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Heterogeneous Architectures Are Emerging Everywhere
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A (Perhaps Easy?) Prediction: 
No Single Architecture Will Emerge as the Sole Winner

• The migration from homogeneous multi-core architectures to 
heterogeneous System-on-Chip architectures will accelerate, 
across almost all computing domains 
– from IoT devices, embedded systems and mobile devices to data 

centers and supercomputers specialization will be the key to realize 
competitive systems

• A heterogeneous SoC will combine an increasingly diverse set 
of components
– different CPUs, GPUs, hardware accelerators, memory hierarchies, 

I/O peripherals, sensors, reconfigurable engines, analog blocks… 

• The set of heterogeneous SoCs in production in any given 
year will be itself heterogeneous!
– no single SoC architecture will dominate all the markets
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Where the Key Challenges in SoC Design Are…
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• The biggest challenges are (and will increasingly be) found in the 
complexity of system integration
– How to design, program and validate scalable 

systems that combine a very large number of 
heterogeneous components to provide a 
solution that is specialized for a target class 
of applications?

• How to handle this complexity?
– raise the level of abstraction to System-Level Design

– adopt compositional design methods with the Protocol & Shell Paradigm 

– promote Design Reuse



Embedded Scalable Platforms  (ESP)
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• The flexible architecture 
simplifies the integration of 
heterogeneous components 
by

• balancing regularity and 
specialization

• relying on the Protocol & 
Shell paradigm and 
scalable communication 
infrastructure

Modular
Socket
Interface

[L. P. Carloni, The Case for Embedded Scalable Platforms, DAC 2016 ]
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• The system-level design 
methodology promotes 
HW/SW co-design and is 
supported by 

• a mix of commercial and 
in-house CAD tools

• a growing library of 
reusable IP blocks



The ESP Scalable Architecture Template

Template Properties
• Regularity

– tile-based design
– pre-designed on-chip 

infrastructure for communication 
and resource management

• Flexibility
– each ESP design is the result of a 

configurable mix of 
programmable tiles and 
accelerator tiles

• Specialization
– with automatic high-level 

synthesis of accelerators for key 
computational kernels

• Processor Tiles
– each hosting at least one configurable processor 

core capable of running an OS

• Accelerator Tiles
– synthesized from high-level specs

• Other Tiles
– memory interfaces, I/O, etc.

• Network-on-Chip (NoC)
– playing key roles at both design and run time

Possible Instance of an ESP Chip 
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Our System-Level Design Approach: Key Ingredients

• Develop Platforms, not just Architectures

– A platform combines an architecture and a companion design methodology

• Raise the level of abstraction

– Move from RTL Design to System-Level Design

– Move from ISA simulators to Virtual Platforms

– Move from Verilog/VHDL to SystemC, also an IEEE standard

– Move from Logic Synthesis to High-Level Synthesis (both commercial and in-house tools), which is the 
key to enabling rich design-space exploration

• Adopt compositional design methods

– Rely on customizable libraries of HW/SW interfaces to simplify the integration of heterogeneous 
components

• Use formal metrics for design reuse

– Synthesize Pareto frontiers of optimal implementations from high-level specs 

• Build real prototypes (both chips and FPGA-based full-system designs)

– Prototypes drive research in systems, architectures, software and CAD tools 
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Example of an ESP Based-Design: 
FPGA Prototype to Accelerate Wide-Area Motion Imagery
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• Design:  Complete design of WAMI-App 
running on an FPGA implementation of 
an ESP architecture 

– featuring 1 embedded processor, 
12 accelerators, 1 five-plane NoC, 
and 2 DRAM controllers 

– SW application running on top of 
Linux while leveraging multi-
threading library to program the 
accelerators and control their 
concurrent, pipelined execution

– Five-plane, 2D-mesh NoC efficiently 
supports multiple independent 
frequency domains and a variety of 
platform services

input output

Motion Detection from 
WAMI-Application

NoC Planes Traffic

Power per Domain

SoC Map

Sampling Window

Frame Buffer

Console Interface

FPGA Infrastructure

[P. Mantovani , L. P. Carloni et al., An FPGA-Based 
Infrastructure for Fine-Grained DVFS Analysis in 
High-Performance Embedded Systems, DAC 2016 ]



How to Couple Accelerators, Processors and Memories?   

