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Abstract—On-chip shared memory is the primary paradigm
for multi-core SoC designs and poses the most critical challenges
to their scalability. Choosing the appropriate coherence model
for accelerators not only can improve the overall system perfor-
mance, but can also decrease energy consumption by reducing
the accesses to DRAM. We propose an extension of a standard
directory-based cache-coherence protocol and present its design
as part of a scalable memory hierarchy implemented over a NoC.
To evaluate our contribution we designed a many-accelerator
SoC architecture that can support three main cache-coherence
models for accelerators: non-coherent, last-level-cache-coherent,
and fully-coherent. This SoC can run Linux SMP with split last-
level cache and multiple DRAM controllers. Our FPGA-based
experiments show that the optimal cache-coherence selection
varies at run-time, based on the running accelerators and the
memory footprint of the applications. Therefore, we support run-
time selection of the cache-coherence model for each accelerator,
as an alternative to a design-time decision.

I. INTRODUCTION

As systems-on-chip (SoCs) integrate ever more compo-
nents and become distributed systems [1], the network-on-chip
(NoC) is superseding the more traditional interconnects [1]—
[3]. There are many examples of this shift both in industry and
academia [4], [5]. While NoCs provide more scalable on-chip
communication, shared memory is the dominant programming
model of multicores [6]. Shared memory and cache coherence
pose critical scalability challenges, which have been widely
addressed for NoC-based homogeneous multicores [7], [8].
Despite the NoC being identified as a proper and scalable
solution also for heterogeneous SoCs [9], [10], the interaction
between accelerators and a cache hierarchy distributed over a
NoC has received limited attention by researchers.

We identified three main cache-coherence models for accel-
erators: non-coherent, fully-coherent, and LLC-coherent [11],
[12]. In the non-coherent model the accelerator operates
through direct-memory access (DMA), bypassing the caches.
Conversely, with the fully-coherent model, memory requests
must be coherent with the entire cache hierarchy. This ap-
proach can endow accelerators with a private cache, thus
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Fig. 1. 4x4 instance of our NoC-based architecture with focus on the content
of accelerator, memory, and processor tiles and their interface with the NoC.
Numbers 1 to 6 refer to separate physical NoC planes.

requiring no modifications to the coherence protocol. The third
model represents an intermediate position: memory requests
issued by the accelerator are coherent with the LLC, but
not with the private caches of the processors. In this case,
DMA transactions address the shared LLC, rather than external
memory. Cota et al. were the first to describe the LLC-coherent
model for accelerators and to estimate its benefit in simula-
tion [11]. To date, however, neither a cache-coherence protocol
nor an SoC architecture have been presented to support LLC-
coherent accelerators over a NoC. To this end, we propose an
extension of the MESI directory-based protocol and integrate
LLC-coherent accelerators into the SoC architecture illustrated
in Fig. 1, which leverages the concept of tile-based architecture
over a packet-switched NoC [13]-[15]. This is the first NoC-
based system that allows all three models of coherence for
accelerators to coexist and operate simultaneously with sup-
port for run-time selection. Furthermore, by supporting atomic
test-and-set and compare-and-swap operations over the NoC,
we can run multi-processor and multi-accelerator applications
on Linux SMP.



With a set of experiments on FPGA, we prove the benefits of
selecting the coherence model at run-time. The experimental
results confirm that the LLC-coherent model significantly
reduces, and in some cases eliminates, the number of accesses
to main memory. In addition, LLC-coherent accelerators can
have better performance than non-coherent ones, as long as
the accelerated application doesn’t incur thrashing of the LLC.
The fully-coherent model can be the optimal selection when
the memory footprint fits in the accelerator’s private cache.
Non-coherent DMA is optimal, instead, whenever accelerators
operate on large amounts of data.

