
A Scalable Architecture for CNN Accelerators
Leveraging High-Performance Memories
Maarten Hattink∗, Giuseppe Di Guglielmo†, Luca P. Carloni†, and Keren Bergman∗

∗ Department of Electrical Engineering, † Department of Computer Science
Columbia University in the City of New York, New York, USA

mh3654@columbia.edu, giuseppe@cs.columbia.edu, luca@cs.columbia.edu, bergman@ee.columbia.edu

Abstract—As FPGA-based accelerators become ubiquitous
and more powerful, the demand for integration with High-
Performance Memory (HPM) grows. Although HPMs offer a
much greater bandwidth than standard DDR4 DRAM, they
introduce new design challenges such as increased latency and
higher bandwidth mismatch between memory and FPGA cores.
This paper presents a scalable architecture for convolutional neu-
ral network accelerators conceived specifically to address these
challenges and make full use of the memory’s high bandwidth.
The accelerator, which was designed using high-level synthesis, is
highly configurable. The intrinsic parallelism of its architecture
allows near-perfect scaling up to saturating the available memory
bandwidth.

I. INTRODUCTION

Using Field Programmable Gate Arrays (FPGAs) to ac-
celerate neural networks has gained both industrial and aca-
demic interest [1]–[4]. As the classes and applications of
neural networks continues to grow both in size and variety,
designers can tailor the FPGA reconfigurable hardware to meet
their high computational demands. In particular, convolutional
neural networks (CNNs) are widely adopted for a variety of
applications, such as image and speech recognition.

Prior works have shown that maximizing the performance
of CNNs on FPGAs requires using all their resources and,
specifically, employ each available DSP to perform a mul-
tiplication almost every cycle [5], [6]. When the number of
available DSPs in a FPGA becomes a performance bottleneck,
one way to further increase the data-processing throughput is
to apply a Winograd Transform [7]. By trading off a reduced
number of multiplications for extra addition operations, the
Winograd Transform delivers higher throughput with fewer
DSPs. This optimization was demonstrated by Huang et al [8],
who observe how the performance becomes limited by the
available memory bandwidth before all DSPs in the FPGA can
be put to use. This observation suggests that there is room for
higher performance, if only more bandwidth was available.

Standard DRAM modules on high-end FPGA devices have
a maximum bandwidth on the order of 20GB/s. For example,
Xilinx’s latest Ultrascale+ architecture delivers 21GB/s when
operated with a 64-bit wide interface at 2666 MT/s [9].
Newer high-performance memory (HPM) technologies, based
on stacked DRAM, allow for much higher bandwidth. A
single Hybrid Memory Cube (HMC) allows up to 160GB/s
to be connected to a FPGA through the FPGA’s high speed
transceivers [10]. High Bandwidth Memory (HBM), a different

HPM technology that has been originally used for GPU-based
systems, is available for FPGA boards as well. For example,
it can achieve 460GB/s on Xilinx FPGAs when connected
through a silicon interposer [11] . The goal of this paper is
to investigate the HPM opportunity to realize more efficient
accelerators for CNNs with FPGAs.

To the best of our knowledge, we present the first scalable
architecture to accelerate CNN computation on FPGA systems
that leverage HPM technology. We used the Winograd Trans-
form [12] to raise the accelerator’s throughput and address the
computational bottleneck in conventional CNN architectures.
We designed and implemented our CNN accelerator using a
system-level design approach [13], i.e. combining a design
specification made in C and using high-level synthesis for
design-space exploration. In particular, high-level synthesis
allowed us to explore the degree of spatial computation that
we can apply by scaling the parallelism of our architec-
ture to achieve high performance by maximizing the use
of the available FPGA resources. Our architecture leverages
the HPM bandwidth to address the increased access latency
and bandwidth mismatch that occur when using this type of
memory. We demonstrated the accelerator on a Micron AC-
510 module [14], which contains a KCU060 FPGA connected
to a 4GB HMC unit. We execute the VGG16 network [15], a
CNN that has been studied extensively and used as an example
to evaluate the performance of many other architectures in the
literature. The experimental results show that the performance
of our architecture scales in a near perfect way while increas-
ing the utilization of FPGA resources up to saturation of the
available HPM bandwidth.

