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Abstract— This paper presents an agile-designed domain-

specific SoC in 12nm CMOS for the emerging application domain 

of swarm-based perception. Featuring a heterogeneous tile-based 

architecture, the SoC was designed with an agile methodology 

using open-source processors and accelerators, interconnected by 

a multi-plane NoC. A reconfigurable memory hierarchy and a CS-

GALS clocking scheme allow the SoC to run at a variety of 

performance/power operating points. Compared to a high-end 

FPGA, the presented SoC achieves 7× performance and 62× 

efficiency gains for the target application domain.  

I. INTRODUCTION 

The slowdown of CMOS scaling and limited effectiveness 
of parallelism via homogeneous multi-core processors have 
pushed modern computing systems toward heterogeneous SoC 
architectures. Heterogeneous architectures deliver superior 
energy-efficient performance by combining general-purpose 
processors with fixed-function accelerators. Heterogeneity, 
however, increases the complexity of the design and verification 
process. Open-source hardware (OSH) addresses this 
complexity challenge by promoting design reuse [1]. This work 
focuses on the emerging application domain of vehicular swarm 
perception (Fig. 1), which expands the vehicle perceptive field 
by sharing neighbors’ sensor data through wireless V2V 
(vehicle-to-vehicle) communication and reduces false 
predictions [2-3]. Compared to the computations for the 
autonomous driving of a single vehicle [4], which include CNNs 
for object detection and general-purpose computing for decision 
making, swarm-based perception additionally relies on FFT and 
Viterbi decoding for sensor signal processing and wireless 
communication. Hence, this leads to the design of an SoC 
architecture with a highly heterogeneous architecture. 

This paper presents a domain-specific SoC with a tile-based 
architecture for the target application domain. We designed the 
SoC with an agile design methodology that promotes the reuse 
of existing OSH IP blocks and simplifies the development of 
new ones. Fig. 1 shows its main steps: 1) the SoC components 
are selected from a library of reusable OSH IPs based on 
extensive workload analysis; 2) the tile sockets seamlessly 
integrate the OSH IPs, and the generation of the full SoC RTL 
is automated based on parameterized configurations; 3) a 

hierarchical physical design strategy leverages the modularity of 
the tile-based architecture and clocking scheme. Compared to 
agile design approaches for homogeneous multi-core chips [5], 
our methodology mitigates the complexity of heterogeneous 
SoC design by decoupling the design and integration of the 
heterogeneous IPs. Our approach scales up for the development 
of SoCs with larger and more heterogeneous arrays of tiles. 
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Fig. 1 Swarm-based perception in autonomous vehicle with its key 

computation kernels, and the agile-designed heterogeneous SoC with 

a tile-based architecture. 

II. SOC ARCHITECTURE AND AGILE DESIGN METHODOLOGY 

Fig. 2 shows the overall SoC architecture comprising an 
array of 4×4 tiles connected by a 2D-mesh multi-plane network-
on-chip (NoC). One of the four RISC-V CPU cores [6] acts as 
the host and boots the Linux operating system. To support 
parallel processing of camera and sensor data inputs, three 
NVDLA DNN inference accelerators [7] and three FFT 
accelerators are deployed to perform object detection and 
distance estimation tasks. One Viterbi accelerator is deployed to 
decode the incoming vehicle messages. Both the FFT and 
Viterbi accelerators are designed in-house using high-level 
synthesis (HLS) [8]. For higher modularity, each IP block is 
encapsulated within a tile socket, which connects it to a local bus 



(e.g., AXI4) as a master and is connected to the NoC via 
asynchronous interfaces. The tile socket also implements 
system-level services, including services specific to the 
particular type of tile: e.g. DMA and configuration registers for 
an accelerator tile. The NoC, tile sockets, and distributed 
reconfigurable memory hierarchy are extended from ESP, an 
open-source SoC platform [9].  