II. NOC-BASED ARCHITECTURE

Fig. 1 shows a 4-by-4 instance of our scalable SoC. Simi-
larly to other tile-based architectures [14], [15], each tile can
host a general-purpose processor, an accelerator, or an inter-
face with main memory. Our design is based on an instance of
Embedded Scalable Platforms (ESP) [15], [16]. We enhanced
the ESP architecture by adding a cache hierarchy to support
both symmetric multiprocessing as well as loosely-coupled
LLC-coherent and fully-coherent accelerators, alongside the
more typical non-coherent loosely-coupled accelerators.

SoC Integration. A processor tile contains a single core
and a private write-back L2 cache. The latter implements
the directory-based coherence protocol over the NoC, thus
decoupling the processor-specific L1-cache design from the
rest of the system. For instance, our processor tile hosts a
Leon3 core [17], which is tightly integrated with the write-
through L1 caches. Memory requests issued over the local
bus are intercepted by the L2, whereas memory-mapped I/O
operations are directly forwarded to the NoC. Fig. 1 shows
the local ports of the NoC planes used to route all types of
messages in the system.

Memory tiles are the access points to off-chip memory.
They feature a memory controller and an LLC tightly coupled
with a directory. One of the memory tiles hosts shared system
resources, including the interrupt controller, the system timer,
and a debug interface.

The accelerator tile can host any accelerator complying with
a simple interface. This consists of memory read and write
ports, configuration ports, and a done signal. As shown in
Fig. 1, the tile includes a set of memory-mapped configuration
registers. These are accessed by the operating system through
a device driver. The latter, in turn, is invoked by an application
to offload a task. Some registers are accelerator specific and
hold the configuration parameters, including the size of the
workload. Others are common to all accelerators and hold
information such as the page table handle, or the selected
cache-coherence model. Based on these registers, a small TLB
translates the accelerator’s requests to accesses in physical
memory and passes the transaction information to either the
DMA controller or the private cache. We leverage a fast trans-
lation scheme based on a scatter-gather list that partitions the
accelerator space in large equally-sized pages and generates
a small page table [16]. Thus, accelerator tiles handle virtual
memory without interrupting the processor cores.

System Invariants. For functional correctness across all
coherence models, our system maintains two invariants. First,
we use locks to enforce mutual exclusion: during the execution
of any accelerator no other component can access its data.
Second, during the execution of non-coherent accelerators,
we ensure that there exists only a single copy of the data,
thanks to an efficient flush mechanism. This second invariant
is relaxed for LLC-coherent accelerators, because the data can
be present both in DRAM and in the LLC. Indeed, most
of the lines stored in the LLC are expected to be valid, if
the software application was working on it before invoking
the accelerator. Note that only the first invariant is necessary
for fully-coherent accelerators. These can access data owned
or shared by any private cache in the system, but mutual
exclusion is still necessary because they do not share lock
variables with the operating system and cannot perform atomic
operations.

NoC Planes. We designed a packet-switched NoC with
a 2D-mesh topology and look-ahead dimensional routing.
In order to prevent protocol deadlock and provide sufficient
bandwidth for both coherence and DMA messages, the NoC
has multiple physical planes [18]. The tiles inject packets
into each plane based on the type of message. Every hop
takes a single clock cycle, because arbitration and next-route
computation are performed concurrently. The channel width is
configurable, but it is fixed at 32 bits for this work.

Directory-based protocols impose two main requirements
on the interconnect to avoid deadlock: point-to point ordering
and three separate channels for request, forward and response
messages [19]. Hence, we devote three NoC planes to the
cache coherence messages (planes 1, 2, 3 in Fig. 1). For
the same reason, we route DMA requests and responses
between accelerator tiles and memory tiles on two different
planes (see planes 4 and 5 in Fig. 1). While we could reuse
the coherence planes as DMA planes, we prefer to allocate
additional ones to increase the communication bandwidth.
Finally, the plane labeled /0/IRQ is dedicated to short packets
for interrupts and memory-mapped I/O. Interrupts are not
broadcasted: the interrupt controller receives all interrupts and
injects in sequence one specific interrupt-level message for
each processor that must be notified. While interrupt handling
on the NoC inevitably incurs higher latency than on a bus,
hard real-time deadlines can still be met.

