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Abstract—We present a throughput-driven partitioning algo-
rithm and a throughput-preserving merging algorithm for the
high-level physical synthesis of latency-insensitive (LI) systems.
These two algorithms are integrated along with a published
floorplanner [5] in a new iterative physical synthesis flow to
optimize system throughput and reduce area occupation. The
partitioning algorithm performs bottom-up clustering of the
internal logic of a given IP core to divide it into smaller ones,
each of which has no combinational path from input to output
and thus is legal for LI-interface encapsulation. Applying this
algorithm to cores on critical feedback loops optimizes their
length and in turn enables throughput optimization via the
subsequent floorplanning. The merging algorithm reduces the
number of cores on non-critical loops, lowering the overall area
taken by LI interfaces without hurting the system throughput.
Experimental results on a large system-on-chip design show a
16.7% speedup in system throughput and a 2.1% reduction in
area occupation.

I. INTRODUCTION

Latency-insensitive design (LID) has been proposed as a
correct-by-construction design methodology for synchronous
SoCs [2], [4]. LID provides a sound way to help designers
cope with the fact that in nanometer technologies SoCs are
increasingly becoming distributed systems due to the impact of
global communication delays [12]: LID enables the automatic
application of wire pipelining while preserving the system
behavior, simplifies reuse of IP cores, and can be extended to
handle not only communication- but also computation-latency
variations [8]. Hence, it facilitates the design space exploration
of micro-architectures [14] and helps to bridge the gap be-
tween system-level design and physical synthesis [27]. These
advantages are a result of the flexibility that LID adds to the
register-transfer level (RTL) abstraction through the separation
of communication and computation, a form of orthogonaliza-
tion of concerns [16]. In a latency-insensitive (LI) system each
core (which can be a complex FSM, a pipelined datapath,
an SRAM. . . ) is encapsulated by a simple interface circuit
called shell. Shell-core pairs exchange data via communication
channels that are governed by a latency-insensitive protocol.
The protocol decouples the implementation of the channels
from the implementation of the cores. In particular, at later
stages of the design process, the timing exceptions that may
arise due to the presence of long wires implementing the
channels can be fixed by pipelining them with the insertion of
special sequential repeaters called relay stations (RS), without
the need of changing any core implementation [2].

In this paper we present the first work that addresses the
combined optimization of shell encapsulation at RTL and relay
station insertion at physical-synthesis level for LID. We do so
by exploiting the logical structure of the cores and the physical
information on the core locations provided by floorplanning.
A motivational example. Fig. 1(a) shows a LI system with
four shell-core pairs connected by point-to-point, unidirec-
tional channels. Each core can be an arbitrarily-complex
sequential module as long as it satisfies the requirement that
it can be clock gated. The shell dynamically controls the
operations of the core by deciding whether to stall it or

C

(a)

m
u
x FF FF

m
u
x FF

FF

RS

B

control

control

A

control

m
u
x FF

D

control

shell

core

(b)

C

m
u
x FF FF

m
u
x FF

FF

RS

B1

control
control

A

control

m
u
x FF

D

control

B2

c
o
n
tro
l

C

(c)

m
u
x FF FF

m
u
x FF

FF

B1

control

A

control

m
u
x FF

D

control

B2

c
o
n
tro
l

RS

queue

design netlist

throughput-driven 

partitioning

throughput-preserving 

merging

objective

 met? 

shell encapsulation &

floorplanning

shell encapsulation &

floorplanning

No

Yes
End

(d)

Fig. 1. (a) A simple LI system with four cores and one RS; its throughput
is 2/3 = 0.67. (b) The same system with a finer-grained shell encapsulation
where core B is split in two smaller cores B1 and B2; throughput is improved
to 3/4 = 0.75. (c) The LI system maintains the same throughput after core
C and D are merged. (d) The proposed high-level physical synthesis flow.

fire it based on the value of the flow-control signals on the
input/output channels. Data communicated over a channel is
labeled by a bit signal indicating whether the current data is
valid or not. At each clock cycle the shell fires the core if and
only if each input channel presents a new valid data token
(AND-firing semantics). Otherwise, it stalls the core through
clock gating while storing valid data having arrived in its
input queues (for future processing) and putting void data on
each output channel. Since the queues have limited storage
capability, a stop bit signal is transmitted backward on each
channel whenever a downlink shell needs to request an uplink
shell to slow down the production of good data (backpressure).

At the implementation stage, the wires of a channel with
delay longer than the target clock period can be pipelined
by one or more RSs (as in Fig 1(a)). An RS is a clocked
buffer with unit latency, two-fold storage capacity, and simple
flow-control logic. By processing the void and stop bit signals
according to the latency-insensitive protocol, the flow-control
logic of the shells and RSs can accommodate any variations
of delay on inter-core wires while guaranteeing that the
functional behavior of the original synchronous system is
preserved without the need of changing any part of the intra-
core logic design (semantics preservation) [2].

However the AND-firing semantics and the wire-pipelining
by RS insertions may negatively affect the system performance
in terms of the data processing throughput (the average
number of valid data tokens processed per unit time) [3], [22].
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Since RSs are memory elements added after RTL design is
finished, each of them must be initialized with a void data
token (a “bubble”) so that the system behavior is preserved.
If an RS is inserted on a channel which is on a feedback
loop, the void data circulates indefinitely in the loop (due the
AND-firing semantics), thus stalling the cores periodically.

