPGA Infrastructure

[P. Mantovani , L. P. Carloni et al., An FPGA-Based
Infrastructure for Fine-Grained DVFS Analysis in
High-Performance Embedded Systems, DAC 2016]

How to Couple Accelerators, Processors and Memories?

• There are two main models of coupling
accelerators with processors, memories

– Tightly-Coupled Accelerators
• designed with the processor core

• located within the processor core

• execute fine-grain tasks on small datasets

• typically accessed via specialized instructions

Tightly-Coupled Accelerators (TCA)

9

[E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, An Analysis of
Accelerator Coupling in Heterogeneous Architectures, DAC’15]

Private
Local

Memory

©Luca Carloni – Columbia University

Loosely-Coupled Accelerators (LCA)
– Loosely-Coupled Accelerators

• designed independently from the processor core

• located outside the processor core

• execute coarse-grain tasks on large datasets

• typically accessed via device drivers

Modeling Loosely-Coupled Accelerators

• The accelerator model enables the definition of a configurable interface that
simplifies the integration of the accelerator within any ESP instance

– by decoupling the design of any accelerators from the design of the rest of the SoC

10©Luca Carloni – Columbia University

• The behavior of loosely-coupled
accelerators has 4 main phases

– configuration, input, compute, output

• I/O phases transfer chunks of data
from DRAM to the PLM

– these transfers are specified with TLM
primitives, implemented with DMA
mechanisms

configuration

registers

input output

compute logic store logic

Private Local Memory (PLM)

conf logic

load logic

bank bank

AcceleratorSC_MODULE

SC_CTHREAD

Loosely-Coupled Accelerators

• Major speedups and energy
savings:

– highly parallel and customized
datapath

– aggressively banked, multi-ported,
private local memory (PLM)

• What should the cache coherence
model for accelerators be?

– 3 main models in literature
[D. Giri et al., IEEE Micro ‘18]

11

Accelerator Models: Fully Coherent

• Coherent with the entire cache
hierarchy
– same coherence model as the

processor

• Programming requirements
– race-free accelerator execution

• Implementation variants
– generally bus-based

– accelerators may own a cache
v IBM CAPI, [Y. Shao et al., MICRO ‘16],

[M. J. Lyons et al., TACO ‘12]

x ARM ACE-lite

12

Accelerator Models: Non Coherent

• Not coherent with cache hierarchy

– caches are by-passed while talking with
DRAM

• Programming requirements

– race-free accelerator execution

– flush all caches prior to accelerator
execution

• Implementation variants

– generally NoC-based & DMA-based

• [Y. Chen et al., ICCD ‘13]
[E. Cota et al., DAC ‘15]
[Y. Shao et al., MICRO ‘16]

13

Accelerator Models: LLC Coherent

• Coherent with LLC only
– processors’ private caches are

by-passed while talking with the LLC

• Programming requirements
– race-free accelerator execution

– flush processors’ private caches
prior to accelerator execution

• Implementation variants
– first proposed by

[E. Cota et al., DAC ‘15]

– only 1 implementation in literature
[D. Giri et al., NOCS ‘18]

14

Motivation: Why Different Coherence Models?

• The best choice of coherence model varies at runtime with the
accelerator workload size and with the number of active accelerators

• LLC-coherent and fully-coherent models can significantly reduce the
number of off-chip memory accesses

15

fully-coherent
model

LLC-coherent
model

non-coherent
model

BEST
MODEL

private cache size LLC size

~ memory
footprint of
workload

RULE OF THUMB

[D. Giri, P. Mantovani, and L. P. Carloni, Accelerators & Coherence: An SoC Perspective.
IEEE MICRO, 2018.]

Heterogeneous Coherence: Experimental Setup

16

• FFT1D

– streaming memory access

• Sort

– no temporal locality, but in-place (i.e. in
the PLM) data processing

• FFT2D

– streaming memory access, but two
phases with sequential dependency

• SPMV

– asymmetric data reuse with irregular
access pattern

– very low compute-to-memory ratio

• The ability to have perfectly
balanced accelerator stages is
highly dependent on the specific
memory access patterns

– as well as on the system interconnect
and the memory hierarchy, including
the selected cache-coherence model

Results: Comparing the Speedup of Non-Coherent vs.
LLC-Coherent Accelerators (Running Standalone)

17

• Compared to non-coherent accelerators, the relative speedup of LLC-coherent
accelerators ranges between 0.5x and 4x
– the memory access count, instead, ranges from 0 to at most 2x (in worst-case scenario)

• Confirmation of the benefits of runtime model selection based on footprint

LLC winning

Contributions

• We propose a runtime algorithm to adaptively manage the cache
coherence of accelerators

– we show how to leverage the heterogeneity of cache-coherence models
to improve the overall system performance.