II. BACKGROUND

The VGG16 network is a deep CNN consisting of 13
convolution layers and 3 fully connected layers (FC). The
layers process different numbers of input and output features:
224 (Layers 1-2), 112 (Layers 3-4), 56 (5-7), 28 (8-10), and
14 (11-13). Each input feature to a layer is convolved with a
3×3 filter. Each output feature is the sum of the convolution of
all input features, with unique filters for each combination of
input and output features. Feature size are reduced by applying
a max-pool operation: each feature is divided in 2 × 2 grids,
then from each grid the maximum value is taken and the rest
discarded; the result is a new feature with half the width and
height of the previous one. The FC layers are a matrix-vector



Row Buffer 0

Row Buffer 1

Row Buffer 2

Row Buffer 3

Row Buffer 4

Row Buffer 5

Row Buffer Nr+1

Input 
Transform

X

X

Weight 
Multiplication

Output 
Transform

Row Buffer 1

Row Buffer 2

Row Buffer 3

Row Buffer 4

Row Buffer Nr

+

+

Accumulate
Input Buffers Output Buffers

Weight FIFO

Fig. 1. Basic implementation of Winograd algorithm. Arrows indicate how
input transforms overlap input data and how results are accumulated in the
output buffer.

multiplication where the output of the previous layer is treated
as a vector, which is multiplied with a matrix of weights; the
result is a new vector which is the output of the layer.

III. ACCELERATOR ARCHITECTURE

A. Winograd Algorithm

The accelerator implements a convolutional neural network
algorithm using the Winograd Transform [12]. This algorithm
reduces the number of multiplications needed to compute a
convolution at the expense of more addition operations. The
accelerator implements a version of the Winograd Transform
that has been explained in detail in [7], where it is denoted as
F (3× 3, 2× 2) and described by the following equation:

Y = AT
[
[GgGT ]⊗ [BT dB]

]
A (1)

The Winograd Transform takes a 4×4 matrix of input samples
d, a 3×3 matrix of filter weights g, and linear transformations
A,B,G, to compute a 2 × 2 matrix of output contributions
Y . The linear transformations consist of additions and scaling
by powers of 2, which are easy to implement with FPGAs.
The transformations GgGT and BT dB result in two 4 × 4
matrices that are multiplied element-wise (denoted with ⊗).
Finally, the linear transformation A is applied to obtain a
2× 2 matrix of output values Y . These output values are the
same values as one would normally compute when doing a
standard convolution, which requires 9 multiplications for each
output value, or 36 multiplications for 4 output values. With
the Winograd Transform, however, only 16 multiplications are
required. The input transform costs an additional 32 additions,
the filter transform 28 operations, and the output transform
24 additions. Because of the computational bottleneck in the
number of available DSPs, this is a worthwhile tradeoff that
allows the FPGA to achieve a higher throughput per DSP.
Furthermore, we precompute the filters and store them in
memory. This results in a higher memory-bandwidth require-
ment, but it reduces the number of operations on the FPGA.
The values stored in memory are 16-bit fixed-point numbers,
but the B transformation increases the size of input samples
to 18 bits, which results (16 × 18)-bit multiplications. Those
multiplications are implemented using a single DSP block.
In order to preserve sufficient accuracy, the output feature

Block 1

Input 
Transform

X

Weight 
Multiplication

Output 
Transform

Block 1+

Accumulate

Ui blocks of
 Nr row buffers

Uo blocks of Nr 
row buffers

Weight FIFO (Ui X Uo wide)

Block Ui

X

X

X

+

Sum

Block Uo++

FC Bypass

FC Bypass

Fig. 2. Accelerator unrolling with Ui=Uo= 2. FC bypasses are marked in
red, and only used during FC layers.

accumulation uses 32-bit fixed-point numbers. Before writing
the results to memory, however, these are truncated to a 16-bit
fixed-point format.