The last-level cache (LLC) is partitioned into four memory 
tiles, each containing a 64-bit wide off-chip memory link. 
Combined, the four off-chip links support the real-time 
workload bandwidth requirements. Any subset of the memory 
tiles can be selected at runtime, and the memory hierarchy is 
reconfigurable to support different cache-coherence modes. The 
test-chip prototype relies on a modular FPGA system to connect 
each memory tile via FMC connectors to a 2GB DDR3 card, 
which stores image and sensor data for swarm perception. There 
is one IO tile in the SoC containing ROM and peripheral IO, 
such as Ethernet and UART. 
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Fig. 2 The architecture of the domain-specific heterogeneous SoC. 

Fig. 3 illustrates the details of the agile design methodology, 
which leverages the modularity of the tile-based architecture. 
Driven by the analysis of the target swarm-based  perception 
application1, the key computation kernels, e.g. CNN, FFT, 
Viterbi decode, are identified. Existing OSH IPs are evaluated 
and selected for these key computations. Reusing existing OSH 
IP blocks can significantly reduce the SoC design cycle. Each IP 
is seamlessly integrated into the SoC by the tile socket, which 
decouples its design from the rest of the system, thus simplifying 
the integration of heterogeneous blocks. Instanced from the 
open-source ESP SoC platform [9], the full SoC RTL, including 
the NoC and system-level services, is automatically generated. 
Co-generation of corresponding testbenches is also provided to 
enable rapid evaluation of the SoC performance and architecture 
optimizations by FPGA emulation. 

During physical design, the inherent regularity of the tile-
based architecture decouples each tile from its location in the 
top-level floorplan, i.e., the same tile can be replicated to meet 

workload requirements. A hierarchical timing-closure flow is 
adopted for independent timing signoff between the local clock 
frequency of each tile and the global NoC frequency. The 
physical design of all tiles is conducted in parallel, while the 
global NoC timing is closed later based on the interface logic 
model (ILM) timing models. Such timing closure flow allows 
flexible reuse or respin of pre-existing IPs, further trimming 
design time. The entire SoC exclusively uses synthesizable 
designs to avoid any manual layout effort. 

Thanks to our agile SoC design methodologies, the proposed 
SoC was designed in 4 months by less than 10 full-time 
designers. This design cycle is considerably shorter than the 7 
month cycle of a prior agile-designed multi-core processor [5] 
and was achieved despite the additional challenges posed by the 
higher heterogeneity of the SoC architecture. 
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Fig. 3 Agile SoC design/optimization and ILM-based timing closure. 

III. SYSTEM-LEVEL SERVICES AND DYNAMIC 

RECONFIGURATION 

The tile socket provides each IP with system-level services 
such as DMA access and local reconfigurability. To support data 
exchange among heterogeneous tiles, the mesh NoC has six 
physical planes, as shown in Fig. 4. Planes 1-3 provide 
coherence channels between CPUs, accelerators, and LLC 
partitions. Planes 4-5 support DMA access for the accelerators. 
Plane 6 is dedicated to interrupts and memory-mapped IO and 
registers.  Asynchronous buffers in the tile sockets connect the 
NoC routers in the six planes to the logic inside each tile. 

In the SoC, the accelerators can communicate with the 
memory hierarchy via three dynamically configurable cache-
coherence modes [10]: non-coherent DMA (accelerator 
bypasses the cache hierarchy and accesses main memory 
directly), LLC-coherent DMA (memory requests are sent 
directly to the LLC and coherence is enforced by software), and 
the coherent DMA (memory requests are sent directly to the 
LLC and the hardware maintains full coherence). Each mode 
supports different degrees of hardware coherence and offers 
distinct benefits depending on the active workloads, system-
level contention, and accelerator properties.  1 Target workload Mini-ERA: https://github.com/IBM/mini-era 
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and three reconfigurable cache coherence modes. 

