IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 3, MARCH 2000 281

Negative Thinking in Branch-and-Bound: The Case
of Unate Covering

Evguenii I. Goldberg, Luca P. Carlgritudent Member, IEEHIziano Villa, Robert K. BraytonFellow, IEEE and
Alberto L. Sangiovanni-Vincentelli

Abstract—We introduce a new technique for solving some dis- branch.and bound ()1{ bl
crete optimization problems exactly. The motivation is that when activeset = original problem

searching the space of solutions by a standard branch-and-bound gu:'::tbest — anything

(B&B) technique, often a good solution is reached quickly and while (activeset is not empty) {

then improved only a few times before the optimum is found: choose a branching node k € activeset

hence, most of the solution space is explored to certify optimality, remove node k from activeset

with no improvement in the cost function. This suggests that more generate the children of node k: childi=1,...,nx
powerful lower bounding would speed up the search dramatically. and the corresponding lower bounds z;

More radically, it would be desirable to modify the search strategy f°§fi(j 1>t8)nl’:11{l child i
t

with the goal of proving that the given subproblem cannot yield ' [t -

a solution better than the current best one (negative thinking), elslj l:_(zc..hlld i is a complete solution) {

instead of branching further in search for a better solution currentbest = child i

(positive thinking). else add child i to activeset
For illustration we applied our approach to the unate covering }

problem. The algorithm starts in the positive-thinking mode by a }

standard B&B procedure that generates recursively smaller sub- }

problems. If the current subproblem is “deep” enough, the algo- }

rithm switches to the negative thinking mode where it tries to prove

that solving the subproblem does not improve the solution. The i 1. structure of B&B.

latter is achieved by a new search procedure invoked when the dif-

ference between the upper and lower bound is “small.” Such a pro-

cedure is Comp|etei e|ther it yle|dS a lower bound that matches the branch refers to thls part|t|on|ng proceSS, thnd refers to
current upper bound, or it yields a new solution better than the lower bounds that are used to construct a proof of optimality

current one. We implemented our new search procedure on top of ", .) .
ESPRESSOand SCHERZO, two state-of-art covering solvers used for without exhaustive search. The exploration of the solution space

computer-aided design applications, showing that in both cases we can be represented by a search tree, whose nodes represent sets
obtain new search engines (respectivelgUrRA and AURA II) much of solutions, which can be further partitioned in mutually exclu-

more efficient than the original ones. sive sets. Each subset in the partition is represented by a child
_ Index Terms—Branch and bound techniques, combinatorial op- of the original node. An algorithm that computes a lower bound
timization, covering problems, logic optimization. on the cost of any solution in a given subset prevents further

searches from a given node if the best cost found so far is smaller
than the cost of the best solution that can be obtained from the
) node (lower bound computed at the node). In this case the node
RANCH-AND-BOUND (B&B) is a common search js killed and no children need to be searched:; otherwise it is
) technique to solve exactly problems in combinatorig|jie |f we can show at any point that the best descendant of a
optimization. B&B improves over exhaustive enumeratlorhodey is at least as good as the best descendant of a node
because it avoids the exploration of those regions of the solutiga, we say thay dominates:, andy can kill . Fig. 1 shows
space, where it can be certified (by means of lower boundg), siandard algorithm [1]. Aactiveseholds the live nodes at
that no solution improvement can be found. ___ any point. A variabld” is an upper bound on the optimum cost
B&B constructs a solution of a combinatorial opt|m|zat|or(cost of the best complete solution obtained so far).

problem by successive partitioning of the solution space. TheAn important feature of many practical discrete optimization

problems is that the current best solution can be improved only
Manuscript received July 7, 1998; revised November 1, 1999. This paperw;@ry few times. In turn this is related to how much the solu-

recommended by Associate Editor G. De Micheli. . is “di ified ” | diff Ut h dif
E. I. Goldberg is with Cadence Berkeley Laboratories, Berkeley, CHON Space Is “diversified,” I.e., difrerent solutions have difrerent

94704-1103 USA. costs. For example, if the first solution found for an instance of
L. P. Carloni is with the Department of Electrical Engineering and Computghe graph coloring problem has 20 colors and an optimum so-

Sciences, University of California at Berkeley, Berkeley, CA 94720-1772 US[A . kes 15 col h han five i
(e-mail: Icarloni@eecs.berkeley.edu). ution takes 15 colors, we can have no more than five improve-

T. Villa is with PARADES, 00186 Roma, Italy. . ments to the current best solution. On the other hand, the number
R. K. Brayton and A. L. Sangiovanni-Vincentelli are with the Departmergf subproblems generated ata “deep enough” level of the search

of Electrical Engineering and Computer Sciences, University of California ?t . | Fori | | faB&B h
Berkeley, Berkeley, CA 94720-1772 USA. ree is very large. For instance even at level ten of a searc

Publisher Item Identifier S 0278-0070(00)02742-1. tree, as many a&'° subproblems may be generated. This means

I. INTRODUCTION

0278-0070/00$10.00 © 2000 IEEE

282 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 3, MARCH 2000

that only for a tiny fraction o2'° subproblems can a better so-4’ which have the same reason for not producing solutions of
lution be found, whereas in the overwhelming majority of subA costing less thanbound
problems the solution is not improved. Therefore, for a “deep” In this paper we introduce a unate covering problem (UCP)
subproblem it is reasonable to be negative, trying to prove in teelver working in two modes. In the positive thinking mode it
first place that the current best solution cannot be improved. uses a standard B&B procedure lik@ncovin ESPRESS{2] or
A B&B procedure may be seen as consisting of positiviiae one available isCHERZO[3]. When the lower bound on op-
and negative thinking search modes. The positive thinkirtignal coverings for the current submatrixis close to bounding
mode looks for a better solution by branching, while ththe search, the solver switches to the negative thinking mode,
negative thinking mode tries to prune the current path by lowky invoking an incremental problem solving procedure termed
bounding. Intuitively, when solving a subprobletithe relation raiser. The procedureaiser starts with amaximal set of inde-
between positive and negative modes should be “proportiongkéndent rowgMSIR) of A of size L (that failed to bound the
to the ratio between the probability of finding a better solutiosearch) and constructs the set of irredundant coverings of the
and that of proving that the current best solution cannot B4SIR. Thenraiseradds to the MSIR new rows from, which
improved. However, in traditional B&B the boundary betweeare the most difficult to cover by solutions of the MSIR. The
positive and negative modes is rigid and depends solely on g@utions of the augmented set of rows are computed, possibly
power of the lower bounding procedure. So if the latter fails imcreasing the minimum solution cost; if all solutions with cost
prune the path leading to a node associated with a subprobless thanl are eliminated, theraiser proved that the current
A, then B&B tries to solved in the positive thinking mode, subtree can be pruned away.
even though the chances of improving the solution by meansThe paper is organized as follows. Section Il shows how an
of A are very small. incremental solver is incorporated into the standard B&B proce-
The key point of our approach is to shift the boundary belure for UCP. Section Il describes how to represent and recom-
tween the two modes of B&B in order to exercise more negaute efficiently the solutions of UCP in the negative thinking
tive thinking. Namely, when the lower bound procedure fails t9earch mode. The raising procedure is explained in detail in Sec-
prune the current branch, while being “close” to do it, we appion IV. Experimental results are discussed in Section V. Con-
negative thinking by invoking a special incremental problemglusions are given in Section VI.
solving procedure on the subprobledn
The incremental problem-solving procedure is based on thdl. | NCORPORATING ANINCREMENTAL SOLVER INTO B&B
following observation. Typically a lower bound on optimal so- FORUCP
lutions to a problem is computed by extracting a subproble
A’ for which: 1) finding an exact solution is very easy and
the cost of an exact solution 4/ is not more than the cost of I this paper we apply the proposed search technique to UCP,
an exact solution tod. For instance, when solving the grapt? problem of wide interest in logic synthesis and operations re-
coloring problem, a maximum size complete subgraph is ex€arch [4]. UCP can be stated as follows.
tracted, since optimal coloring of a complete graph is trivial. Definition 1: Given a Boolean matrixi (all entries are zero
When solving UCP, a maximum subset of independent rowsdg 0ne), withm rows, denoted agiow(A), andn columns,
extracted, because finding an optimal covering of independélfnoted as”ol(A), and a cost vector of the columns ofA
rows is trivial. In both cases the ease of finding an optimal sol{ i the cost of theth column), minimize the cost”c =
tion is due to the solution space “regularity”: e.g., any coloring.;—1 %i¢» Wherez € {0, 1}", subject to
of a complete graph can be obtained from another by permuta- Ar> (1,1, -, 1)T 1)
tion; the set of all irredundant coverings of a set of independent -)
rows can be represented as a single Cartesian product. The constraintdr > (1, 1, ---, 1)¥, ensures that the nonzero
Let A’ be a subproblem oft with a regular solution space.elements oft determine a column sét = {j|x; = 1}, which
If the cost of the optimal solutions of’ is not large enough to coversall rows of 4, that is,V¢, 35 € S such that4, ; = 1.
prune the current path of the search tree, we can augraient Thus, the minimum unate covering problem is to find a column
make it “closer” toA. Let A” be such an augmented problemset of minimum cost, which satisfies the constraint of (1). For
Then, instead of solvingl” anew, we can find the optimal so-simplicity we will assume that; = 1, Vj. We will also say
lutions of A” by refining the set of optimum solutions of . that two rows are independent or nonintersecting when there is
This should not be hard to do because the set of solutiod$ ofno column that covers both. We will denote an instance of UCP
by hypothesis can be represented in a compact form. The sewith matrix A by the notatiortJCP(A). Notice that UCP can be
optimum solutions ofd” is in general less regular than fdf, seen as a matrix formulation of tMINIMUM COVERproblem
but their cost has increased. In the negative thinking mdde, [5].
is augmented to increase as much as possible the cost of the opn exact solution is obtained by a B&B recursive algorithm,
timum solutions of the augmented probletfi; to that purpose, mincov,which has been implemented in successful computer
we look first for the most difficult “obstacles” in the sequenc@rograms such assPRESscand STAMINA. Branching is done
from A’ to A, trying to prove that no solution of’ can over- by columns, i.e., subproblems are generated by considering
come the obstacles and be extended to a solutioa tifat is whether a chosen branching column is or is not in the solution.
better than the current best one. This is achieved by clusterifagun of the algorithm can be described by its computation tree.
similar solutions: i.e., we group in a cluster those solutions @he root of the computation tree is the input of the problem, an

?)k. Revisiting the Procedure mincov

GOLDBERGet al: NEGATIVE THINKING IN B&B: THE CASE OF UNATE COVERING

283

edge represents a call toincov,an internal node is a reducedAuraMincov(A, path, w, lbound, ubound) {

input. A leaf is reached when a complete solution is found «
the search is bounded. From the root to any internal node th
is a unique path, which is the current path for that node. TI
inputs of themincovalgorithm are the following:

* a covering matrix4;

* aset of columns denotgxhth(initially empty) that are the
partial solution on the current path from the root;

 a vector of nonnegative integets whoseith element is
the cost (or weight) of théh column of A;

« alower boundbound(initially set to 0), which is the cost
of the partial solution on the current path (a monotoni
increasing quantity along each path of the computatic
tree);

« an upper boundbound(initially set to the sum of weights
of all columns inA), which is the cost of the best overall
complete solution previously obtained (a globally monc
tonic decreasing quantity).