B. Compute Core Implementation

Fig. 1 shows the implementation of the Winograd algorithm
by the accelerator. To increase reuse of loaded data, we
compute multiple rows of the output features in parallel; the
number of rows computed in parallel is denoted with Nr. Each
iteration of the algorithm requires four input samples per row
buffer to compute two outputs per row. Two input samples are
saved and reused in every cycle, but in different positions in
the input matrix. Consequently, the number of read ports on the
input-buffer memory is reduced. Since the algorithm requires
two extra rows, there are Nr+2 input row buffers needed
to compute Nr output rows, and Nr output row buffers to
store the results. From this 4 × 4 matrix of input data and
the weights, we calculate the output contribution of the input
feature. We load the accumulated value of the output feature
from the output buffers, sum it with the new contribution, and
store it again. Each row buffer can store the same set of rows
for multiple features. First, the accelerator loops over all input
features to calculate a single output feature. Then, it repeats
this loop for the next output feature. To prevent the accelerator
from having to store intermediate values of the output features
to memory, and then loading them again, for a set of rows
all input features are stored on the FPGA. This is done by
instantiating Nbi blocks of input buffers, each consisting of
Nr+2 row buffers, that together can hold a set of rows for
each input feature of the CNN layer currently processed by
the accelerator.

C. Increase of Parallelism

To increase the accelerator’s throughput, the core algorithm
can be unrolled in two directions, as shown in Fig. 2. First,
the converted input samples can be used to calculate the
contribution for multiple output rows in parallel. The amount
of output unrolling, denoted by Uo, increases the number of



PingPong Buffer

Input Rows

PingPong Buffer

Output Rows

Compute 
Process

Input 
Serialization

FIFO 1FIFO 1
Load Input 

Data

Load 
Weights

Bias Buffer
Load 

Biases

Output 
Serialization

FIFO 2FIFO 2
Store 

Output 
Data

FIFO Nr+1FIFO Nr+1

FIFO 0FIFO 0

FIFOFIFO

FIFO NrFIFO Nr

FIFO 1FIFO 1

Fig. 3. Block diagram of the accelerator with main processes, buffers, and data flow.

multiplications, output transforms, and blocks of output row
buffers by a factor of Uo. Second, multiple sets of input
samples, denoted by Ui, can be used to compute their contri-
butions to the same output features in parallel. This increases
the number of multiplications and input transforms done by
a factor of Ui. It also adds a step where the contributions
of multiple input features are summed together before they
are accumulated with the previous output sample. This step
is done before the output transform, which is possible as it
is a linear operation. In this case, it costs only 16 additions
per 4 × 4 matrix of results instead of the 28+4 additions it
would take for the added output transform and subsequent
summation. Increasing Ui, however, does not cost more on-
chip memory for input row buffers, as they are instantiated
anyway to store a set of rows from all input features. To reduce
logic utilization further, the summation can be done using the
DSP’s dedicated output carry path and post-adder. This option
does not consume any extra logic resources for summing the
intermediate contributions, but it restricts the FPGA router’s
freedom in placing the DSP slices.

D. Bandwidth Matching

Fig. 3 shows the block diagram of the accelerator, including
the concurrent load and store processes together with the
compute core and buffers. To continuously operate the com-
pute core and match the memory’s bandwidth, we combine
different solutions. First, the input and output row buffers
are instantiated twice as ping-pong buffers. While one buffer
is being used by the compute process, a new set of data is
written to the other buffer by the Input Serialization process.
And when both processes are done, they switch buffers. This
allows both processes to operate concurrently. Second, each
row buffer has only a small number of data ports, giving it
a much smaller bandwidth than what the HPM provides. To
address this bandwidth mismatch, we use a solution similar to
the coarse-grained approach presented by Cong et al. [16].
We write data in series and with high bandwidth into a
set of Nr+2 512-bit wide, but shallow, FIFOs. Since these
FIFOs do not have to be deep, they can be implemented
with distributed RAM to spare BRAM resources. The input
serialization process reads from all these FIFOs in parallel and
writes the data serially into the row buffers. This results in a
total bandwidth that is Nr+2 times the bandwidth of a single
row buffer. If more bandwidth is needed, for example, when
a large amount of unrolling is applied, this set of FIFOs and