• We evaluate the algorithm with:

– our FPGA-based platform for rapid SoC prototyping,
which is part of the Embedded Scalable Platform project

– synthetic accelerators with a wide range of communication properties

– synthetic application

• varying number of concurrently active accelerators

• variable memory footprint of the accelerators’ workload

18

Our SoC Platform

• Our design is based on an instance of
Embedded Scalable Platforms (ESP)

– socketed tiles

– multi-plane NoC

– easy integration and reuse of
heterogeneous components

– capable of running multi-processor and
multi-accelerator applications on Linux SMP

– support for all three cache-coherence
models for accelerators

19

[G
ir

i e
t

a
l.,

 N
O

C
S

’1
8

]

Processor Tile

• Main components

– single-core processor tiles,
with private L2 cache

• In this work

– up to 2 processor tiles

– 64KB private caches

– off-the-shelf processor with L1
write-through caches: Leon3

20

Memory Tile

• Main components

– memory controller

– LLC and directory

• can be split over multiple tiles

• In this work

– 2 memory tiles

– 2MB aggregate LLC (1MB per tile)

21

Accelerator Tile

• Main components
– any accelerator complying with a

simple interface

– a small TLB

– a DMA controller and/or a private
cache

• Support for run-time selection
of coherence model
– selection granularity: possible at

each accelerator invocation

– selection method: one I/O write
to the configuration registers

22

The Proposed Algorithm for Adaptive Management of
Accelerator Coherence

• Executed by the
device driver at
each accelerator’s
invocation

• Selects the
cache-coherence
model for the
accelerator

• Static inputs: 4

• Dynamic inputs: 4

23

1 if (footprint < PRIVATE_CACHE_SIZE)
2 if (n_fully_coherent < MAX_FULLY_COHERENT)
3 coherence = FULLY_COHERENT;
4 else
5 coherence = LLC_COHERENT;
6

7 else if ((current_llc_footprint + footprint)
8 > LLC_SIZE)
9 coherence = NON_COHERENT;

10

11 else if (n_acc_on_llc_or_fully_coherent
>= N_MEM_TILES * MAX_ACC_PER_LLC)

12 coherence = NON_COHERENT;
13

14 else
15 coherence = LLC_COHERENT;

Synthetic Accelerators

• An accelerator is characterized by its communication properties

– we defined 8 parameters to describe the communication properties

– we designed a “master accelerator” with parametrizable communication
properties

– we generated 12 accelerators with a wide range of communication
properties

24

Synthetic Application

25

• Application with multiple phases

– variable memory footprints of the accelerators’ workloads

– variable number of concurrently active accelerators

Phases in our appSample of a possible app phase

Evaluation SoC

• ESP’s GUI

– the CAD flow from GUI
to FPGA bitstream is
fully automated

• We deployed this SoC
on FPGA and we
executed the synthetic
application on Linux
SMP

26

Results

• Our algorithm reduces:

– the execution time by at least 40%

– the off-chip accesses by at least 30%

27

0

0.5

1

1.5

2

2.5

Execution time Off-chip accesses

App execution
(average of per-phase results)

Our algorithm non-coherent

LLC-coherent fully-coherent

0

1

2

3

4

5

6

0 0.5 1 1.5 2 2.5O
ff

-c
h

ip
 m

e
m

o
ry

 a
cc

e
ss

e
s

M
ill

io
n

s

Execution time (s)

Phase 0

Conclusions

• We showed how to exploit the heterogeneity of cache-coherence
models

– We proposed a runtime algorithm to select the proper cache-coherence
model at each accelerator’s invocation

• Heterogeneity of cache-coherence models for accelerators can:

– lead to speedups of at least 40%

– reduce the off-chip accesses by a minimum of 30%

• The algorithm is general enough to apply to any SoC

– its inputs are: number of active accelerators, caches capacity, memory
footprint of the accelerator workloads

28

Some Recent Publications

1. L. P. Carloni. The Case for Embedded Scalable Platforms DAC 2016. (Invited Paper).
2. L. P. Carloni. From Latency-Insensitive Design to Communication-Based System-Level Design The Proceedings

of the IEEE, Vol. 103, No. 11, November 2015.
3. E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. An Analysis of Accelerator Coupling in

Heterogeneous Architectures. DAC 2015.
4. P. Mantovani, E. Cota, K. Tien, C. Pilato, G. Di Guglielmo, K. Shepard and L. P. Carloni. An FPGA-Based

Infrastructure for Fine-Grained DVFS Analysis in High-Performance Embedded Systems. DAC 2016.
5. P. Mantovani, E. Cota, C. Pilato, G. Di Guglielmo and L. P. Carloni. Handling Large Data Sets for High-

Performance Embedded Applications in Heterogeneous Systems-on-Chip. CASES 2016.
6. L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. COSMOS: Coordination of High-Level Synthesis

and Memory Optimization for Hardware Accelerators. ACM Transactions on Embedded Computing Systems,
2017.

7. C. Pilato, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. System-Level Optimization of Accelerator Local
Memory for Heterogeneous Systems-on-Chip. IEEE Trans. on CAD of Integrated Circuits and Systems, 2017.

8. D. Giri, P. Mantovani and L. P. Carloni. NoC-Based Support of Heterogeneous Cache-Coherence Models for
Accelerators, NOCS, 2018.

9. D. Giri, P. Mantovani, and L. P. Carloni, Accelerators & Coherence: An SoC Perspective. IEEE MICRO, 2018.

Available at www.cs.columbia.edu/~luca

29©Luca Carloni – Columbia University