The SoC implements a communication synchronous GALS 
(CS-GALS) clocking strategy, as shown in Fig. 5. Each IP tile 
is synchronous to a local clock (clk_tile) with a local power 
supply. The NoC, which sits in a global power domain, is 
synchronously driven by a chip-wide global clock (clk_noc). 
During the timing closure, only the clock skews between 
neighboring tiles need to be constrained, which relaxes 
traditional timing-closure constraints. To support the 
heterogeneity of the IP blocks, the frequency of each tile, as well 
as the NoC, can be adjusted dynamically and independently of 
one another, making them globally asynchronous. The NoC 
router consists of crossbar switches routed to four neighbors 
synchronously and to the local tile via asynchronous interfaces. 
Together with look-ahead router design, the CS-GALS enables 
single-hop-per-cycle throughput for each plane, which 
outperforms the asynchronous NoC strategy in prior tile-based 
SoCs [11, 13-14]. 
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Fig. 5 CS-GALS clocking and NoC router w/ asynchronous interface. 

IV. MEASUREMENT RESULTS 

The presented domain-specific SoC is fabricated using 12nm 
FinFET CMOS technology. Fig. 6 shows the die photo and its 
test setup with a modular FPGA system. In the SoC, each tile 
occupies an identical 1×1mm area for flexible placement and 
consistent timing closure between the NoC routers. The IP 
designs occupy more than 90% of the area in each tile, while the 
NoC logic is placed on the periphery for straight tile-to-tile 
routing. Only two accelerators (FFT, Viterbi) slightly 
underutilize tile area, and the entire design incurs less than 15% 
overhead compared to a bespoke design with custom sizes for 
each tile. The total active area of the SoC is 21.6mm2.  

The chip is assembled on a flip-chip package containing 18 
power domains. During testing, the test board is connected to the 
FPGA motherboard through 3 FMC connectors. The FPGA test 
system is modular, with the flexibility of utilizing different 
daughter cards. An Ethernet link provides a debug interface 
from a PC for accessing memory-mapped regions of the SoC. 

 

Fig. 6 Die photo and the test setup with modular FPGA system. 

We first evaluate the performance and benefits of each tile. 
As shown in Fig. 7, the operating frequencies of each accelerator 
were measured across a range of supply voltages, from 0.5V to 
1V. We run the CPU with a minimum supply voltage of 0.7V 
for stable operation of the operating system. We present the 
benchmark measurements at the nominal 0.8V. The deployment 
of accelerators significantly improves the performance, i.e. 
workload latency, compared to standalone CPU operations. At 
0.8V, offloading computation to an FFT accelerator achieves 
71× and 233× latency and energy reductions, respectively. 
Similarly, offloading the Viterbi decode kernel to its dedicated 
accelerator obtains a 20× latency and 56× energy improvement. 

F
re

q
u

e
n

c
y
 (

M
H

z
)

Voltage (V)

Performance Energy

L
a

te
n

c
y
 (

m
s

)

E
n

e
rg

y
 (

m
J

)

FFT Viterbi FFT Viterbi

71X

20X

233X

56X

CPU only

CPU + Acc

 
Fig. 7 (Left) V/F scaling for each tile, (Right) Benefits of offloading 

tasks to dedicated accelerators. 

The benefit of the reconfigurable memory hierarchy is 
evaluated across different workload sizes, as shown in Fig. 8. 
When the accelerator and CPU share an LLC partition (e.g., 
when using one memory tile to save energy), the non-coherent 
DMA mode performs best by avoiding LLC contention, as it 
accesses DRAM directly. When the accelerator owns its own 
dedicated LLC partition, there are significant performance 
benefits from the coherent-DMA and LLC-coherent DMA 
modes, in which the accelerator performs DMA directly to the 
LLC and potentially avoids off-chip DRAM access.  
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Fig. 8 (Left) Accelerator share one LLC partition with the CPU, 

(Right) Accelerator owns its dedicated LLC partition. 