The best column cover for input extended from the partial
solutionpathis returned as the best current solution, if it cost
less thanubound An empty solution is returned if a solution
cannot be found which beatdound Whenmincovis called
on A with an empty partial solutiopathand initiallboundand
ubound.,it returns a best global solution.

The flow of a UCP solver based on B&B enhanced by a
incremental solver is shown in Fig. 2. The parts of text not i
bold font correspond to the originalincovalgorithm, stripped
away of some additional features like matrix partitioning an
Gimpel's reduction. Given a matrixi, most existing UCP
solvers employ column branching to decompose the proble
and use an MSIR to compute a lower bound of U@P(since
no column covers two rows from an MSIR).

solver, whose main search engine is the procedaiser. The
raiser procedure performs “negative thinking” and is invoked
when the following situation occurs: MSIR is a lower boun

not sufficient to prune the subtree rooted at the current nodg, : L i i .
b sented (the details are given in Section 1V). A discussion on the

impact of different values ofiax Raiser is given in Section V.

whereas increasing the lower bound by a small integsould
allow such pruning. In this caseaiser starts from the sub-

problem UCP(MSIR), whose solution space is very regular, a%d

tries gradually to extend it to the entire problem U@P: as a
result,raisereither returns a minimum cost solution of UCP
(if the lower bound cannot be raised hy or returns the empty
solution.

The valuen corresponds to thdifferencebetween the cur-
rent upper bound and the current lower boundliffierence<0,

the current branch can be pruned because it cannot lead to a

solution improvement. Iflifference= n > 0, the search can
be continued withimaiserinstead of marching on with column
branching. However, practicallyaiser is invoked only if0 <

n < maxRaiser, wheremaz Raiser is a parameter fixed
priori. The value ofmazRaiser is usually a small number in
the range from one to three for two reasons.

1) If n is small, then the node is deep enough to warrant the

application of negative thinking,

INotice that ILP-based covering solvers, sucB@s[6], do not need to com-
pute the MSIR.

/* Apply row/column dominance, and select essentials */
if (not reduce(A, path,w, ubound)) return empty_solution
/* Find lower bound from here to final solution */
MSIR = mazrimal_independent_set(A, w)
/* Make sure the lower bound is monotonically increasing */
lbound_new = maz(cost(path) + cost(MSIR), lbound)
dif ference = ubound — lbound._new
/* Bounding based on no better solution possible */
if (dif ference < 0)

best = empty_solution
else if (dif ference < maxRaiser){

/* Apply raiser with n = dif ference */

SolCube = cover MSIR(MSIR)

lowerBound = |SolCube]|

answer = raiser(SolCube, dif ference, A,

lower Bound, bestSolution, ubound)

if (answer = 1)

best = empty_solution
else
best = path U bestSolution /* (answer = 0) */

else if (A is empty) { /* New best solution at current level */
best = path
} else { /* Branch on cyclic core and recur */
branch = select_-column(A,w, MSIR)
pathl = solution_dup(path) U branch
/* Abranch: reduced table assuming branch in solution */
bestl = AuraMincov(Apranch, pathl, w,lbound_new, ubound)
/* Update the upper bound if better solution is found*/
if (bestl # empty_solution) /* i.e., (ubound > cost(bestl)) */
ubound = cost(bestl)
/* Do not branch if lower bound matched */
if (bestl # empty_solution) and (cost(bestl) = lbound_new)
return bestl
/¥ Apo reduced table assuming branch not in solution */
ranch

best2 = AuraMincov(A——-, path, w, lbound_new, ubound)

branch’

best = best_solution(bestl, best2)

}

return best

Fig. 2. AuraMincov:mincovenhanced by incremental raising.
The parts of text in bold font refer to the added incremental

2) If n is small, then the fact that UCP(MSIR) has a regular
solution space can be used.

the following section the basic idea behind théseris pre-

Introducing Raiser to Improve the Lower Bound

To introduceraiser we need the following notation.

* min(UCP(A)) is the size of a minimum solution of
UCP(A).

* Let A’ be a submatrix of4, where the set of columns

and rows ofA’ are defined, respectively, &ol(A’)

Col(A) and Row(A’) € Row(A). A’ is alower bound

submatrixif its minimum solution is a lower bound for

UCPA).

¢ An MSIR of A is usually chosen as a lower bound subma-
trix A’, denoted also ad’ = MSIR(A). If A" is a MSIR
thenmin(UCP(A")) = |Row(A")|.

+ A’ + A, denotes the submatrix obtained by adding a row
A, € Row(A)\ Row(A")to A’.

* Let S be a solution of UCPA). A columnj € S isredun-
dantif S\ {j} is also a solution. A solution of UGR)
that does not contain redundant columns is saetiun-
dant

284 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 3, MARCH 2000

* Sol(A’, n) denotes the set of all irredundant solutions db reduce the runtimes for some examples by a factor of ten
UCP(A4’) consisting ofn or fewer columnsSol(A’, m), or more. It can be shown that the limit lower bound technique
wherem = min(UCP(4")), is the set of all minimum prunes no more branches of the search tree than the application
solutions of UCRA’). of raiser whenn is equal to 1.

 The solutions of UCPA) are represented by sets with the The challenge is to design an efficient procedure to imple-
structure of multivalued cubes [2]. We definecabeto mentraiser. In fact, a “naive” implementation where one stores
be the sel’ = Dy x --- x Dy whereD; N D; = , the set of solution§ol(A’, [IMSIR(A)| + n) may require too
t # jandD; C Col(A), 1 < ¢, 5 < d. The subsets much memory. Indeed, faiser fails to raise the lower bound
D, are thedomainsof cubeC. C denotes a set of setsthen A itself will be taken as a lower bound submatrix and we
consisting ofl columns. In contrast to common cubes usedill have to store all irredundant solutions of UCE with
for the representation of multivalued functions, cubes hef@ISIR| + »n or fewer columns. Our solution to the potential
may have different numbers of domains. For example, ifiemory problem relies on using a data structure called “cubes”
|Col(A)| = 10, then set’y = {1, 5} x {2, 6, 7} x and a new scheme of branching on rows. Before embarking on
{3, 4} andCy = {1} x {2, 4} x {3, 7} x {5, 6, 10} are a detailed description of theiser procedure (found in Sec-
both cubes. tions Il and IV we illustrate the idea with an example.

* O(A;) is the set of all columns covering raw; .

+ The cost of every set of columns @ is the number of C. Example: Lower Bound by raiser
domains ofC, denoted by-ost(C), since the cost of aset consider the following matrixd:
of columns is its cardinality.

» AsetS’ C Col(A) is apartial solutionof UCP(A) if it is 12345678910 U1
not a solution of UCPA). 11101 0100O0O0 1 1

» A setP of partial solutions i€ompletef for any solution 210 01 000001 0 O

S of UCP(A) there is a partial solutiof’ in P with S’ C 3(]101000O01O0 O0 O

S. 410 1 0 0 0 01 00 0 1

We now describe the idea underlying the method for an 50 00000011 1 0
incremental improvement of the lower bound. Suppose that 6/1 10000000 0 O
for a lower bound submatri¥’ of A we know a set of so- 710 0 01 1 1000 0 O

lutions Sol(A’, n). The lower bound given byl’ is equal to Since MSIRA) = {45, Ag, A}, the lower bound is three.
m = min(UCP(A")). Now add a row4,, of Ato A’. Obviously Suppose this value is not sufficient to prune the current path of
Sol(A” + A,,m) C Sol(A', m), since in general somethe search tree, but a lower bound of four would suffice. We
solutions fromSol(A’, m) do not coverAd, and so are not show howraisercan increase the lower bound by one by means
contained inSol(A’ + Ap, m). So after adding a set of rowsof incremental problem solving. The set of all irredundant so-
Aiyy ooy Aiy of Ato A if Sol(A'+ A, +---+ A, m) =0 utions of the subproblem UGRISIR(A)) is given by the cube
then the lower bound for UGR) has improved by 1. If ¢ = {8 9, 10} x {1, 2} x {4, 5, 6}, i.e., any set of three
Sol(A" + Ay, + -+ + Aj, n) = 0, n > m, then the lower columnscy, ¢z, cs such that; € As, c; € Ag, andes € A is
bound has improved by — m + 1. an irredundant solution of UGMSIR(A)).
We start from a submatrixt’ which is an MSIR (since the Consider UCPMSIR(A)+ A,), whose irredundant solutions
solutions of an MSIR can be represented compactly) and thean be obtained from UGMSIR(A)) given by cubeC. We
we add rows to the MSIR with the goal to improve the inipartitionC into two cubesC; = {8, 9, 10} x {2} x {4, 5, 6}
tial lower bound given byMSIR|. The proposal relies on theandC, = {8, 9, 10} x {1} x {4, 5, 6}. All sets of columns
fact that, knowingSol(A’, n), it is not difficult to recalculate specified byC; are solutions of UCBMSIR(A) + Ay), since
Sol(A’ + A,, n). In Section Il we explain how to representthey cover rowA,, but none of the sets specified I} is a
and update efficiently the set of solutions of a matrix. solution because they do not covyr. For sets of columns from
The previous discussion motivates tfaéser procedure. At C, to be extended to solutions of UQRSIR(A) + A4), one
any given nodeV in the search tree, the MSIR for the corremust add toC> one more domain{7, 11}, sinceC} = Cs x
sponding matrixA y is computed. f{MSIR| + |path(An)| + {7, 11} = {8, 9, 10} x {1} x {4, 5, 6} x {7, 11} are solutions
n > |best|, wherebest is the best current solution, then theof UCP(MSIR(A) + Ay4).
raiser procedure is applied to UQR y), otherwise branching Since we want to raise the lower bound from three to four,
on columns continues. The outcomerafser may be one of we can discard the solutions specified &y (they cost four)
the following: 1) the lower boun¢MSIR| can be increased by and focus only on the solutions specifiedd@y(they cost three).
|best| — |[MSIR| — |path(Ax)| and the recursion in the nodeThe goal is to increase by one their cardinality. Now consider the
stops, or 2) a minimum solutiafi(Ay) of UCP(Ax) is found solutions of UCPMSIR(A) + A4 + A3) that can be obtained
such thatS(Ay) U path(Ax) is the new best current solutionfrom C;. CubeC; can be partitioned into two cube€y; =
of UCP(A). {8} x {2} x {4, 5, 6} andC1» = {9, 10} x {2} x {4, 5, 6}.
Notice that improving the lower bound even by a smaltubeCi; specifies solutions of UGRMSIR(A) + A4) that are
amount may lead to considerable runtime reductions. Falso solutions of UCBMSIR(A)+ A+ A3), whereas cub€',»
example, in [7] the limit lower bound is defined, which allowsloes not contain any solution of UQRSIR(A) + A, + A3).
some branches of the search tree to be pruned. The effedtds sets of columns froré; » to be extended to solutions also of