Cache Design. Our cache hierarchy implements a MESI
directory-based protocol over two levels of caches: a private
and write-back L2 cache present on every processor tile (and,
optionally, on any accelerator tile) and a combined LLC
and directory that can be split across multiple memory tiles.
Each partition of the LLC and directory handles requests for
the same address ranges pertaining to the memory controller
placed on the tile. Since the LLC and directory are tightly cou-
pled together, we refer to them interchangeably to indicate the
combination of the two. We designed the caches in SystemC
and implemented them with high-level synthesis (HLS). All
caches are configurable in the number of sets and ways, as well
as in the number of sharers and owners. For our experiments,
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DIRECTORY CONTROLLER’S EXTENDED MESI PROTOCOL.
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Fig. 2. Cache-coherence state and exchanged messages.

we target an FPGA but the system can be synthesized for an
ASIC target as well.

Fig. 2 shows all the message types that can be sent or
received by the caches. Those that involve the DMA controller
are only required by LLC-coherent accelerators; they are not
part of the regular MESI protocol. The cache lines and all the
meta-data are stored in SRAM banks and register files. The
directory controller is specified as a single SystemC process.
At each iteration of the main loop, the controller checks with
a fixed priority if there is any incoming message or if there
is any previously stalled message that can now be processed.
If this is the case, then the controller reads a whole cache set
and, if needed, it updates a cache line and its meta-data. The
controller might also send out one or more messages according
to the protocol. The maximum latency for handling a request

(i.e. for each iteration of the main loop) is exactly 4 cycles
for a 16-ways LLC. The miss penalty, due to off-chip memory
access, adds up to the fixed delay, when applicable. The cache
storage is also implemented through banked SRAMs, offering
up to 16 ports. Hence, a whole set can be read in a single
clock cycle when the LLC has at most 16 ways.

The design of the private L2 cache is similar to the LLC,
with the addition of a register bank that keeps all information
about lines that are currently in a transient state. These
registers support a configurable number of ongoing requests,
for which the cache is only updated when a line transitions to
a stable state of the MESI protocol.

We integrate the caches into their corresponding tile as
follows. In the case of fully-coherent accelerators, read and
write transactions are directly translated into cache-specific
requests. On processor tiles, load and store operations are
issued on a local bus, where the L2 cache acts as a slave
device. The LLC, instead, acts as a master of a local bus on
the memory tile and issues operations to address the memory
controller. The flush mechanism relies on memory-mapped
registers that allow the device driver to request a selective
flush of any cache in the hierarchy and check for completion
before invoking an accelerator. When a flush is due, the
private caches wait for the processor’s L1 to be flushed and
then start a synchronized flush across all cache levels and all
processor cores to guarantee the consistency of shared data.
Note that only the levels of caches selected by the device
driver are flushed and the duration of the flush phase becomes
a negligible overhead when the workload of the accelerator is
large enough.



III. CACHE-COHERENCE PROTOCOL

We modified a classic MESI directory-based cache-
coherence protocol, as defined by Sorin et al. [19], to make
it work over a NoC and, most importantly, to support LLC-
coherent accelerators. The extension to the cache coherence
protocol does not affect the private caches, but rather only the
LLC.

A. Directory controller

Table I shows in full the new protocol for the directory
controller. The format is similar to the original table [19]. The
colored cells and the bold text highlight our additions and
modifications. Each column corresponds to a message type
that the LLC can receive. The only exception is Evict, which
is not a message, but rather a possible consequence of a miss
in the LLC. The rows, instead, represent the possible states of
the cache line addressed by the incoming message. Each entry
indicates the actions performed and, after the /, the new state
of the cache line. Actions within square brackets may or may
not occur. The empty boxes indicate situations that never take
place, while the stall cells require the incoming message to be
stalled until the pertinent cache line resolves to a stable state.
req refers to the requestor, which is the private cache that sent
the message. mem stands for off-chip memory.