serialization process can be instantiated multiple times. Each
serialization process can then write to a separate block of input
buffers. We use a similar technique to write the output values
with high bandwidth to the memory. In this case, we use a
set of Nr shallow FIFOs. All FIFOs are filled in parallel with
data from the output buffers. This data is then written into the
memory with a bandwidth that matches the HPM, by emptying
each FIFO one-by-one. The output serialization process also
adds the output feature’s bias value to each output sample and
applies the Rectifier Linear Unit (ReLU) operation. Then, it
writes the sample to the FIFO. This process is implemented for
each row in parallel. The bias addition and ReLU operations
are done in the output serialization process because all output
samples pass through this process once, and only after all
contributions have been added. Therefore, applying the bias
here adds a minimal amount of logic and can be integrated
into the process’ pipeline, where it costs virtually no loss in
throughput or latency.

E. Latency Hiding

HPM generally has a higher latency than standard DRAM.
On Ultrascale FPGAs, DRAM can have an access latency as
low as 40 cycles [17]. When using HBM, however, this latency
is at least 110 cycles [11]. In our design, the latency measured
to HMC is on the order of 100s of cycles, and depends signif-
icantly on packet size. To ensure that the processes that access
memory do not suffer from this higher latency, it is important
that they can continuously send memory instructions, without
having to wait for any process flow-control to make them stall.
For example, the Load Input Data process should not have
to wait for the rest of the accelerator to be done processing
a set of rows before starting to load the next set of rows
and wait many cycles for data to arrive. To achieve this, all
processes that load and store data are completely independent.
The algorithm’s execution is deterministic. By providing these
processes with the feature size and number of features, they
can continuously send memory instructions. Back-pressure is
applied when the FIFOs are full or empty. The Load Biases
process is an exception to this, as the bias data is only a small
amount of data and is loaded in parallel with the first set of
rows, after which the process is done.

F. Fully Connected Layers

We designed the accelerator with the ability to execute
matrix-vector operations to compute the FC layers, which are



PicoFramework

CNN Application

Pico Framework

PCIe

CNN Accelerator

PCIe

HMC Controller

PicoBus
Memory Mapped

@ 4 MHz

Control Bus
Slave

AXI Master

AXI Slave
512 bit

@ 187.5 MHz

HMC Memory
4GB

2x 8 bit 
@ 15 GHz

Micron IP

New work

Fig. 4. System block diagram with host computer, FPGA, and data buses.

common in CNNs. This is done by bypassing the transforms
and reusing the DSP blocks, as shown in Fig. 2. This adds
minimal logic. We also designed it to achieve the maximum
read bandwidth available because the FC operation is limited
by the memory read bandwidth. During convolution, one set
of weights is multiplied with many data samples. During a FC
layer, however, the input samples are a vector that is multiplied
with a large matrix of weights. Hence, one input sample is
multiplied with many weights, which is the reverse of the
data flow behavior during convolution. To efficiently execute
the FC operations we reversed the role of weight and input
data buffers. The large row buffers, and the high-bandwidth
data-path to those buffers, are used for the FC weights, while
the input vector is loaded using the convolution weight data-
path. The large weight matrix is split in blocks and loaded
into the row buffers, where each row holds part of a matrix
column. The input and output transforms are bypassed, making
the multiplication and summation steps in Fig. 3 operate
essentially as a small matrix-vector multiplication core. A
single block of output row buffers can store the entire output
vector of all FC layers, so that it is only written to memory
after the FC operation is completed. This allows us to further
reduce the logic by ignoring the output from the multipliers
that are added when Uo is increased. Since the FC operation
is limited by the memory’s read bandwidth, leaving those
additional multipliers unused has no impact on performance.