GOLDBERGet al: NEGATIVE THINKING IN B&B: THE CASE OF UNATE COVERING 285

UCPMSIR(A)+As+A3), onemustadd domaii, 3} toCio. Rec(A’ + A,, C) can be rewritten as
The solutions specified b, x {1, 3} consist of four columns Rec(A’ + A,, C) = part1(C) Upart2(C) x O(4,) (2)

a}nd so are discarded. Finally none of the sets of columns Sp%’erepartl(c*) is the set of solutions contained @ which
fied by C', covers rowds, S0Sol(UCPIMSIR(A) +Ag +As+ ver A, andpart2(C) is the set of solutions contained (i
Ap), 3) = 0. hence, a stronger lower bound of four is obtaine hich do not coverd

-

on the solutions of UCRA). Now we want to rewritepart1(C) andpart2(C) as unions
of disjoint cubes. There are three cases.
1) D; € O(A,) for somei, 1 < 4 < d. Then any solution
from C covers the rowd,, and sdRec(4'+ A4, C) = C.

As a stepping stone to the algorithm for raising the lower 2) O(A,) N D; = ¢ for anyi, 1 < i < d. Then no solution
bound the method for representing and updating the set of solu- from C covers 4, and soRec(A’ + A4,, C) = C x

I1l. REPRESENTATION ANDRECOMPUTATION OF THE
SOLUTIONS

tions of a matrix is presented first. O(A,) = Dy x -+~ X Dg x O(Ap).

Let A" be a submatrix ofd and A,, a row from Row(A) \ 3) Cases 1) and 2) are not true, i.e., Bg is a subset of
Row(A'). Let S be a solution of UCPA'). O(4,), O(4,) intersects at least one domain, and we
Definition 1: Rec(A’ + A,, S) = {S} denotes the set of assume w.l.o.g. thati,, intersects the first- domains
solutions of UCRA’ + A,,) obtained according to the following Dy, ---, D,. Then cubeC can be partitioned into the

rules. following » + 1 pairwise nonintersecting cubes:
1) El Sélf;' a ?(;J;Jtion of UCRA’" + A;), thenRec(A’ + C1=D; NO(A,) X Dy x -+~ x Dy
2) pré‘ is not a solution of UCRA’ 4+ 4,,), i.e., no column C2 = D1\ O{Ap) x Dz N O(4y) x Dy x -+ x Do
of S coversA,, thenRec(A’ + A,, §) = {SU{j}|j € Cs =D1\ O(4p) x D2\ O(Ap) x D3 N O(Ap)

O(A)}. X Dy X - x Dy
SoRec(4’ + A, S) gives the solutions of UGRY’ + A4,) that :
can be obtained from the solutiah of UCP(A’). According

to 2), if S is not a solution of UCPA’ + A,,), then we obtain Cr =D\ O(Ap) x - x Dy \ O(4y)
|O(A,)]| solutions of UCRA’ + A,,) by adding taS the columns X D NO(Ap) X Dyyy X -+ X Dy
Colv%erin'gziptlzomplete operator, i.e., every irredundant solution Crts =DLAOUp) X +1+ X Dot A Ol4)
ec i , i.e., every irredu uti DAO(A) x D. o x D 3
S* of UCP(A’ + A,,) can be obtained by the recomputation of X Di\ Olddy) X Dy 52 Da)
a corresponding irredundant solutiSrof UCP(A’): Itis not hard to check that
Theorem 1:For any irredundant solutiof* of UCP(A’ + C=C,U---UChpq

Ap) there is an irredundant solutighof UCP(A/) such thats* and that for any pai@’i’ Cj’ 7 7& j’ 07 N Cj — (Z) Moreover, the
is an element oRec(A4’ + 4,, S). A proof can be found in the first cubes give the solutions of UGR') from C which cover

Appendix I-A. From Theorem 1 follows directly: A, and the cube,.;, gives the solutions of UGRY) from ¢
Corollary 1: Let Sol be a set containing all irredundant sowhich do not coverd,,. Therefore

H /
lutions 5 of UCK(4'). Let partl(C) = CLU--UC,, part2(C) = Cryr. (4)

Sol* = U Rec(A' + 4,, S) In summary, (2)—(4) define operationally tRec operator over
SeSoal the cubes of solutions, consistently with Definition 111.1. Al-
thenSol* contains all solution$* of UCP(A’ + A4,).2 though generating nonintersecting cubes of solutiohsi =
We give an operational definition dtec(4’ + A, S) 1,---,r+1 is not required by Definition 111.1 oRec, it avoids

when solutions are represented by multivalued cubes definedhig occurrence of the same partial solution in more than one
Section 1I-B. Applying the operatdec to a cube of solutions branch.
leads to a collection of cubes of solutions, thereby providing a The following revised operational definition dfec avoids
natural clustering of the recomputed solutions. This suppotfie generation of some redundant solutions, namely, of any
the design of a raising algorithm based on branching by subsg@#ution S’ of UCP(A’ + A,) from part2(C) x O(Ap)
of solutions, each subset being one of the recomputed cube#@t strictly contains a solutiod” of UCRA’ + 4,) from
solutions. LetA’ be a MSIR ofA. The set of all irredundant (and part1(C). The next theorem tightens the operational definition
minimum) solutions of UCPA’) can be represented as the cubef Rec and states that no irredundant solutions are lost.
O(A;)x---xO(A,), whered, , ---, A;, are the rows oft’. Theorem 2: If the computation of th&ec operator is modi-

Let A’ be a submatrix oft andA,, be a row fromRow(A) \ fied as follows:
Row(A'). LetC' = Dy x --- x Dq be a cube of solutions of Rec(A’ + A4, C) =

UCR(4"). Using part1(C) U {part2(C) x [0(A,) \ (D1 U---U DY)} (5)
Rec(A4, C) = U Rec(4, ¢) no irredundant solution o’ + A, is discarded. A proof can
ecC be found in the Appendix I-A. In addition, another method for

2There are examples showing thatc(A’ + A, S) may contain also re- avoiding the repeated generation of some solutions is discussed
dundant solutions. inthe Appendix I-B. In practice, avoiding generation of repeated

286 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 3, MARCH 2000

solutions gives a 30%—-40% speed-up on the overall computa-2) From all branches, nodes are reached corresponding to
tion. In the following section we discuss the raising procedure cubes with a number of domains |[MSIR| + ». In this
in detail, showing how these techniques are embedded inthe al- case the lower bound has been raiseA8IR| +r, since
gorithm. no solutionS of UCP(A) exists such thgtS| < |MSIR|+

.

IV. THE RAISING PROCEDURE Theorem 1: The n-raiser procedure is correct.

Fig. 2 shows how a traditional UCP solver is enhanced by ~Proof: The n-raiser procedure starts with the set of so-
the technique to raise incrementally the lower bound. After tigtions of UCRMSIR), which is a complete set of partial so-
computation of the lower bound, if the galffferencebetween utions of UCRA). Since by Theorem 1 thiec operator pre-
the upper and lower bound is a small positive number, i.e., |€3&/Ves completeness of a set of partial solutions, the set of cubes
than a global parametenaz Raiser, the raiser procedure is of any cut of then-raiser search tree is a complete set of par-
invoked with a parametes set to the value oflifference In tial solutions, where a cut is a set of nodes that intersects any
this case, we say thatsaraiser has been invoked. Intuitively Path from the root to a leaf (nodes in a cut can be either leaf
if the gap is small, we conjecture that a search in this subtr@des of the search tree or nodes that can still be split). The
will not improve the best solutiom-raiser either confirms the invariantthatany cut set of nodes is a complete set of partial so-
conjecture and proves that no better solution can be found,'¢fons guarantees that all solutions of UCE eventually are
disproves the conjecture and improves the best solution bye}Plored, explicitly or implicitly. The procedure-raiser, ap-

least one. plied to A, attempts to find a complete set of partial solutions
each containing at leaf¥ISIR(A)| 4+ = columns. If such a setis
A. Overview of the Raising Algorithm found, then no solution of UGRL) has less thafMSIR(A)|+n

columns, and so the proceduteraiser succeeds in increasing
t%e lower bound by..

If there is no complete set of partial solutions consisting of at
leastiMSIR(A)|+n columns, then by construction theraiser
procedure creates a leaf node with a cube containing solutions
of [IMSIR(A)| + =’ columns, where’ < . If so, the procedure
n-raiseris tightened to be the procedutéraiser,n’ < n, and
the search is continued. If the lower bounding goadefaiser
The process can be described by a search tree, calleel s e_lchi_eved, it. rewms a solution WSIR(‘@' +n ‘?0'“”‘?‘3’

which is the minimum computed so far. If instealdraiserfails

branching tree The |n!t|al cube of splutmné] corregponds tq to raise the lower bound by, then by construction it exhibits
the root node, to which we associate also a pair of matrices _ ™ 7 o
a solution of UCRA) consisting of MSIR(A)| + »” columns,

MSIR(4) and A4 \ MSIR(4). In each node a choice of an un, heren” < n'. Son’-raiseris tightened again to be the proce-

selected row from the second matrix of the node is made. The ™ ~,) : .
. . uren’-raiser and the search is continued, until eventually all

chosen row is removed from the second matrix and added to .)
utions of UCPA) are enumerated. Notice that by construc-

. o) s
first. The number of branches exiting a node is the numbertftlngn' at any given node of a cut set, a lower bodhdan upper

cubes generated by tlke:c operator; each child node gets one o o o ;
the cubes obtained after splitting. Thus, the cube correspondpnogund“b’ and a-raiser procedure with = ub—{b are defined.

to a node represents a set of solutions covering the first matrix . o .
of the pair (that is a “lower bound submatrix” for the node). B- Complexity of the Raising Algorithm

Some useful facts are as follows. The complexity of the raising algorithm is dictated by the size
* When applyingn-raiser, the branches corresponding tmf the cube branching tree, which, in the worst case, is exponen-
cubes of more thafMSIR(A)| + n domains are pruned. tial in the cardinality of the set of rowBows(A) \ MSIR(A),
« If, at a node, row4,, is chosen such that no solution fromi.e., the set of rows that are different from MR and not
the cubeC of the node coverd,,, then there is no splitting covered yet whem-raiser is invoked. However, the following
of the cube, sincBec yields only one cub€' x [O(A4,)\ considerations can also be made.