Write-back. First, we explicitly specify the protocol as
write-back, i.e. a Put message does not cause a write back
to main memory. Only an eviction caused by a Get request
or a flush can do so. For this purpose, we add a stable state
that we call Valid (V), which refers to cache lines that contain
valid data but have an empty sharers’ list and no owner. As
shown in Table I, the only difference between Valid and Invalid
is that misses for Valid lines do not cause memory accesses
and that Valid lines can be evicted. We added the orange
cells to describe the management of the Valid state. In order
to explicitly define the write-back behavior, the bold fonts
identify all the read and write operations to memory or to
the LLC cache lines.

Dirty bit. In our implementation we only write back to
memory if the cache line to be evicted is dirty, thus reducing
off-chip accesses. Most of the write mem operations enclosed
in square brackets in Table I take place for dirty lines only.

Recalls. We support sending recalls from the LLC to the
private caches. These happen when a Get request (or a DMA
request) causes a miss and there are no Invalid or Valid lines in
the set. A line must be sacrificed and its sharers or owner have
to be informed. GetS and GetM can only cause recalls when
the LLC is not inclusive, while DMA requests may always
trigger recalls. A recall requires two additional transient states
corresponding to the last two rows of Table I. When a line is in
either of these states, the cache is waiting for the response to
a recall. The latter is sent either in the form of an Invalidate
message, when transitioning from the Exclusive state, or a
Fwd-GetM message, when transitioning from the Modified
state. The purple cells in Table I define the behavior of recalls.

Flush. From the protocol viewpoint, a flush is a series of
evictions. In our implementation, a flush only evicts Valid

lines. This simplification, which greatly reduces the perfor-
mance penalty, is possible because a flush is only needed
before a non-coherent accelerator starts executing. In this
situation we make sure that the flush of the private caches is
completed before the flush of the LLC starts. This guarantees
that all cache lines needed by the accelerator are either present
in the LLC with Valid state, or stored in DRAM only.

DMA requests. In Table I, the green columns indicate
how we extend the protocol to handle LLC-coherent DMA
requests. These can only address Valid or Invalid cache lines,
thanks to the invariants specified in Section II: the private
caches are flushed and no other component can access the
accelerator’s data before completion. Note that thanks to
recalls, flushing the private caches could be avoided. However,
the amount of generated messages would incur a much higher
traffic and performance overhead, when compared to flushing.
DMA requests cause a memory access only in three possible
scenarios: eviction of dirty lines, read miss, or misaligned
write miss. The last condition generates at most two memory
accesses, corresponding to the first and the last cache line
involved in the misaligned DMA transaction. All other lines
are completely overwritten and require no write allocation.

B. Private cache controller

Recalls. Recalls from the LLC are supported and imple-
mented as forced evictions.

L1 invalidation. The processors integrated in our SoC
are Leon3 cores configured with a write-through split L1
cache that supports snooping-based coherence over the AMBA
AHB bus [17]. Hence, for every cache line that is evicted
or invalidated in the L2, the corresponding line in the L1 is
invalidated by performing a fake-write operation on the bus.
Invalidation is not necessary for accelerator tiles, where the
write-back L2 is the first and single level of private cache.

Atomic operations. To run an unmodified version of Linux
SMP with the Leon3 processors, we support test-and-set
and compare-and-swap operations. A processor issues these
operations as one or more loads addressing a cache line that
may or may not be followed by a store targeting the same
cache line. A lock signal is set to prevent preemption of the
bus. Over a NoC, standard directory-based protocols alone do
not guarantee the atomicity of such operations. Hence, we add
a transient state to the private cache protocol to capture the
fact that a line has been read by an atomic operation, but not
written yet. We call this state XM", which resolves to Modified
when any of the following requests arrives on the bus: an
atomic write request for the XMV cache line, a non-atomic
request, or a request for a different cache line. Additionally,
when the atomic load arrives, the private cache sends a GetM
to the directory to gain ownership of the cache line. Once
it gains ownership, no forward requests are accepted for this
cache line until it resolves to Modified. When the processor
issues an atomic read request, if the related cache line is in
either Exclusive or Modified state, a read hit is followed by a
state update to X M"W.