• There are two main models of coupling 
accelerators with processors, memories

– Tightly-Coupled Accelerators
• designed with the processor core

• located within the processor core

• execute fine-grain tasks on small datasets

• typically accessed via specialized instructions

Tightly-Coupled Accelerators (TCA)
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[ E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni,  An Analysis of 
Accelerator Coupling in Heterogeneous Architectures, DAC’15]

Private 
Local

Memory
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Loosely-Coupled Accelerators (LCA)
– Loosely-Coupled Accelerators

• designed independently from the processor core

• located outside the processor core

• execute coarse-grain tasks on large datasets

• typically accessed via device drivers



Modeling Loosely-Coupled Accelerators

• The accelerator model enables the definition of a configurable interface that 
simplifies the integration of the accelerator within any ESP instance

– by decoupling the design of any accelerators from the design of the rest of the SoC
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• The behavior of loosely-coupled 
accelerators has 4 main phases

– configuration, input, compute, output

• I/O phases transfer chunks of data 
from DRAM to the PLM

– these transfers are specified with TLM 
primitives, implemented with DMA 
mechanisms

configuration

registers

input output

compute logic store logic

Private Local Memory (PLM)

conf logic

load logic

bank bank

AcceleratorSC_MODULE

SC_CTHREAD



Loosely-Coupled Accelerators

• Major speedups and energy 
savings:

– highly parallel and customized 
datapath

– aggressively banked, multi-ported, 
private local memory (PLM)

• What should the cache coherence 
model for accelerators be?

– 3 main models in literature 
[D. Giri et al., IEEE Micro ‘18]
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Accelerator Models: Fully Coherent

• Coherent with the entire cache 
hierarchy
– same coherence model as the 

processor

• Programming requirements
– race-free accelerator execution

• Implementation variants
– generally bus-based

– accelerators may own a cache
v IBM CAPI, [Y. Shao et al., MICRO ‘16], 

[M. J. Lyons et al., TACO ‘12]

x ARM ACE-lite
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Accelerator Models: Non Coherent

• Not coherent with cache hierarchy

– caches are by-passed while talking with 
DRAM

• Programming requirements

– race-free accelerator execution

– flush all caches prior to accelerator 
execution

• Implementation variants

– generally NoC-based & DMA-based

• [Y. Chen et al., ICCD ‘13]
[E. Cota et al., DAC ‘15] 
[Y. Shao et al., MICRO ‘16]
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Accelerator Models: LLC Coherent

• Coherent with LLC only
– processors’ private caches are 

by-passed while talking with the LLC

• Programming requirements
– race-free accelerator execution

– flush processors’ private caches 
prior to accelerator execution

• Implementation variants
– first proposed by 

[E. Cota et al., DAC ‘15]

– only 1 implementation in literature 
[D. Giri et al., NOCS ‘18]
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Motivation: Why Different Coherence Models?

• The best choice of coherence model varies at runtime with the 
accelerator workload size and with the number of active accelerators

• LLC-coherent and fully-coherent models can significantly reduce the 
number of off-chip memory accesses
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fully-coherent 
model

LLC-coherent 
model

non-coherent 
model

BEST
MODEL

private cache size LLC size

~ memory
footprint of 
workload

RULE OF THUMB

[D. Giri, P. Mantovani, and L. P. Carloni, Accelerators & Coherence: An SoC Perspective. 
IEEE MICRO, 2018. ]



Heterogeneous Coherence: Experimental Setup
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• FFT1D 

– streaming memory access

• Sort 

– no temporal locality, but in-place (i.e. in 
the PLM) data processing

• FFT2D 

– streaming memory access, but two 
phases with sequential dependency

• SPMV 

– asymmetric data reuse with irregular 
access pattern

– very low compute-to-memory ratio

• The ability to have perfectly 
balanced accelerator stages is 
highly dependent on the specific 
memory access patterns