IV. DEMONSTRATION SYSTEM

A. PicoFramework

We implemented the proposed architecture’s performance
on a AC-510 [14] module from Micron. This module, which
consists of a Xilinx Kintex Ultrascale 060 FPGA and a
HMC unit, is connected to a host computer through a PCIe
link, as shown in Fig. 4. The AC-510 module also includes
Micron’s PicoFramework, which consists of both an API and
driver on the Host PC, as well as, an IP core on the FPGA.
The PicoFramework handles all communications between the
FPGA and host PC, and also between the accelerator and HMC
memory. The HMC is a 4GB module and is connected to the

FPGA by two uni-directional 8-bit serial links, operating at
15Gb/s per link. This provides a raw bandwidth of 15GB/s in
each direction. The PicoFramework hides the HMC protocol
and exposes a standard 512-bit AXI4 interface to the accel-
erator for access to the memory. This AXI port is clocked at
187.5 MHz which, therefore, limits the memory bandwidth in
each direction to 12GB/s. The PicoFramework also exposes a
memory mapped interface, called PicoBus by Micron, which
allows for easy control of the accelerator from the host PC
through a register interface. The PicoBus is clocked at only
4MHz and should not be used for data transfer. To transfer data
between the host PC and FPGA, the PicoFramework provides
a streaming interface which we use only to directly access the
HMC from the host PC.

B. Accelerator Configuration

To maximize performance we configure the accelerator as
follows. Nr is set to 14, as this is the greatest common
denominator of VGG16’s feature sizes and gives the maximum
use of overlapping in the Winograd algorithm, while allowing
each row buffer to be fully utilized in each layer. Both the input
and output row buffers can store up to 1792 samples (equal
to 8 of the largest features, or 128 of the smallest features).
This value allows the accelerator to compute the contributions
of a reasonable number of input features without having to
switch to a different block of input rows. If the buffers are
set to be too big, then after the last block of output data is
computed, there will be a significant latency for that block
to be written to memory. With a buffer capacity of 1792, the
number of input buffer blocks Nbi must be set to 8 to be
able to store a complete set of input features. For example,
the input features to Layer 2 consist of 64 224×224 features,
allowing 1792/224 = 8 sets of rows to be stored per input
buffer block and requiring 64/8 = 8 input buffer blocks to
store a set of rows from each feature.

V. EXPERIMENTAL RESULTS

A. Execution time

To evaluate the performance of the accelerator when exe-
cuting the VGG16 network, we measured the execution time
and bandwidth per layer for various values of Ui and Uoby
counting the number of cycles and bytes transferred on the
FPGA, respectively. The results are shown in Fig. 5(a-b). The
spiking behavior in Layers 2-10 is caused by the fact that
the output results are max-pooled after Layers 2,4,7, and 10.
The max-pooling operation takes the maximum value from
each 2 × 2 grid in the feature set and discards the other
three values, dividing the size of the feature set by 4. The
layers after the max-pool operation then double the number of
features, resulting in half the amount of computation that need
to performed in Layers 3, 5, and 8 compared to the previous
layers. This is also reflected in the execution time, which is
roughly halved in those layers compared to the pooled layers.
Layers 11-13 are an exception because the number of features
is not doubled and the amount of computation is one-fourth
of that in Layer 10.



Fig. 5. Measured results for various values of Ui and Uo. (a) Average total bandwidth per layer. (b) Execution time per layer. (c) Speedup per layer
referenced to Ui=Uo=1.

B. Near-Perfect Scaling

Fig. 5(a) shows that during the FC operation in Layers
14-16 the output bandwidth saturates at ∼11GB/s for all
configurations with Ui> 1. This shows that the accelerator
can fully saturate the read bandwidth during FC operations.
Hence, higher performance requires more memory bandwidth.
The bandwidth is not fully saturated when Ui= 1 because in
this configuration the compute core processes exactly 512 bits
of FC weights per cycle. Each time a block of FC weights
is processed the input ping-pong buffer is switched. This
requires the compute pipeline to be first emptied and then filled
again, causing a slight performance penalty. Setting Ui to
be greater than 1 increases the compute core’s performance
enough to completely hide this penalty, as the compute core
can processes weights faster than they are loaded. When
Ui=Uo= 4, the write bandwidth also saturates during Layer
1, and the read bandwidth saturates in Layers 11-13. The
write bandwidth saturates because Layer 1 has only 3 input
features, which results in a small amount of computation
being done to obtain 64 output features. In Layers 11-13, the
bandwidth is high due to the large number of weights being
processed rapidly as the features are only 14 × 14 elements.
The accelerator has to load 16 new sets of weights every 7
cycles, causing a peak bandwidth requirement of 13.7 GB/s.