The n-raiser procedure is based on row branching. Given
covering matrix4, for which 4’ = MSIR(4), the irredun-
dant solutions of UCP4’) are represented by the cubie =
O(A4;) x --- x O(4,,), inwhich 4;,, ---, A;, are the rows
in the MSIR. A “good” rowA,, is chosen fromi. According to
(2)—(5),Rec(MSIR(A) + A, C) is represented by+ 1 cubes
wherer is the number of rows of the MSIRL) intersecting4,,.
This is applied recursively for each of thet- 1 cubes.

(DyU---UDg)]. _ 1) If the number of uncovered rows is extremely large
* The following reduction rule can be applied to the second ~ 5n4q no better solution exists in the current branch of

matrix of the pair: if a row is covered by every solution of the column branching tree (i.e., the proceduaiser

the cubel corresponding to the node, thenthe row canbe g cceeds in raising the lower bound), then the size of

removeq from th.e matrix. _ the cube branching tree is usually small. This is due to
The recursion terminates if either of the following. the fact that there is a large choice of rows which can

1) There is a node such that there are no rows left in the be selected to improve the lower bound and, therefore,
second matrix of the pair and the corresponding cube has usually it is easy to find quickly witnesses that no better
k domains, wherd: < |MSIR| + n. This means that solution can be found in the current branch.
the lower boundMSIR| cannot be improved by. Any 2) If the number of uncovered rows is small, we have also
solution from the cube can be taken as the best current an easy case because the size of the cube branching tree
solution of UCR A). is exponential in the small number of uncovered rows.

GOLDBERGet al: NEGATIVE THINKING IN B&B: THE CASE OF UNATE COVERING 287

This situation may happen regardless of whethesiser C; = {1, 2} N O(A3) x {3, 5} x {6, 7}. CubeC> describes
improves the solution or not, but, in practice, the formdahe set of solutions not contained @ in which row A is
case is more common. necessarily covered by a column of the second domain and so
3) The worst case is whemraiser ends up disproving so- C> = {1, 2} \ O(A3) x {3, 5} N O(A3) x {6, 7} = {1} x
lutions which are “close” in quality to the current best{3} x {6, 7}. Cube(5 describes the set of solutions frofh
In this case, the number of rows in the $&ws(A) \ not contained in”; or Cs in which A3 is necessarily covered
MSIR(A) is neither big nor small and the size of the cubby a column of the third domain. Finally, culsd describes the
branching tree can grow fairly large. set of solutions of UCP4A’) from C which do not cover rowds
and so are not solutions of UCPE + As).
Hence, the root node has four children nodes, each speci-
fied by one of the four cube§, Cs, Cs, Cy x (O(A3z) \ D)

C. Example: Upper Bound by raiser
Considerl-raiserapplied to the following matrix4:

1 2 3 4 5 6 7 and by the pair of matriced’ + Az, A” — As. Consider the
branch corresponding 167 = {2} x {3, 5} x {6, 7}. Sup-

110001101 pose A, is chosen fromA” — A3 to be added tad’ + As.
211010000 SinceO(A2) = {1, 3} intersects only the second domain of
(o 111010 Cy, cubeC splitsin:Cy; = part1(Cy) = {2} x {3} x {6, 7},
4100000 11 Cys = part2(Cy) = {2} x {5} x {6, 7}.
5,01 100000 Hence, the node correspondingtphas two branches whose
610010100 pair of matrices aret’ + A3z + A> and A” — A3 — A, and

Suppose that the set of rows = {A4, 45, Ag} is chosen as whose cubes are, respectively; andCys x (O(A2)\ D¢,) =
MSIR(A). The set of irredundant solutions of UCF) is {2} x {5} x {6, 7} x {1} .4 Consider the branch corresponding
C={1,2} x{3,5} x {6, 7} to the cubeCy;. Only row A, is left in A” — A; — A,. Since
O(A1) = {4, 5, 7} intersects the third domain @, cube
Ci1 SplltS in:Ci11 = partl(C’ll) = {2} X {3} X {7}, Cl12 =
part2(C11) = {2} x {3} x {6}.
={L, 2tu {3, 5tu {6, 7} Thus the node correspondingdy; has two branches whose
={1,2,3,5,6, 7} pair of matrices arel’ + Az + Ax + A; andA” — Az — A, — Ay

C gives a lower bound of thre€(has three domains). The root2nd whose cubes are, respectirvél‘yu andCiiz x (O(41) \
node of the search tree is specified Gyand the paird’, 47 D) = 12} X {3} x {6} x {4, 5}. The branch corresponding
whereRow(A”) = Row(A) \ Row(A’). The aim of applying to the cube’111 leads to a node at which the first matrix of the

1-raiserto A is to improve the lower bound from three to four.pair is equal t°4, and th.e second is empty. Moregver Clm%el
Choose rowds from A” to be added tol'. SinceO(A3) = has three domains. This means that olibg contains solutions

{2, 3, 4, 6} then rowA; intersects all three rows of’. There- of A of three columns (in this case only one solution): the lower

fore, by (2)—(4) the set of all irredundant solutions of no morfgund cannot be raised to four and the soluti2hx {3} x {7}
than four columns oft’ + A5 is obtained as follows: is returned as the current best solution.

C1={2} x{3,5} x {6, 7}
Gy = {1} x {3} x {6, 7}
Cy = {1} x {5} x {6}
Cy = {1} x {5} x {7}
partl(C) =C1 U Cy U Cy
part2(C) = C,
Rec(A’ + Az, C) =part1(C) U Cy x (O(A3)\ D)
so that
Rec(A’ + As, O)
=({2} x{3,5} x {6, TFU{1} x {3} x {6, 7}
U{1} x {5} x {6}) U {1} x {5} x {7} x {4}.

for which
D =Dy UDyUDs;

D. Detailed Description of the Raising Algorithm

The procedureaiser returns one if the lower bound can be
raised byn, otherwise it returns zero, meaning that the current
best solution has been improved at least oncediser. The
following parameters are needed.

* Ais the matrix of rows not yet considered. Initiallyy =
A"\ MSIR, where4’ is the covering matrix at the node (of
the column branching tree) that callemiser,and MSIR
is the maximal independent set of rows, for the node that
calledraiser. Hence,4’ is the covering matrix related to
the subproblem obtained by choosing the columns in the
path from the root to the node that callemiser. The set
of chosen columns is denoted pgith

Cube(; describes the set of solutions frofhcovering A’ +
As in which Az is necessarily covered by a column of the first
domain ofC (and maybe by columns of other domains) and so

3Notice that we used (5). Applying instead (2), we would obtain
Ci x O(Az) = {1} x {6} x {7} x {2, 3, 4, 6}
which includes the following additional solution1} x {5} x {7} x {2},
{1} x {6} x {7} x {3} {1} x {5} x {7} x {6} .Infact, they are all redundant;
their irredundant counterparts are, respectively: x {7} x {2}, {1} x {7} x
{3}, {1} x {5} x {6}, which already appear ipart1(C).

SolCubsés a cube which encodes a set of partial solutions
of the covering matrixd’. Initially SolCubés equal to the
set of solutions covering the MSIR.

n is the number by which the lower bouidébund must

be raisedn is an input—outpuparameter which is initially

4We denote byD -, the union of the domains of cultg ; we write only D
when it is clear which cube is being considered, as before when u3ifay
cubeC.

288

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 3, MARCH 2000

equal toubound — [MSIR|— |path| and is decreased every raiser(SolCube, n, A, lbound, bestSolution, ubound) {

time raiser improves the current best solution.

* lbound is an inputparameter foraiser equal to|MSIR]|.

Notice thatlbound differs from the original lower bourd
by a quantity equal tdpath|, for consistency with the
previous definition ofn.

« uboundis the cardinality of the current best solution.

* bestSolution is an outputparameter, containing a new
best solution found byaiser if the lower bound could not
be raised byn.

Fig. 3 shows the flow ofaiser. Notice that it requires a rou-
tine split_cubes which, for a selection of a row; covered byk
of thed domains ofSolCubepartitionsSolCuben £ +1 disjoint
cubes, each of domains; thuspart1 hask cubes of solutions
from SolCubecoveringr;, whereapart2 has one cube of solu-
tions fromSolCubenot covering-;. The number of domains of
SolCubes computed byhumber_domains.

raiser is a recursive procedure which starts by handlin
two terminal cases. The first one occurs when the variab
stillToRaise, which measures the gap between the uppe
bound and the current lower bound, is nonpositive. If so, the
the solutions irSolCuberaise the lower bound ofl by at least
n; hence, no solutions ol can beat the current upper bound
The second terminal case occurs when, after some recurs
calls, A is empty. Then any solution obtained as the union of
solution of A in SolCubewith the columns in the curremath
is the new best solution.

Routine find _best _set_of —non_intersecting_rows is in-
voked after these preliminary checks and it returns a set of ros
of A denoted byBSONTR. This routine, shown in Fig. 4,
implements a heuristic to find a large subset of rowsAof
which do not intersect any domain 8blCubeand which do

/* return 1 if solutions in SolCube raise lower bound of A by n */
stillToRaise = lbound + n — number_domains(SolCube)
if (stillToRaise < 0) return 1
/* If A =0 then (path U solutions in SolCube) beats ubound */
if (A=090)
return found_solution(SolCube, n, bestSolution, ubound)
/* find rows of A not covered by any solution from SolCube */
BSONIR = find.best_set_of non_intersecting_rows(A, SolCube)
foreach row r; € BSONIR {
/* add a new domain for the columns covering r; € A */
SolCube = add_domain(SolCube, A, ;)
stillToRaise = stillToRaise - 1
if (stillToRaise < 0) return 1

}* Remove the covered rows and chetk if A is empty */

A= A\BSONIR

if (A=0)
return found_solution(SolCube,n, bestSolution, ubound)

if (stillToRaise = 1) {
/* Cover with SolCube and remove the 1-intersecting rows */
/* If 2 rows intersect different cols in a domain, prune branch */
if (add_set_of -lintersecting_rows(A, SolCube) = 1) return 1
if (A=10)

return found_solution(SolCube,n, bestSolution, ubound)

/* select (and remove from A) next row to cover with SolCube */

r; = select best_uncovered_row(A, SolCube)

A=A\ {r}

/* Split: partl = {SolCube,,---,SolCuber} and ...