TABLE II
CHARACTERIZATION OF THE TARGET ACCELERATORS.

Accelerator Memory ‘ PLM FPGA Resources
Footprint (kB) LUT FF BRAM
FFT 1D 32kB - 256kB 40 7,537 4,310 10
Sort 128kB - 4MB 24 | 36,868 31,300 6
FFT 2D 256kB - 16MB 128 3,965 2,190 48
SPMV 25kB - 10MB 12 8,136 4,476 24

IV. ACCELERATORS

We used SystemC and Cadence Stratus HLS to design and
synthesize all loosely-coupled accelerators in our experiments.
A loosely-coupled accelerator provides a major speedup over
a software implementation of the same algorithm thanks to its
highly parallel architecture and aggressively banked private
local memory (PLM) [11], [20]. While the PLM occupies
most of the accelerator area, typically it cannot contain the
whole dataset processed by an accelerator for a given invoca-
tion. Hence, the data subsets (chunks) must be continuously
exchanged between the PLM and the rest of the memory
hierarchy. To achieve optimal performance, communication
and computation phases must be overlapped as much as
possible using ping-pong buffering and pipelining: the pipeline
input stage loads a chunk of data into the PLM; one or more
compute stages process the input data and save an output
chunk into the PLM; the output stage issues a store for the
partial results to the next level of the memory hierarchy. If
the compute stage takes at least the same time as the input
and output stages, the communication phase is completely
hidden and the accelerator achieves its maximum sustainable
throughput. The ability to have perfectly balanced accelerator
stages is highly dependent on the specific memory access
patterns, as well as on the system interconnect and the memory
hierarchy, including the selected cache-coherence model. The
SoC designer must consider spatial and temporal locality (if
any), length of read/write transactions, and the offsets across
multiple transactions, which could be statically known, or data
dependent. Some accelerators, for example, never read the
same data from memory twice; others, instead, may reuse data
extensively. While many loosely-coupled accelerators present
a streaming access pattern with long contiguous transactions,
some issue irregular and short requests to memory. More
importantly, the size of the dataset can vary greatly across
different accelerators, and across multiple invocations of the
same accelerator. Our experiments confirm that the memory
footprint of the workload is indeed the most relevant metric
when selecting the appropriate cache-coherence model.

We implemented four representative accelerators to carry
out the experiments described in Section V. We acceler-
ate four ubiquitous algorithms: Sort, Fast Fourier Transform
(FFT) 1D, FFT 2D, and Sparse Matrix-Vector Multiplication
(SPMV). The initial software implementation for SPMV is
taken from the MachSuite [21]. We report below a brief
qualitative description of each accelerator. Table II summarizes
some quantitative data on their memory footprint and resource
utilization on FPGA.

Check and Update SoC Configuration
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Fig. 3. SoC integrator GUI configured for the experiments.

FFT 1D accelerates the FFT algorithm over one vector
of up to 32K complex numbers. The computation stages of
its pipeline process two non-contiguous portions of the input
vector. The offset between the two depends on the current
iteration of the FFT algorithm. The number of transactions
with the system memory hierarchy is proportional to the
logarithm of the vector’s length.

Sort can process up to 1024 vectors of 1024 floating-point
numbers. Each vector fits in the PLM and it is sorted in-place.
Note that no data is accessed twice and temporal locality is
exploited within the accelerator’s PLM.

FFT 2D operates in two phases. First FFT 1D is executed on
every row of a two-dimensional matrix. While input data are
read in row-major order, the output is written back in column-
major order, thus transposing the resulting matrix. The second
phase repeats the same operation on the transposed matrix,
thus completing FFT 2D. Similarly to the FFT 1D, the number
and length of the read transactions depends on the size of a
row. Conversely, write transactions consist of a sequence of
two-word store operations, each offset by a row.