Fig. 5(c) shows the relative speedup for each layer and
configuration, compared to the configuration Ui=Uo= 1.
Ideally the speedup is Ui×Uo during convolution layers. This
is achieved in almost all cases, except for Layer 1 due to the
small amount of computation done in that layer, and Layers
11-13 when Ui=Uo= 4. The latter is caused by the fact that
the amount of data is so small that the compute process can
complete the entire layer in a single iteration, thus preventing
the accelerator from hiding memory latency through use of
concurrent load, compute, and store processes [18]. Increasing
Ui or Uo has virtually no effect because the FC layers are
bandwidth limited, Fig. 6 shows the aggregate speedup of the
convolutional layers against ideal scaling. The figure clearly
shows that the accelerator performance increases almost per-
fectly. The non-ideal scaling in Layers 1 and 11-13 has only

Fig. 6. Aggregate speedup of convolution layers for various unroll config-
urations. Measured by dividing the total execution time of layers 1-13 in
configuration Ui=Uo= 1 by that of the other configurations.

a small effect because most time is spent in Layers 2-10.
Increasing the accelerator’s performance by increasing the

parallelism has diminishing returns. For the Ui=Uo= 4 con-
figuration, the FC layers account for 48% of the total network
execution time. Reducing the FC layer execution time requires
more memory bandwidth. In cases where network layers have
small feature sizes and many features, similar to Layers 11-
13 of the VGG16 network, the required bandwidth to load
the weights can also become a bottleneck. It is important
to consider the memory access bandwidth when designing
a highly parallel CNN accelerator, especially if the memory
needs to be shared with other cores on the FPGA.

C. Hardware Cost

Fig. 7 shows that the hardware utilization does not change
much across different configurations of Ui and Uo, except for
the DSP block utilization. Between the configurations with
Ui=Uo= 1 and Ui=Uo= 4 the LUT and FF utilization
increases with only ∼10% of the available resources. Most
of the BRAM is used for input row buffers and the HLS AXI



Fig. 7. Hardware utilization for various Accelerator Configurations. The
PicoFramework and HMC controller utilization is the same for all config-
urations, and is included in the figure. Together they consume 17.78% of
LUTs, 10.65% of FFs, and 17.28% of BRAMs.

ports. BRAM utilization increases only when increasing Uo to
store the additional blocks of output features, which consume
4.4%×Uo. Unfortunately, increasing Ui or Uo above 4 was
not feasible because the FPGA routing becomes congested,
mainly due to the process control logic generated by Vivado
HLS. An RTL implementation of this design is expected to
give better results and allow for use of the entire FPGA.

D. Comparison to Prior Works

Table I contrasts our work with prior works. While using all
available DSPs in the FPGA, the accelerator demonstrated by
Ma et al. [6] does not reach the performance of our accelerator
during convolution. Its total latency is a bit lower due to the
higher memory read bandwidth the FPGA can achieve. Our
accelerator, however, needs only 59% of the DSP resources,
thanks to the use of the Winograd Algorithm. Our accelerator
performs similarly to the accelerator demonstrated by Huang
et al. [8]. The throughput per DSP in the VU440 FPGA is
significantly higher than our throughput per DSP, due to the
higher read bandwidth it has available during the FC layers.

VI. CONCLUSIONS

We presented the first scalable architecture for CNN accel-
erators that leverages stacked-DRAM HPM. The accelerator
performance scales near-perfectly with increased use of par-
allelism. The saturation of the memory link shows that the
accelerator makes full use of the HPM’s bandwidth, while
effectively hiding its access latency. Furthermore, we have
shown that increasing the parallelism of CNN accelerators has
diminishing returns, and matrix-vector multipliers has virtually
no returns, if the available memory bandwidth is not increased
significantly with the help of emerging HPM technologies.

Acknowledgments. This research was supported in part
by the National Science Foundation (A#: 1764000) and the
Department of Energy (DOE) Small Business Innovation Re-
search (SBIR) ASCR Program under contract DE-SC0017182.