/*...part2 = {SolCuber 11} */

split.cubes(SolCube, A, r;, partl, part2)

/* add to SolCubez € part2 new domain of columns covering r; */

SolCubey) = add_domain(SolCubery1, A, 13)

/* branching on cubes of partl and pari2 */

returnValue =1

while (partl U part2 # 0) {
/* select first cubes from partl, then cube from part2 */
SolCubej = get_next_cube(partl U part2)
/* if a better global solution is found set returnValue = 0 */
if (raiser(SolCubej,n, A, lbound, bestSolution, ubound) = 0)

returnValue = 0
}

return returnValue

not intersect each other. Ideally, we would like to get the be feund-solution(SolCube, n, bestSolution, ubound) {

BSONIR which is a sort of “maximum set of independent
rows” related toSolCube but this would require the solution
of another NP-complete problem. We implemented instead tl
heuristic to insert first in the s8SONZR the longest row that
intersects neither a domain &olCubenor a row previously
inserted iNtoBSONZIR.

Thereatfter, since no row; in BSONZIR is covered by any

/* extract any solution from SolCube, */

/* by picking a column from each domain */
bestSolution = get_solution(SolCube)
newlUbound = cost(bestSolution)

newN = n — (ubound — newUbound)

n = newlN

ubound = newUbound

return 0

solution encoded iBolCube for each such; we must add a Fi9-3- Algorithm to raise the lower bound.

new domain tdSolCubemade by the columns which cover.

While we are adding these new domains, we keep decreasiighce, it may happen that a row df is not covered by any
the variablestillToRaise checking if its value becomes zerodomain ofSolCube

Finally, we can remove the sS&&SON IR from A because the
rows have been covered by the new added domains.
Notice that during the first call ofaiser, BSONZIR is

After having removed the rows belongingB&sON IR, an-

other optimization step can be applied successively before split-
ting SolCubelf at this pointstillToRaiseis equal to 1, it means

empty becaus&olCubeencodes the MSIR and, by definition,that we raised already the lower bound by 1. Therefore,
every row not in the MSIR intersects at least one row ifwe are forced to add one more domain3olCubethen we

the MSIR. However, during the recursive calls raiser the can prune the current branch. For example, a simple condition
original domains ofSolCubemay decrease in cardinality due towhich leads immediately to pruning is the following: consider

split. cubesand add_set_of _intersecting _rows(A, SolCube).

two rowsr; andr, of A which intersecSolCubeonly in one
domaind = {ct, ¢, ---

, ¢'}. Supposer; intersects only,

while r, intersects only:. This fact allows us to prune the cur-

Sihound_new = |MSIR| + |path|.

6By definition still ToRaise = bound + n —
numberDomains(SolCube) = IMSIR| 4+ ubound —
IMSIR| — |path| — numberDomains(SolCube) =

ubound — |path| — numberDomains(SolCube).

rent branch. Indeed assume to coveby means of columa’,
then to cover, we must use a column which does not belong
to any domain oSolCubeand so we are forced to add one more
domain toSolCubethereby raising the lower bound ly

GOLDBERGet al: NEGATIVE THINKING IN B&B: THE CASE OF UNATE COVERING

Routineadd _set_of lintersecting rows, which exploits the
previous situation, is illustrated in Fig. 5. In practice, it is in-
voked often because the conditiefi//ToRaise = 1 happens
very commonly in hard problems. The routine is based on two
nested cycles. The external cycle is repeated until the internal
cycle does not modif{solCube The internal cycle computes,
for each rowr of A, the setD of the domains oSolCubenter-
sected by-. If the cardinality ofD equals 1, e.gD = {d}, we
remove fromd all columns which are not intersected byand
then we remove from A, sincer has been covered.

Notice that add_set_of lintersecting rows is called just
after removing fromA the setBSONZR of nonintersecting
rows,and, therefore, when all the remaining rowslahtersect
at least one domain @olCube However, after cycling inside
this routine and removing some columns (thereby making
“leaner” some domains), it is possible that a rowAfis not
covered anymore, i.e|,D| = 0. As discussed above, this
happens, e.g., when two 1l-intersecting rows intersect two
different columns in the same domai. In this case the
routine returns one in order to inform the caller to prune the
current branch. If this fact does not happen before the end of
both cycles, a O is returned, but at least a certain number of rows
have been removed from and the corresponding intersected
domains ofSolCubehave been made “leaner.” After calling
add _set_of _lintersecting _rows and removing l-intersecting
rows, it is possible thatt has become empty. If scaiser calls

289

find_best_set_of non_intersecting_rows(A, SolCube) {

/* Heuristic to find “best” set of rows, */
/* which do not intersect domains of SolCube. */
emptyInter Rows = 0
bestRow = 0
foreach row r € A4 {
/* D is the set of SolCube domains intersected by r */
D = compute_set_of _intersected_domains(SolCube,r)
if (D=9){
emptylInter Rows = emptylnter Rows U r
if (length(bestRow) < length(r))
bestRow =r
}

}* If every row intersects every domain of SolCube, */
/* then return the empty set */
if (emptyInter Rows = @)
return @
else {
/* Build BSONZIR starting from bestRow */
BSONIR =0
do {
BSONIR = BSONIR U bestRow
emptyInter Rows = emptylnter Rows \ best Row
/* Find the new bestRow within emptyInter Rows*/
foreach row r € emptyInter Rows {
if (rNBSONIR) # 9)
emptyInter Rows = emptyInter Rows \ r
else if (length(bestRow) < length{r))
bestRow = r
} while (emptyInter Rows # 0)

return BSONIR

found _solution to update the variablelstSolution, ubound Fig- 4. Algorithm to find the best set of rows not intersect8gCube

andn.

. add_set.of -lintersecting_rows(A, SolCube) {
After all these special cases have been addressed, a NEW I /* This routine is called only if stillToRaise = 1. It covers */

r; is selected to be covered wiolCube Row r; is removed
from A and drives the splitting dbolCube The strategy to se-
lect the best row is to look for the row of which intersects
the minimum number of domains &olCube The rationale is
to reduce the number of branches from the nolletice that at
this stage each row of intersects at least two domains®dl-
Cube In case of ties between different rows, the row having the
highest weight is chosen. The weight of a ray is defined as

11

k=1
wherem is the number of domains &olCubentersecting4,,,
D;, is a domain intersected by, andD; = D;, \ O(4,).
Thus, the weight is just the fraction of solutions fr@olCube
that do not coverd,. If D] = 0 for somek, then rowA,, is
covered by any solution frorBolCube Hence, A4, is simply
removed fromA” and added tol’.

The splitting ofSolCubeds done as explained in Section Ill.

Then,raiseris called recursively on the disjoint cubes of the re- }
computed solution. If the current best solution is not improved

| D3,
|D7k|

/* with SolCube and removes from A the l-intersecting rows, */
* i.e., the rows intersecting only one domain of SolCube. */
/* 1f 2 rows intersect 2 different columns in the same domain, */
/* return 1 to the caller to prune the current branch */
do
re{:ducingDomains = FALSE
foreach row r € A {

/* D is the set of SolCube domains intersected by r */
D = compute_set_of .intersected-domains(SolCube,r)
it (ID|=1){
reducingDomains = TRUE
/* Get the domain d of SolCube covering r and */
/* remove from d all the cols which do not cover r */
d = get_covering_domain(SalCube,r)
simplify-domain(d,r)
/* Remove the covered row r from A */
A=A\ {r}

else if (| D |=0) {
/* After removing some columns, a row may not be */
/* covered anymore, so current branch must be pruned. */

}
/* else (| D |> 1): do nothing */
/* because r is not a l-intersecting row */

} while (reducingDomains)
return 0

in any of the calls, theraiserreturns 1, meaning that the lowerFig- 5. Algorithm to handle the 1-intersecting rows.

bound has been raised by If instead the current best solu-
tion has been improved one or more timasserreturns O after
having updated the current best solution and upper bound.

V. EXPERIMENTAL RESULTS

As discussed in the previous sectiomaiser can be im-
plemented on top of any existing standard B&B procedure.
We made two distinct implementations ohiser starting

Recall that there is a branch for each domain intersecting the row plus drem two well-known UCP SO'_VerS' nameryuncov (used in
more branch for the nonintersecting domains. ESPRESS® and SCHERzQ The mincovroutine has represented

290

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 3, MARCH 2000

TABLE |

EXPERIMENTAL RESULTS (ESPRESSO VERSUA\URA)

ESPRESSO AURA time
matrix R x C(S) Sol. nodes | time | nodes/A-nodes time | r | speedup
ex5 831 x 2428 (2.04%) 37 - time 1557169245 1315.2 | 3 oo
lin.rom 1030 x 1076 (0.9%) 120 370 29.1 61/240 7.7 | 3 3.78
max1024 1090 x 1264 (0.52%) | 245 - time | 12402/3850628 | 36240.0 | 3 -5}
mlp4 530 x 594 (0.99%) 109 2122 22.6 34/206 13 {3 17.39
prom?2 1924 x 2611 (0.31%) | 278 - time 1478/1097624 | 240714 | 3 0
ex4inp 91 x 240 (46.03%) 5 5279 | 16.81 9/14 027 | 3 62.26
maincont 105 x 67 (34.51%) 7 504 0.69 11/12 006 | 3 11.50
saucier 171 x 6207 (47.17%) 6 - | mem 10/76 222.47 | 3 oo
m100.-100.10.10 100 x 100 (10%) 12 - time 5043/201091 128.3 | 3 =)
m100.100_30.30 100 x 100 (30%) 5 | 116307 | 792.8 35/1108 251 3 317.12
m100.100.50_50 100 x 100 (50%) 4 66147 | 316.4 7/1030 16 | 3 197.75
m100.100_70_70 100 x 100 (70%) 3 5083 | 171.0 3/1 1|3 171.00
m100.100.90_90 100 x 100 (90%) 2 175 21.2 5/112 0.7 |3 30.29
m100.50.10.10 100 x 50 (20%) 8 12466 59.6 94/2529 29 |3 20.55
m100.50_20_20 100 x 50 (40%) 5 16905 49 31/951 1.7 | 3 28.82
m100.50.30.30 100 x 50 (60%) 3 947 9.5 5/26 03| 3 31.67
m100.50.40.40 100 x 50 (80%) 2 73 4.3 3/1 03| 3 14.33
m50.100.10.10 50 x 99 (10.1%) 8 843 3.3 17/166 0113 33.00
m50.100_30_30 50 x 100 (30%) 4 12047 37.8 11/203 02} 3 189.00
m50.100.50.50 50 x 100 (50%) 3 2569 13.9 5/32 01] 3 139.00
m50.100.70_70 50 x 100 (70%) 2 135 3.5 3/1 01| 3 35.00
m50-100_90_90 50 x 100 (90%) 2 135 2.6 3/1 0.1 | 3 26.00