The accelerator performance is highly correlated with the 
memory bandwidth, which varies at runtime depending on the 
SoC operations. The proposed tile-based architecture simplifies 
the dynamic provisioning of the available four LLC partitions 
and corresponding off-chip memory links to meet workload 
demands, e.g. by scaling them up to match the parallel execution 
of accelerators for performance improvement. As illustrated in 
Fig. 9, the LLC memory partitions and the corresponding off-
chip links are scaled together with the FFT accelerator 



parallelism to avoid a memory bottleneck. The CS-GALS 
approach also allows each accelerator to run at its optimal 
frequency, independently from the rest of the SoC. For example, 
when the workload is memory bound, the frequency of the FFT 
accelerator can be reduced from the maximum 1.2GHz to 
470MHz while maintaining similar workload latency, thus 
achieving a 2× energy reduction.  
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Fig. 9 (Left) Accelerator performance with scalable LLC partition and 

memory links, (Right) Scale frequency under CS-GALS. 

Altogether, using the in-house developed swarm perception 
workload Mini-ERA, our SoC achieves a 7× performance and 
62× energy improvement compared to an implementation of the 
same design on a high-end Xilinx Virtex UltraScale XCVU440 
FPGA, as shown in Fig. 10. For this workload, the SoC 
consumes 1.36W at 0.8V, with 7.2% attributable to the NoC. 
The measured NoC frequency reaches 800MHz at 0.8V. 
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Fig. 10 (Left) Benefits for the target swarm perception application, 

(Right) SoC power breakdown. 

Fig. 11 compares this work to prior tile-based chip designs, 
which feature homogeneous arrays of either processors [11-12] 
or accelerators [13]. In contrast, the proposed SoC contains a 
variety of heterogeneous OSH IPs and achieves much higher 
heterogeneity than prior open-source SoCs [15]. The NoC 
enables data transfers between the tiles with a maximum 
281Gb/s throughput, while supporting reconfigurability of the 
memory hierarchy for a range of performance/power operating 
points. The scalability of the proposed SoC architecture and the 
associated methodology benefit engineering productivity when 
designing SoCs with even larger tile arrays. 

VLSI 19 [12] This work
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JSSC 17 [11] JSSC 20 [13]
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Tile Array Size 496 161000 16

Frequency 10 – 1400 MHz 165 - 1520MHz115 - 1770 MHz 161 – 2001 MHz

Power 7.47 W 240mW* – 1.83 W1.3 - 39.6 W 30mW – 4.16 W 

Voltage 0.6 – 0.98 V 0.5 - 1.0V0.56 – 1.10V 0.41 – 1.2 V

Tile Property Homogeneous HeterogeneousHomogeneous Homogeneous

GALS Clocking No YesYes Yes

NoC planes x BW 1x32b 5x64b + 1x32b1x16b 1x64b

Area 15.25 mm
2

21.6 mm
2

57.41 mm
2

6 mm
2

Tile(s) 32b RISC-V CPU
64b RISC-V, NVDLA, 
FFT, Viterbi, Mem, IO 

16b RISC CPU MAC Array

Design Target CPU Processor Domain-Specific SoCCPU Processor DNN Accelerator

Clock Domains 3 172012 20

Tile-to-Tile Clock Synchronous SynchronousAsynchronous Asynchronous

NoC Power in SoC Not reported 7.2%~7% 10%

Tile-to-Tile BW 32 Gb/s 281 Gb/s45.5 Gb/s 70 Gb/s

* Memory links and NoC at 0.8V  
Fig. 11 The comparison table with other tile-based designs. 

V. CONCLUSION 

We presented an SoC with a tile-based architecture for the 
application domain of swarm-based perception. We developed 
the SoC with an agile design methodology that simplifies the 
reuse of OSH IPs. The heterogeneous IPs are integrated with tile 
sockets, which enable system-level services, and are 
interconnected by a NoC. The CS-GALS clocking and 
reconfigurable memory hierarchy allow flexible performance 
tuning based on workload demands. The SoC delivers 7× 
performance and 62× efficiency gains compared to a high-end 
FPGA implementation.  
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