SPMV multiplies a sparse matrix by a dense vector. The
matrix is compacted in the compressed row storage format,
which removes all zero entries. This dot product causes few
irregular accesses to memory. The compute-to-memory ratio
is very low due to the overhead of performing short read
transactions compared to a simple computation stage: element-
wise dot product. The elements of the matrix are read only
once, while portions of the dense vector can be reused.

V. EVALUATION

For the evaluation we use an FPGA-based infrastructure
built on top of the one proposed by Mantovani er al. [22].
Fig. 3 is a snapshot of the SoC configuration that we use for
all the experiments. The CAD flow from the graphical user
interface to the bitstream for FPGA is fully automated. The
SoC has two Leon3 cores, two memory controllers and twelve
accelerators, of which only two have a private cache (see the
Cache selection). Through the GUI, we also select the size
of the caches: 16kB for the L1 caches of the cores; 64kB
for each L2 private cache; 1M B for each partition of the
LLC, for a total of 2M B. The bandwidth towards external
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Fig. 4. Comparison of speedup w.r.t. software of non-coherent (NC) and LLC-coherent (LLC) accelerators. Bars are annotated with the memory access count.

memory is throttled by the AMBA AHB bus to one 32-bit
word access per cycle. The DDR3 memory is configured to
operate at its slowest possible frequency of 320 MHz. This
reduction is meant to give an off-chip memory access penalty
similar to that of an equivalent ASIC implementation.

A. Single-accelerator

We start by evaluating single-accelerator SoCs, to test each
of the four types of accelerators in isolation. We allocate
the accelerator’s data on one memory partition and force the
operating system to run on the other partition only. Hence,
we can measure the statistics of the accelerators without the
non-deterministic interference of software execution. Each test
runs a user-space application that prepares the input data for
the accelerator and processes its output data. Hence, caches
are always hot before invoking an accelerator. Results for both
non-coherent and LL.C-coherent accelerators are summarized
in Fig. 4. Bars represent the geometric mean of the accelerator
speedup with respect to single-core software execution over
several runs of the same test. For each bar, the corresponding
label shows the total DRAM access count in thousands.

The charts highlight clear trends relatively to the memory
footprint of the dataset. In the case of FFT-1D, Sort and FFT-
2D, when the accelerator’s memory footprint is smaller than
the LLC size (< 1M B), the LLC-coherent model always has
higher speedup than the non-coherent one. For larger datasets,
however, the non-coherent option returns higher speedups
because the LLC-coherent accelerators trigger many evictions.
When considering SPMYV, the charts in Fig. 4 report a much
larger speedup for the smallest dataset than for the other
ones. Notice that SPMV heavily benefits from LLC-coherence
when the dataset fits in the LLC. The gap between the first
dataset and the others for the non-coherent run is determined
by the size of the dense vector only: SPMV has a 32kB
PLM dedicated to the dense vector, which is used only when
the vector fits in it (382KB dataset). In this case, the sparse
accesses of single words to the dense vector are performed
within the PLM. Because of the irregular access pattern,
the LLC-coherent model continues to deliver slightly better
performance, even for memory footprints larger than the LLC.

In general, despite the performance hit for large datasets,
the benefits of LLC-coherence in terms of DRAM accesses
are indisputable: when the dataset fits in the LLC, they are
completely eliminated, with the exceptions of compulsory
misses. For instance, FFT-2D operates on a temporary memory
buffer, which is not accessed by software prior to invoking
the accelerator. Additionally, note that the largest workloads
of FFT 2D and SPMV capture the worst-case scenario of the
LLC-coherent model: during these tests, most LLC-coherent
DMA transactions are either a read miss that evicts a dirty
line or a short misaligned write request that evicts a dirty line
and doesn’t write an entire cache line. Hence, each operation
causes two memory accesses, as opposed to one access needed
by the non-coherent DMA. In any other scenario, such as for
Sort, the number of accesses to memory for LLC-coherent
accelerators is always less or equal to the number of accesses
required by a corresponding non-coherent accelerator.