TABLE I

RESULTS OFESPRESSABENCHMARKS (SCHERZO VERSUSAURA 1)

SCHERZO AURA II time
matrix R x C(5%) Sol. nodes | time | nodes/A-nodes | time | r | ratio
ex5 831 x 2428 (2) 37 | 614631 | 11397.1 614510/156 | 11066.5 | 1 0.97
ex5 831 x 2428 (2) 37 | 614631 | 11397.1 31185/243184 | 1346.67 | 2 0.12
ex5 831 x 2428 (2) 37 | 614631 | 11397.1 1905/195190 746.85 | 3 0.06
max1024 | 1090 x 1264 (0.5) | 245 | 533635 | 5535.67 533632/52 | 5244.54 | 1 0.95
max1024 | 1090 x 1264 (0.5) | 245 | 533635 | 5535.67 91345/667471 | 2994.88 | 2 0.54
max1024 | 1090 x 1264 (0.5) | 245 | 533635 | 5535.67 | 15353/1624827 | 5967.92 | 3 1.10
prom2 1924 x 2611 (0.3) | 278 26143 | 1506.75 26143/16 | 1454.81 | 1 0.97
prom2 1924 x 2611 (0.3) | 278 26143 | 1506.75 6115/115460 | 1685.36 | 2 1.10
prom2 1924 x 2611 (0.3) | 278 26143 | 1506.75 1389/754564 10162 | 3 6.70
saucier 171 x 6207 (47) 6 | 187089 | 11876.1 7/36 240 | 1 | 0.002
saucier 171 x 6207 (47) 6 | 187089 | 11876.1 7/36 240 | 2 | 0.002
saucier 171 x 6207 (47) 6 { 187089 | 11876.1 7/36 24.0 | 3 | 0.002

the state-of-the-artin solving UCP problems for over ten The experiments were performed on a 1-GB 625-MHz Alpha
years and was strongly outperformed only recently by theth timeout set to 24 h of cpu time.
arrival of SCHERzO[3], [7], [8]. SCHERzOexploits a collection The tables report two types of data for comparison: the

of new lower bounds (easy lower bound, logarithmic lowgfymper of nodes of the column branching computation tree

bound, left-hand side lower bound, limit lower bound), angnq the running time in seconds. There are several points to be
partition-based pruning. By enhancing both of these program@gniained concerning the number of nodes.
with the negative thinking idea, we obtained two new search

engines, which are much more efficient than the original ones 1) Both AURA and AURA Il have two types of nodes: those
[9], [10]: they are called respectivelyURA = ESPRESSO+ of the column branching computation tree and those of
RAISER andAURA Il = SCHERZO+ RAISER the cube branching computation tree (calléghodes in

In this section we show the dramatic impact of the nega- the tables). As explained in Section Il, these search en-
tive thinking paradigm in both cases. Table | gives the results gines apply the negative thinking approach by following
obtained comparingsPResscand AURA, while Tables Il and a dual strategy: they start building the column branching
[l report experiments comparingCHERzO and AURA II. The computation tree, but when at a given node the difference
benchmarks used belong to three classes: 1) a set of difficult between the upper bound and the lower bound is less or
cases from the collection &fsPRESSAwo-level minimization equal to the raising parametetazRaiser they call the
problems (we consider as input the unate matrix which is ob- raiser procedure, which builds a cube branching compu-
tained after removing the essential primes), 2) three matrices tation tree, appended at the node whaiserwas called.
encoding constraints satisfaction problems from [11], and 3) a Thus, to measure correctly a runafRA or AURAII, both
set of random generated matrices with varying row/column ra- numbers of nodes need to be reported.
tios and densities (e.g»200.100_30_70 means a matrix with ~ 2) Nodes for cube branching usually take much less com-
200 rows, 100 columns, and each column having a number of puting time than those for column branching, even though
ones between 30 and 70). For each of these matrices, the size it is not knowna priori a time ratio between the two
(R x C'inthe tables) and sparsity (n the tables) are reported. types of nodes. The reason is that expensive procedures

GOLDBERGet al: NEGATIVE THINKING IN B&B: THE CASE OF UNATE COVERING 291

TABLE 1lI
RESULTS ONRANDOM BENCHMARKS (SCHERZO VERSUSAURA II)

SCHERZO AURA 11 time
matrix R x C(5%) Sol. nodes | time nodes/A-nodes | time | r | ratio
m100.100.10_10 100 x 100 (10) 12 95086 36.87 3180/121892 203% | 3 0.55
m100.100.10_15 100 x 100 (12) 10 10335 6.12 269/11071 2.41 3 0.39
m100.100.10_30 100 x 100 (20) 8 4618 4.05 84/2726 078 | 3 0.19
m100.100.30.30 100 x 100 (30) 5 1752 2.44 49/1288 064 | 3 0.26
m100-100.50.50 100 x 100 (50) 4 4015 6.1 5/857 069 | 3 0.11
m100.100.70.70 100 x 100 (70) 3 171 2.21 3/112 0.19 | 3 0.09
m100.100.90_90 100 x 100 (90) 2 2 0.02 2/0 0.02 | 3 1
m100.300.10.10 100 x 293 (3) 21 351183 235.16 10144/612753 175.37 | 3 0.75
m100_300.10_14 100 x 297 (4) 19 1906835 1257.62 70998/3453419 993.83 | 3 0.79

. m100-300-10_15 100 x 297 (4) 19 | 11596849 | 7066.57 | 329794/16381322 | 4385.16 | 3 0.62
; m100.300.10.20 100 x 299 (5) 17 5240615 | 3641.41 138572/6904928 | 2036.72 | 3 0.56
| m100.50_10.10 100 x 50 (20) 8 2079 0.92 85/2411 042 | 3 0.46
m100.50.2020 100 x 50 (40) 5 1825 1.02 23/889 027 |3 0.26
m100.50.30.30 100 x 50 (60) 3 63 0.34 3/24 00313 0.09
m100.50.40.40 100 x 50 (80) 2 2 0.01 2/0 0.01 3 1
m50.100.10.10 50 x 99 (10) 8 92 0.02 12/133 002 | 3 1
m50.100.30.30 50 x 100 (30) 4 65 0.06 5/61 0.02 | 3 0.33
m50.100.50_50 50 x 100 (50) 3 107 0.22 3/32 002 | 3 0.09
m50.100.70.70 50 x 100 (70) 2 2 0.01 2/0 0.01 3 1
m50.100.90.90 50 x 100 (90) 2 2 0.01 2/0 0.01 | 3 1
m100.200.10.30 100 x 200 (10) 12 281845 242.65 2915/161571 4561 | 3 0.19
m100.200.10.50 100 x 200 (10) 12 281845 241.06 2915/161571 45.36 | 3 0.19
m100.200.10.70 - | 100 x 200 (20) 8 19135 22.8 82/6538 236 | 3 0.10
m100.200.30_30 100 x 200 (15) 8 154475 117.5 31499/775717 22005 | 3 1.90
m100.200.30_50 100 x 200 (19) 7 50613 78.03 4019/136979 59.58 | 3 0.76
m100.200.30.70 100 x 200 (25) 6 30577 61.55 707/15289 10.43 | 3 0.17
m100.200.50.50 100 x 200 (25) 6 32214 63.84 3753/78023 44.67 | 3 0.70
m100.200.50.70 100 x 200 (29) 5 4867 17.19 163/5581 494 | 3 0.29
© m100.200.70.70 100 x 200 (35) 5 26588 63.73 245/22860 16.47 | 3 0.26
' m200.100.10_10 200 x 100 (10) 16 | 13889095 | 10776.6 | 464553/16098542 | 3830.34 | 3 0.36
' m200.100.10-100 200 x 100 (54) 6 317 1.79 9/250 0.21 | 3 0.12
' m200.100.10_30 200 x 100 (19) 11 564302 584.54 9156/371430 115.52 | 3 0.20
© m200.100.10.50 200 x 100 (28) 8 29803 46.64 528/17689 8911} 3 0.19
1 m200.100-10_70 200 x 100 (40) 7 1735 4.87 37/1046 101} 3 0.21
. m200.100.30-100 200 x 100 (64) 4 1725 11.09 5/185 0.38 | 3 0.03
m200.100_30.30 200 x 100 (30) 6 65468 115.44 883/31293 18 1 3 0.16
m200.100.30.50 200 x 100 (39) 6 123621 170.09 1177/51624 3341 | 3 0.20
" m200.100_30.70 200 x 100 (51) 4 2036 17.07 7/190 0.39 | 3 0.02
m200.100.50.100 200 x 100 (74) 3 145 7.08 3/52 033 | 3 0.05
m200-100_50_50 200 x 100 (50) 4 8076 35.4 9/1607 1.9 | 3 0.05
m200.100.50_70 200 x 100 (60) 4 5413 32.48 5/1302 231} 3 0.07
m200.100.70.100 200 x 100 (84) 2 2 0.03 2/0 0.03 | 3 1
m200.100.70_70 200 x 100 (70) 3 169 10.89 3/90 046 | 3 0.04
m200.200.100_100 | 200 x 200 (50) 4 16313 259.45 5/2642 7.11 3 0.03