– as well as on the system interconnect 
and the memory hierarchy, including 
the selected cache-coherence model



Results: Comparing the Speedup of Non-Coherent vs. 
LLC-Coherent Accelerators (Running Standalone)

17

• Compared to non-coherent accelerators, the relative speedup of LLC-coherent 
accelerators ranges between 0.5x and 4x 
– the memory access count, instead, ranges from 0 to at most 2x (in worst-case scenario)

• Confirmation of the benefits of runtime model selection based on footprint

LLC winning



Contributions

• We propose a runtime algorithm to adaptively manage the cache 
coherence of accelerators

– we show how to leverage the heterogeneity of cache-coherence models 
to improve the overall system performance.

• We evaluate the algorithm with:

– our FPGA-based platform for rapid SoC prototyping, 
which is part of the Embedded Scalable Platform project

– synthetic accelerators with a wide range of communication properties

– synthetic application

• varying number of concurrently active accelerators

• variable memory footprint of the accelerators’ workload
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Our SoC Platform 

• Our design is based on an instance of 
Embedded Scalable Platforms (ESP)

– socketed tiles

– multi-plane NoC

– easy integration and reuse of 
heterogeneous components

– capable of running multi-processor and 
multi-accelerator applications on Linux SMP

– support for all three cache-coherence  
models for accelerators
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Processor Tile

• Main components

– single-core processor tiles, 
with private L2 cache

• In this work

– up to 2 processor tiles

– 64KB private caches

– off-the-shelf processor with L1 
write-through caches: Leon3
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Memory Tile

• Main components

– memory controller

– LLC and directory

• can be split over multiple tiles

• In this work

– 2 memory tiles

– 2MB aggregate LLC (1MB per tile)
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Accelerator Tile

• Main components
– any accelerator complying with a 

simple interface

– a small TLB

– a DMA controller and/or a private 
cache

• Support for run-time selection 
of coherence model
– selection granularity: possible at 

each accelerator invocation

– selection method: one I/O write 
to the configuration registers
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The Proposed Algorithm for Adaptive Management of 
Accelerator Coherence 

• Executed by the 
device driver at 
each accelerator’s 
invocation

• Selects the 
cache-coherence 
model for the 
accelerator

• Static inputs: 4

• Dynamic inputs: 4
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1 if (footprint < PRIVATE_CACHE_SIZE)
2 if (n_fully_coherent < MAX_FULLY_COHERENT)
3 coherence = FULLY_COHERENT;
4 else
5 coherence = LLC_COHERENT;
6

7 else if ((current_llc_footprint + footprint)
8 > LLC_SIZE)
9 coherence = NON_COHERENT;

10

11 else if (n_acc_on_llc_or_fully_coherent
>= N_MEM_TILES * MAX_ACC_PER_LLC)

12 coherence = NON_COHERENT;
13

14 else
15 coherence = LLC_COHERENT;



Synthetic Accelerators

• An accelerator is characterized by its communication properties

– we defined 8 parameters to describe the communication properties

– we designed a “master accelerator” with parametrizable communication 
properties

– we generated 12 accelerators with a wide range of communication 
properties
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Synthetic Application
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• Application with multiple phases

– variable memory footprints of the accelerators’ workloads

– variable number of concurrently active accelerators

Phases in our appSample of a possible app phase



Evaluation SoC

• ESP’s GUI

– the CAD flow from GUI 
to FPGA bitstream is 
fully automated

• We deployed this SoC 
on FPGA and we 
executed the synthetic 
application on Linux 
SMP
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Results

• Our algorithm reduces:

– the execution time by at least 40%

– the off-chip accesses by at least 30%
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Conclusions

• We showed how to exploit the heterogeneity of cache-coherence 
models

– We proposed a runtime algorithm to select the proper cache-coherence 
model at each accelerator’s invocation

• Heterogeneity of cache-coherence models for accelerators can:

– lead to speedups of at least 40%

– reduce the off-chip accesses by a minimum of 30%

• The algorithm is general enough to apply to any SoC

– its inputs are: number of active accelerators, caches capacity, memory 
footprint of the accelerator workloads
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