In summary, the relative speedup of LLC-coherent accel-
erators, compared to non-coherent ones, ranges between 0.5x
and 4x. The memory access count, instead, ranges from none
to at most 2x with respect to the non-coherent model. We also
observe that the non-coherent model monotonically improves
performance when increasing the size of the dataset. The LLC-
coherent behaves similarly, but with a jump back when the
dataset becomes larger than the LLC. These results confirm
that a run-time selection of the cache coherence model, based
on the memory footprint of the workload, can be beneficial.

B. Many-accelerator

For a single accelerator we have shown that the effectiveness
of the LLC-coherent model is strictly correlated to the ratio
between the size of the workload and the capacity of the
LLC. With the next set of experiments, we collect data for
4, 8 and 12 accelerators running concurrently (1, 2 and 3
instances for each accelerator type). We pick a small workload
ranging from 256kB to 512kB per accelerator, such that only
the aggregate dataset of 8 and 12 accelerators is larger than
the LLC. For these experiments we use a dedicated memory
controller for each memory partition to avoid saturation of the



4 Accelerators 8 Accelerators

12 Accelerators

15
1.375

1.5

15
1.375

1.375
1.25

1.25

1.26

1.125 1.125

1.125

2251K

2689

4878K

0.875

0.875

0.75

Speedup (vs. 1 accelerator)

0.75
0.625
0.5
0.375
0.25

0.875 S
n
0.75

0.625 0.625
0.5 0.5
0.375 0.375
0.25 0.25
0.125 0.125
0 0

%89 %%

O 576K
o

H HH 0.125
ETEEXY @ \ R @ o EEET R = P
S51%% Sh1%% 5e%22288% 4ebn 2154 P R A
z z z z z z
NC LLC NC LLC NC LLC

Fig. 5. Speedup of 4, 8, and 12 accelerators executing simultaneously. Each bar is normalized to the speedup of the corresponding accelerator when running

in isolation. The dataset per accelerator ranges between 256kB and 512kB.

memory bandwidth. This is critical to make sure that results
are not affected by under-provisioned I/O.

Fig. 5 shows the speedup of each accelerator’s execution
w.r.t. its execution in isolation, averaged over multiple runs.
The rightmost bar on each cluster is the geometric mean of
the speedups across all running accelerators. Note that the
invocation of each accelerator should cause a flush of some
caches depending on the coherence model. However, when
a flush is issued while another one is pending, we don’t re-
execute it. Therefore, some accelerators benefit from a smaller
invocation overhead (e.g. Sort in Fig. 5). This performance
advantage would not be appreciable on large workloads, when
the overhead for flushing becomes negligible.

The average performance degraded by up to 38% and 10%
for LLC-coherent and non-coherent accelerators, respectively.
As expected, the performance of LLC-coherent accelerators
is the most penalized and the speedup degradation increases
with the number of accelerators. Based on the system layout,
accelerators with a dedicated path to memory perform bet-
ter. In addition, accelerators operating on short and frequent
transactions, like SPMYV, incur larger penalties. In fact, other
accelerators are likely to be granted the NoC links and lock
them during long DMA transfers.

Next to performance degradation, the LLC-coherent model
shows an increased number of memory accesses when running
many-accelerator workloads. Nevertheless, it still maintains
a considerable advantage over the non-coherent model: 44x
improvement with 4 accelerators and about 5x with 8 and 12
accelerators running concurrently. As expected, these results
also confirm that the selection of the cache-coherence model
must account for the ratio between the workload aggregate
memory footprint and the capacity of the LLC.

C. Fully-coherent model

Finally, we consider a case with a very small dataset and
select the two accelerators in the system equipped with a
private L2 cache. In this scenario, the fully-coherent model can
have similar or better performance than the non-coherent and
LLC-coherent ones. Similarly to LLC-coherent accelerators,
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Fig. 6. Comparison of speedup w.r.t software for tiny workloads.

the fully-coherent ones have the benefit of reducing or elimi-
nating the memory accesses. Additionally, this model does not
require flushing the processors’ caches, which could disrupt
the work of other component of the SoC. In Fig. 6, we show
side by side the accelerator speedups with respect to a software
execution on a processor core for the three cache-coherence
models. The fully-coherent model yields better performance
only for the smallest datasets.