for finding dominance relations and the MSIR are appliethe problenprom2,the higher is the value afthe lower is the
in column branching. performance ofaura I1: in fact, since this problem presents
3) Theraising parametetazRaiser (labelr inthe tables)is a highly diversified solution space, the raising procedure
an input to botthURA andAuRA 11 The higher the raising often terminates only after it has found a better solution
parameter, the fewer column branching nodes compargghd, therefore, without having been able to prune rapidly the
to cube branching nodes there will be. With a value that {§,rrent branch). On the other hand, in the case of the problem
high enough, there will be a single column node and thg, ,cier, whose solution space is poorly diversifiesrA Ii
rest will be all row nodes. finds the solution in 24 s with any possible valuerofvhile
Table_ ! reports_ t_he experimental results EBPRESSO/Ersus SCHERzOtakes 11 876 s. These results are in concord with the
AURA with the raising parameter Set, always to thiB&PRESSO philosophy of “negative thinking” as discussed in Section I:
is not able to compute the solutions of benchmaeks, SRR .
the less frequently the best current solution is improved during

max1024, and prom?2 in the allotted time, while for the the search, the more the “negative” search is justified. Now,
benchmarksaucierthe computation does not complete with ' 9 J) '

the available memory. These benchmarks represent the rﬁ%an we gre run.nlhg a very time-consuming problem, the
difficult problems in our benchmark suite and for all of thenPverwhelming majority of the subpro“blems_ dc: not lead to a
AURA completes. Considering the random benchmarks, tfglutionimprovementand, therefore, “negative” search is more
comparison betweesura andesPRessdllustrates the strong Natural and, if applied, leads to spectacular savings in total

superiority of the former. time. This is confirmed by the experiments with the random
For each of the difficult cases reported in Table Il, we ha/@enerated matrices of Table IlI, for which we set the raising
run AURA Il with » = 1, 2, 3. There is always a value of Parameter always to three. In the most time-consuming of

which allowsAURA Il to solve the problem faster thaxcHezro these examplesUrA il takes between 36% and 75% of the
and in general this value is either two or three. However, féifne of SCHERZQ

292 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 3, MARCH 2000

A. Other Comparisons obtaining in both cases new search engines (respectiety

. . . ﬁlndAURA 1) that are much more efficient.
We do not have a systematic comparison with the results . o . .
Future work includes application to the binate covering

by Bcu, a very efficient recently-developed ILP-based coverin o X .
y Y Y P roblem. A more basic line of research is the exploration

solver [6]. However, the intuition is that an algorithm based Of data structures different from cubes of solutions, but still
linear programming is better suited for problems with a solu- .” o
. . A . . enjoying their properties of offering representations that are
tion space diversified in the costs, i.e., for problems which are
. N . . %ompact and easy to update.

closer” to numerical ones. To test the conjecture we asked the

authors of [6] to rurecu on saucier,whose solution space is

poorly diversified (a minimum solution has six columns, while APPENDIX |

most of the irredundant solutions have costs in the range frofeprESENTATION ANDRECOMPUTATION OF THESOLUTIONS
six to eight).Bcu ran out of memory after 20 000 s of compu-

tations (the information was kindly provided by S. Liao), whiléA. Recomputation of the Solutions
AURA Il completes the example in 24 s. It would be of interest to Theorem A.1: For any irredundant solutiost* of UCP(A’ +
study if the wrtues _of an ILP-pased solver andraier could A,,) there is an irredundant solutighof UCP(A’) such thats*
be combined in a single algorithm. is an element oRec(A’ + A, 5).

Proof: Let S* be an irredundant solution of UCR’ +
A,). ClearlyS* is a solution of UCRA’). There are two cases.

1) S* is irredundant for UCPA’) too. In this case we are
We introduced a new technique to solve exactly a discrete op- done, noticing that™* € Rec(A’ 4+ A,, S*), given that
timization problem. The motivation is that often a good solution Rec(A' + Ap, S*) = {S*}.
is reached quickly and then it is improved only a few times be- 2) S* is redundant for UCPA"). We show first that in this
fore the optimum is found; hence, most of the solution space case there is only one redundant column and this is a

VI. CONCLUSION

is explored to certify optimality, with no improvement of the column covering4,,.
cost function. This suggests that more powerful lower bounding a) We prove that all redundant columns must coygr
would speed up the search dramatically. Therefore, the search Indeed a column of* is irredundant if and only
strategy was modified with the goal of proving that the given if it covers a row not covered by others columns.
subproblem cannot yield a solution better than the current best Any columnj in S* not coveringA, cannot be
one (negative-thinking), instead of branching further in search redundant for UCPA’), since S* is irredundant
for a better solution (positive thinking). for UCR(A’ + A,). Indeed, if; is redundant for
For illustration we have applied our technique to UCP, usu- UCP(A’) and does not coved,, then it remains
ally solved exactly by a B&B procedure, with an independent redundant for UCPA’ + A4,,).
set of columns as a lower bound, and branches on columns. b) So far we know that there is at least one redundant
We designed a dual search technique, catiéser, which is in- column and that it must covet,,, as all redundant
voked when the difference between the upper bound and the columns do. We prove that it cannot be the case
lower bound is within a parametetaxzRaiser, set by the user. that two (or more) columns covet,,. Indeed, if
The procedureaisertries to detect a hard core of the matrix to two columns coverd, and one of them is redun-
be solved (lower bound submatrix), augmenting an independent dant for UCRA’), then it remains redundant for
set of rows in order to increase incrementally the cardinality of UCP(A’ 4+ A,) (the column cannot become irre-
the minimum solutions that cover it. Eventually either this in- dundant because there is no rowdfw- A,, covered
cremental raise yields a lower bound that matches the current only by it), which contradicts the condition théit
upper bound, and so we are done with this matrix, or we produce is irredundant for UCPA’ + A,)).

at least one better solution. The selection of a next row inducgg s+ can pe represented @U {;}, wherej is redundant
the recomputation of all the solutions of the lower bound submg;; UCP(A’) and it is the only column fron$* coveringA,,
trix augmented by the next row, as disjoint cubes of solutiong, 5 is an irredundant solution of UGQR') not coveringA,.
Each such cube together with the augmented matrix defineggreover, by definition of thekec operation any solution of
new node of the computation tree exploredraiger. — ycp(4’4 4,) represented a8U{j}, wheres is an irredundant
A key technical contribution to implement negative thinkingqtion to UCRA’) not coveringd, andj € O(A,), is also in
for UCP is the introduction of the data structurecobes of so- Rec(A’ + A, §). So we conclude that for any irredundant so-

lutions, inspired by multivalued cubes. Applying the operatog tion s* of UCP(4’ + A,,) there is an irredundant solutichof
Rec to a cube of solutions one obtains a collection of cubes BfCP(A’) such thaiS* is an element oRec(A’ + 4,, S). -

solutions, thereby providing a natural clustering of the recom- theorem A.2: If the computation of th&ec operator is mod-

puted solutions. Clustering allows us to design a recursive §lad as follows:

gorithm based on branching in subsets of solutions and to raise

independently the lower bound starting from different subsee:c(A’ + A, C) =

of solutions. _ part1(C) U {part2(C) x [O(A,) \ (D1 U---U Dy)]}
The proceduregaiser can be implemented on top of any ex-

isting B&B procedure. We did this fa&sPRESS@ndsSCHERZO no irredundant solution oft’ + A, is discarded.

GOLDBERGet al: NEGATIVE THINKING IN B&B: THE CASE OF UNATE COVERING 293

Proof: LetC = Dy x --- x Dy be the cube of solutions D,. As argued in Section Ill, the solutions df + A, are found
and A, the row to be added. Without loss of generality assuniey

that A, intersegts the first domains ofC, » < d. Rec(A' + Ay, C) =C1 U Cy x O™ (Ay)
By constructionpart1(C) = C; U --- U C,., whereCy, =

Dix- XDy xD!xDyy1 % xDg,1<k<r D= where

Di\O(A,),1 <i< k—1,andD! = DyNO(A,),1 <k <r. Ci1 =D} x Dy x -+ x D,

Moreover,part2(C) = D} x «-+ X Dj. X Dyyy X -+ x Dy, Cy =D x Dy x -+ x Dy,

whereD, = D; \ O(4,),1 <¢ < 7.
If we prove that anygolutionfrom the cubb® = part2(C) x Dy =D1N0(4y),
(O(A,) N D) is redundant, wher® = D, U --- U Dy, we are D{ =D1\ O(4,),
allowed to replace the computationjedrt2(C) x O(A4,,) with O*(A,) =0(Ap) \ D1.
the computation opart2(C) x (O(A4,) \ D). T . . ;L
By distributivity of the(B)oole(an(og)e>ato)ts andn, and the N‘c/)wbletS = (1, Ja, -+, ja) be a solution fron*Cl ands” =
. . . e (41, 2, -+ . Ja, Ja+1) be asolution fronC; x O*(A,), which
fact thatA,, intersects only the first domains ofC, itis D N differs fromS. onlv by relacinai. with 7 and by adding
O(A,) = D/ U---U D”, and so cub&™* can be rewritten as ToroL oy by repraciiidi, With 7, end by 9a+1
fO||0\7VS' ' from O _(Ap). Suppose tha_t there is a solutisfi of UCP(A?
’ containing the partial solutiof U S’. Then the same solution
C* =part2(C) x (DN O(A,)) S” may be constructed both from the branch of cdheand
=part2(C) x (D! U---U D) th(T b_ranch ofbcubéig X O*d(Ap). Inhgeneral this means that a
p p solution may be generated more than once.
=part2(C) x DY U+ Upart2(C) x Dy The reason is that, even though when formiPigwe remove
and, thereforeC’* can be represented as the unfgfu---UC; from D; the columns coveringl,,, still it is possible to extend
whereC; = part2(C) x Dy, 1 <k <. solutions fromC; by adding columns fronD; \ O(4,) and
Now define the cube€’;, 1 < k£ < r, obtained from O*(A,) and to extend solutions fro@, x O*(A,) by adding
part2(C) by replacing in turnD;, with Dj/. CubesCj and columns fromD; N O(A4,), so that we may obtain from both
Cr—which have the same number of domains—by comranches the same partial solution frdba N O(A4,) x Dy \
struction are such that cub@; [obtained frompartl(C)] O(A,) x Dy x --- x Dg x O*(A,).
contains cubeCj, [obtained from part2(C)], as shown To eliminate this possibility it is sufficient to avoid the con-
by a component-wise comparison, using the fact thaideration of solutions containing columns fram N O(A4,)