TABLE I
COMPARISON WITH PRIOR WORKS

Reference [6] [8] This work
FPGA Arria 10 Xilinx Xilinx Xilinx
FPGA GX1150 VX690T VU440 KCU060

Network VGG-16
CNN Algorithm Conventional Winograd F(3×3,2×2)

Frequency [MHz] 200 150 200 187.5
Max. Memory 20 12.8 20 12 Read

Bandwidth [GB/s] Read+Write Read+Write Read+Write 12 Write
DSP Utilization 3036(100%) 1402(39%) 1402(49%) 1792(64.9%)

Latency [ms] 42.98 62.65a 40.99a 44.92
CNV Latency [ms] 26b - 23.1

Throughput [GOP/s] 720 494 755 689
Throughput/DSP 720 494 755 689

[GOP/s/DSP] 0.24 0.35 0.53 0.38
a Calculated from reported throughput
b Number read from Fig. 10 in the reference

REFERENCES

[1] K. Abdelouahab et al. Accelerating CNN inference on FPGAs: A
Survey. arXiv preprint arXiv:1806.01683, 2018.

[2] K. Guo et al. A Survey of FPGA Based Neural Network Accelerator.
arXiv preprint arXiv:1712.08934, 2017.

[3] S. Venieris, A. Kouris, and C.-S. Bouganis. Toolflows for Mapping Con-
volutional Neural Networks on FPGAs: A Survey and Future Directions.
ACM Computing Surveys (CSUR), 51(3):56, 2018.

[4] D. Giri et al. ESP4ML: platform-based design of systems-on-chip
for embedded machine learning. In Proc. of the Conf. on Design,
Automation, and Test in Europe (DATE), March 2020.

[5] C. Zhang et al. Optimizing FPGA-based accelerator design for deep con-
volutional neural networks. In Proc. Intl. Symp. on Field-Programmable
Gate Arrays, pages 161–170, 2015.

[6] Y. Ma et al. An automatic RTL compiler for high-throughput FPGA
implementation of diverse deep convolutional neural networks. In Intl.
Conf. on Field Programmable Logic and Applications, pages 1–8, 2017.

[7] A. Lavin and S. Gray. Fast algorithms for convolutional neural networks.
In Proc. of the Conf. on Computer Vision and Pattern Recognition, pages
4013–4021, 2016.

[8] Y. Huang et al. A high-efficiency FPGA-based accelerator for convolu-
tional neural networks using Winograd algorithm. In Journal of Physics:
Conference Series, volume 1026, page 012019. IOP Publishing, 2018.

[9] Xilinx Inc. Memory Solutions - External Memory Interfaces. https://
www.xilinx.com/products/technology/memory.html\#externalMemory.

[10] Inc. Micron Technology. Hybrid Memory Cube – HMC Gen2.
https://www.micron.com/-/media/documents/products/data-sheet/hmc/
gen2/hmc gen2.pdf.

[11] Xilinx Inc. AXI High Bandwidth Memory Controller v1.0.
https://www.xilinx.com/support/documentation/ip documentation/
hbm/v1 0/pg276-axi-hbm.pdf.

[12] S. Winograd. Arithmetic complexity of computations. Siam, 1980.
[13] L. P. Carloni. From latency-insensitive design to communication-based

system-level design. Proc. of the IEEE, 103(11):2133–2151, November
2015.

[14] Micron Technology Inc. AC-510. https://www.micron.
com/products/advanced-solutions/advanced-computing-solutions/
ac-series-hpc-modules/ac-510.

[15] K. Simonyan and A. Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[16] J. Cong et al. Bandwidth optimization through on-chip memory
restructuring for HLS. In Design Automation Conference (DAC), pages
1–6, 2017.

[17] Xilinx Inc. UltraScale Architecture-Based FPGAs Memory IP v1.4.
https://www.xilinx.com/support/documentation/ip documentation/
ultrascale memory ip/v1 4/pg150-ultrascale-memory-ip.pdf.
Accessed: 2019-11-26.

[18] P. Mantovani, G. Di Guglielmo, and L. P. Carloni. High-level synthesis
of accelerators in embedded scalable platforms. In Proc. of Asia and
South Pacific Design Automation Conference (ASP-DAC), pages 204–
211, January 2016.