Given these results and since fully-coherent accelerators are
widely present in the literature (e.g. [23], [24]), we support the
run-time selection of the fully-coherent model as well. Our
SoC generator enables this feature through the selection of an
optional private cache in each accelerator tile.

VI. RELATED WORK

Cache Coherence Models for Accelerators. What we
defined as non-coherent and fully-coherent models represent
the two main cache-coherence models for loosely-coupled
accelerators in the literature [25]. Fully-coherent accelerators
have started to receive growing interest from the industry both
as off-chip [24], [26] and on-chip [27] components, but in bus-
based systems only. Instead, we integrated all of the models
in a NoC-based SoC.

Previous works define some bus-based variations of what we
refer to as fully-coherent accelerators. These accelerators have
no private cache and memory requests are issued directly on
the bus. By adapting a snooping-based protocol, both the LLC



and the private caches respond to the accelerator’s requests
enforcing coherence [28], [29]. A similar approach over a NoC
would require a costly multi-cast of invalidation and recall
messages to the private caches.

Among the proposed solutions to support non-coherent
accelerators over a NoC, some suggest to keep a separate
memory space for the accelerators [9], while more recent
approaches agree on maintaining shared memory to avoid
copying data across the two address spaces [10], [30]. Our
implementation follows the most recent approach.

The few studies that compare cache-coherence models for
accelerators differ with respect to our work in that they study
bus-based systems, experiment on single-accelerator work-
loads and do not compare all three models that our architecture
supports. With Fusion, Kumar et al. presented three designs
of the fully-coherent model [23]. Shao et al. analyzed the non-
coherent and fully-coherent models [12]. Finally, Cota et al.
evaluated LLC-coherent and non-coherent accelerators [11].
While these works rely mostly on simulation, our study
is based on FPGA implementations. This allows us to run
complex multi-threaded applications, on top of Linux SMP,
that invoke multiple accelerators operating on large workloads.

Similarly to Fusion, other works explored the case of
multiple accelerators that share the same private L1 cache
or scratchpad [9], [10]. Arguably, a group of accelerators
sharing the same L1 cache or PLM can be defined by its
aggregate communication pattern and workload size. Hence,
our conclusions would still apply.

Cache Hierarchy and NoC Optimization. Researchers
proposed several ways to optimize the cache hierarchy in
NoC-based multicores. However, the implication of cache-
coherence over a NoC for accelerators has received limited
attention. Some approaches for homogeneous multicores pro-
pose a modification of the directory-based protocol [8], [31].
Others suggest to restructure the interconnect and embed the
cache coherence protocol in the NoC, thus completely remov-
ing the directory [7]. Alternatively, Cong et al. [32] propose a
hybrid NoC interconnect as the backbone for many-accelerator
architectures. These types of optimization are orthogonal to
our work. Our protocol can be implemented on different types
of NoC. In fact, the only restrictions that apply to the network
are point-to-point ordering and the availability of three distinct
planes, or virtual channels.

VII. CONCLUSION

We proposed an extension to the MESI directory-based
cache coherence protocol over NoC to support LLC-coherent
accelerators. We presented the first NoC-based SoC enabling
non-coherent, LLC-coherent and fully-coherent accelerator
models to coexist and operate simultaneously. By implement-
ing atomic test-and-set and compare-and-swap, our SoC can
run complex accelerated applications on top of Linux SMP.
Experiments on FPGA prove the importance of run-time
selection of the accelerator coherence model. In particular, the
results show how supporting LLC-coherent accelerators can
deliver up to 4x the performance of non-coherent accelerators,

while reducing (or in some cases eliminating) the number of
accesses to external memory.
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