Diy 1 = Di1 \O(4,), -+, D= D\ O(A4,) in the branch of cub€’; x O*(A4,). Indeed, if we do so, a so-
lution containing the partial solutiof U S’ can be found only
Ch =Dy X+ XDj_y XDy X Dy X -~ _ _
g L k-l k htl in the branch of cub&’;, because in the branch &f, solu-
X Dy X Dyjg X -+ x Dy tions containing columns frof?; N O(A,) are not considered,
=D X X Dj_y XDy X Djyq %+ whereasS U S’ contains such a column, i.e., colugin In gen-
X D! X Dyyy % --- x Dy. eral, if A, intersects the first domains ofC, in the branch of

. cubeCy, 1 < k < r + 1, whereC}, containsk — 1 domains
Consider thé:ith component, fot < k& < r, of the represen- \O(A,),i=1, ---, k— 1, we should avoid the generation
k3 P/ - bl 1

: * % __ vk *
tation of cubeC™ as¢* = CT U -+ U G} of solutions containing columns frot; UD,U- - -UDj_;1)N
C; =part2(C) x Dy O(Ap).
=D X x Dy XD XDy x---
X DI X Dpyqg X oo X Dy x Dj,

and permute the domaits3; [from part2(C)] and D}

ACKNOWLEDGMENT

The authors would like to thank Dr. O. Coudert (Monterey
Design Systems) who kindly provided a versiorsofiERzoOand

Ci=Dy x - XDj_y x DYl X Dy X -+ was always available for technical discussions. They also would
x D\ X Dyy1 X -+ x Dy x D), like to thank S. Liao (Synopsys) for his assistance in running
, , BCU on some benchmarks.
Therefore, any solutiofy from C; consists of a set of columns REFERENCES
/ ! g / H H !
5 6 Ok and a column G_Dk- .SlnceCk contanjsOk (as Sh(?wn [1] C. H. Papadimitriou and K. Steiglit€;ombinatorial Optimization: Al-
earlier) and by constructiafi, is made of solutions afi’ which gorithms and Complexity Englewood Cliffs, NJ: Prentice-Hall, 1982.
cover aIsoAp, thensS’ covers bothA’ andAp and so columry [2] R.Rudelland A. Sangiov?nni-VincenteIIi, “Multiple-valued minimiza-
. dundant in the solutiofi = S’ U {} So anv solution from tion for PLA optimization,”IEEE Trans. Computer-Aided Desigvol.
Isre = Mg y CAD-6, pp. 727750, Sept. 1987.
C} is redundant fod < £ < r. [3] O. Coudert, “On solving binate covering problems,”Rmoc. Design

Automation Conf.June 1996, pp. 197—-202.
[4] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-VincenteByn-

B. Av0|d|ng Generation of Repeated Solutions thesis of FSMs: Functional Optimization Norwell, MA: Kluwer Aca-
Given UCRA), suppose thaf' = D; x Dy x --- X Dy is demic, 1997.

. , ;- [5] M. R. Garey and D. S. JohnsoBpmputers and Intractability: A Guide
the cube of solutions of UGRY'), whereA’ is a subset of rows to the Theory of NP-CompletenessSan Francisco, CA: Freeman,

of A. Then add row4,,, which, say, intersects only the domain 1979.

294

[6] S.Liao and S. Devadas, “Solving covering problems using LPR-bas
lower bounds,” inProc. Design Automation Conflune 1997.

[7] O. Coudert, “Two-level logic minimization: An overview|htegration
vol. 17, no. 2, pp. 97-140, Oct. 1994.

[8] O.CoudertandJ.C. Madre, “New ideas for solving covering problems
in Proc. Design Automation Conflune 1995, pp. 641-646.

[9] E.I. Goldberg, L. P. Carloni, T. Villa, R. K. Brayton, and A. L. Sangio-
vanni-Vincentelli, “Negative thinking by incremental problem solving:
Application to unate covering,” iRroc. Int. Conf. Computer-Aided De-
sign, Nov. 1997, pp. 91-98.

[10] L. P. Carloni, E. I. Goldberg, T. Villa, R. K. Brayton, and A. L.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 3, MARCH 2000

Robert K. Brayton (M'75-SM'78-F'81) received
the B.S.E.E. degree from lowa State University,
Ames, in 1956 and the Ph.D. degree in mathematics
from Massachusetts Institute of Technology, Cam-
bridge, in 1961.

From 1961 to 1987, he was a member of the
Mathematical Sciences Department at the IBM T.
J. Watson Research Center, Yorktown Heights, NY.
In 1987, he joined the Electrical Engineering and
Computer Science Department at the University of
California at Berkeley, where he is a Professor and

Sangiovanni-Vincentelli, “Aura 1l: Combining negative thinking andDirector of the SRC Center of Excellence for Design Sciences. He has authored
branch-and-bound in unate covering problems,VitBl: Systems on a more than 300 technical papers and seven books. He holds the Edgar L. and
Chip, S. Devadas, R. Reis, and L. M. Silveira, Eds. Lisboa, PortugdHarold H. Buttner Endowed Chair in Electrical Engineering in the Electrical
Kluwer Academic, Dec. 1999. Engineering and Computer Science Department at the University of California
[11] T. Villa, T. Kam, R. K. Brayton, and A. Sangiovanni-Vincenteliyn- at Berkeley.
thesis of FSMs: Logic Optimization Norwell, MA: Kluwer Academic, Dr. Brayton is a member of the National Academy of Engineering, and a
1997. Fellow of the the AAAS. He received the 1991 IEEE CAS Technical Achieve-
ment Award, the 1971 Guilleman-Cauer Award, and the 1987 Darlington Award.
He was the Editor of thdournal on Formal Methods in Systems Desfgmm
. . 1992-1996. His past contributions have been in analysis of nonlinear networks,
Evguenii 1. Goldberg received the M.S. degree 5nq electrical simulation and optimization of circuits. His current research in-
in physics from the Belorussian State Universityyq|yes combinational and sequential logic synthesis for area/performance/testa-

Minsk, Belarus, in 1983 and the Ph.D. degree in,jjity asynchronous synthesis, and formal design verification.
computer science from the Institute of Engineering

Cybernetics of the Belorussian Academy of Sci-
ences, Minsk, Belarus, in 1995.

From 1983 to 1995, he worked in the Laboratory
of Logic Design at the Institute of Engineering
Cybernetics as a Researcher. From 1996 to 1997, he
was a visiting Scholar at the University of California
at Berkeley. Currently, he works at the Cadence
Berkeley Laboratories, Berkeley, CA, as a Research Scientist. His areas af
interests include logic design, test, and verification.

Alberto L. Sangiovanni-Vincentelli received the
“Dottore in Ingegneria” degree in electrical engi-
neering and computer scienceymma cum laude
from the Politecnico di Milano, Milan, Italy in 1971.
He holds the Edgar L. and Harold H. Buttner Chair
of Electrical Engineering and Computer Sciences at
the University of California at Berkeley where he has
been on the Faculty since 1976. In 1980-1981, he
spent a year as a visiting Scientist at the Mathemat-
of California at Berkeley in December 1997. He is ical Sciences Department of the IBM T.J. Watson Re-

currently working toward the Ph.D. degree in the L search Center, Yorktown Heights, NY. In 1987, he
Department of Electrical Engineering and ComputelVas & Visiting Professor at Massachusetts Institute of Technology, Cambridge.

Sciences at the University of California at Berkeley. He was acofounder of_ Cadence ar_]d Synopsys, thg two leading comp_anies in_the
His research interests are in the area of computef'éa of electronic deS|gn_ automation. I—_|e was a Director of ViewLogic and Pl_e
aided design of electronic systems and include enpemgq System and Chalr of the Technical Ad_V|sory Board of_ Synopsys. He is
bedded system design, high level synthesis, logic synthesis, and combinatdfig/Chief Technology Advisor of Cadence Design System. He isamember of the
optimization. Board of Directors of Cadence, Sonics Inc., and Accent. He is the founder of the
Cadence Berkeley Laboratories and of the Cadence European laboratories. He
was the founder of the Kawasaki Berkeley Concept Research Center, where he
holds the title of Chairman of the Board. He has consulted for a number of U.S.
Tiziano Villa studied mathematics at the Universitiescompanies including IBM, Intel, ATT, GTE, GE, Harris, Nynex, Teknekron,
of Milan and Pisa, Italy, and Cambdrige, U.K., and reDEC, and HP, Japanese companies including Kawasaki Steel, Fujitsu, Sony and
ceived the Ph.D. degree in electrical engineering anditachi, and European companies including SGS-Thomson Microelectronics,
computer science from the University of CaliforniaAlcatel, Daimler-Benz, Magneti-Marelli, BMW, and Bull. He is the Scientific
at Berkeley in 1995. Director of the Project on Advanced Research on Architectures and Design of
~ - He worked in the Integrated Circuits Division Electronic Systems (PARADES), a European Group of Economic Interest. He
of CSELT Laboratories, Torino, Italy, as a Com-is on the Advisory Board of the Lester Center of the Haas School of Business
Fol puter-Aided Design Specialist, and then for manyand of the Center for Western European Studies and a member of the Berkeley
o - years he was a Research Assistant at the ElectroniRoundtable of the International Economy (BRIE).
e lh Research Laboratory, University of California at In 1981, Dr. Sangiovanni-Vincentelli received the Distinguished Teaching
- Berkeley. In 1997, he joined the Parades LabsAward of the University of California. He received the worldwide 1995
Rome, Italy. His research interests include logic synthesis, formal verificatioBraduate Teaching Award of the IEEE (a Technical Field award for “inspi-
combinatorial optimization, automata theory, and hybrid systems. His contribiational teaching of graduate students”). He has received numerous awards
tions are mainly in the area of combinational and sequential logic synthesis. ideluding the Guillemin-Cauer Award (1982-1983) and the Darlington Award
coauthored the bookSynthesis of FSMs: Functional Optimizatiorwell, (1987-1988). He is an author of more than 480 papers and ten books in the area
MA: Kluwer, 1997) andSynthesis of FSMs: Logic OptimizatiofNorwell, of design methodologies, large-scale systems, embedded controllers, hybrid
MA: Kluwer, 1997). systems and tools. He is a Member of the National Academy of Engineering.
In May 1991, Dr. Villa was awarded the Tong Leong Lim Pre-doctoral Prizele was the Technical Program Chairperson of the International Conference
at the Electrical Engineering and Computer Science Department, Universityosf Computer—Aided Design and his General Chair. He was the Executive
California at Berkeley. Vice-President of the IEEE Circuits and Systems Society.

Luca P. Carloni (M'95-S'95) received the Laurea
degree in electrical engineering summa cum laud
from the University of Bologna, Bologna, Italy, in

July 1995, and the M.S. degree in electrical engi
neering and computer sciences from the Universit