The data processing throughput of a LI system depends on
the locations of RSs and the system-level topology determined
by the cores and the communication channels [3], [22]. Each
feedback loop in the system imposes an upper bound on the
data processing throughput of the entire system. If S and R
are the number of cores and RSs of a loop respectively, the
upper bound is S

S+R . The minimum of such bounds across
all loops is the system throughput, and can be determined by
efficient algorithms [10], [15]. For example, in Fig. 1(a) loop
A → B → RS → A is a critical loop because it imposes the
lowest bound on the throughput. Since it has 2 cores and 1
RS, the throughput is degraded to 2/(2 + 1) = 0.67.

The throughput degradation, however, can be mitigated if
the concurrency of the critical loop is increased by a finer-
grained shell encapsulation of the cores’ logic. For example,
Fig. 1(b) shows that the logic within core B can be partitioned
into two smaller cores B1 and B2, each of which has its own
shell. This partitioning of core B raises the system throughput
by 13% to 3/4 = 0.75. The improvement results from the fact
that in Fig. 1(a) the computation of the logic within B1 and
B2 will be stalled if B’s shell receives a void data, while in
Fig. 1(b) B1 and B2 are never stalled at the same time.

Further, instead of increasing concurrency, to judiciously
decrease the granularity of shell encapsulation on non-critical
loops can reduce the shell’s area overhead without hurting the
system throughput. For example, since loop C → D → C
is not critical, cores C and D can be merged so that they
get encapsulated by one shell (instead of two) as shown in
Fig. 1(c), where there are two less queues and one less control
block than in Fig. 1(b), while the throughput is still 0.75.
Contributions. We propose the idea of combining core parti-
tioning and merging to optimize a latency-insensitive system
and an iterative high-level physical synthesis flow that relies
on novel partitioning and merging algorithms to automatically
do so. The proposed flow targets the two factors affecting
the data processing throughput: the locations of the RSs,
which is usually decided by the physical floorplanning of the
cores, and the system-level topology. Unlike the classical LID,
which treats each core as a blackbox, the proposed approach
assumes that some cores are provided as whiteboxes whose
RTL implementation can be analyzed by the partitioning and
merging algorithms. Notice that while the cores’ logic can be
partitioned or merged for shell encapsulation purpose, the RTL
design is not modified. The partitioning algorithm leverages
the local logic structure of individual cores to improve the
global topology of the system by identifying finer-grained
logical boundaries for shell encapsulation. The iterative na-
ture of the proposed flow allows such improvement in the
system topology to be further exploited by a floorplanner for
throughput optimization. Dually, the core merging algorithm
decreases the granularity of shell encapsulation so that the
number of shells and shell queues is reduced for area saving.

II. THE PHYSICAL SYNTHESIS FLOW

Fig. 1(d) shows the proposed physical synthesis flow. Mul-
tiple floorplanning runs are interleaved with runs of the new
partitioning and merging algorithms to meet the design target,
which can be system throughput, chip area, or both. It consists
of three main steps:
Step 1. Shell encapsulation is applied based on an initial
partitioning of the design. After floorplanning, RSs are inserted
to pipeline long channels that have caused timing violations.
Step 2. If the insertion of RSs made throughput lower than the
design target, then the partitioning algorithm divides one core
on the critical loop into new smaller cores that are guaranteed
not to have combinational path from their inputs to outputs
(Section IV). New shells are generated for these cores. The
finer-grained shell encapsulation results in a more concurrent
system-level topology of the latency-insensitive system.
Step 3. First a new floorplan is derived from the new system
topology, then the throughput-preserving merging algorithm
is applied to merge cores which are not part of the critical
loops (Section V). Merging decreases the granularity of shell
encapsulation, thus reducing their aggregate area. Since it also
opens opportunities for new optimization, the entire process is
repeated from Step 1 until the design target is met.

While this synthesis flow can use any floorplanner, a
throughput-driven floorplanner [5], [28] is most suited to our
approach. In particular, for the experiments of Section VI we
used the floorplanner proposed by Casu and Macchiarulo [5].

III. DEFINITIONS

In this section we define important concepts that we used
to present the proposed algorithms in the following sections.

A design is modeled at the RTL level as a netlist, a
directed graph G = {V,E} where a node v ∈ V may
represents a combinational gate, a latch, a primary input, or
a primary output. An edge (u, v) ∈ E represents a wire
connecting node u to v. The immediate fanout of u ∈ V is
FO(u) ≡ {v | (u, v) ∈ E} and the immediate fanin of v ∈ V
is FI(v) ≡ {u | (u, v) ∈ E}. Let s ∗

! t be a path connecting
node s to t. The sequential distance of a simple path of G
is the number of latches on the path. Define µ(s

∗
! t) as the

shortest sequential distance from node s to t.
The i-stage transitive fanout of u ∈ V is TFOi(u) ≡

{v |u ∗
! v, µ(u

∗
! v) ≤ i}. The i-stage transitive fanin of v ∈

V is TFIi(v) ≡ {t | t ∗
! v, µ(t

∗
! v) ≤ i}. The intersection

TFI1(!)∩TFO1(!) of the 1-stage transitive fanin and fanout
nodes of a latch ! is the set of combinational nodes on all of
the feedback paths of !. The i-stage transitive fanout latches
of a combinational gate g is TLOi(g) ≡ {! | ! is a latch, g ∗

!

!, µ(g
∗
! !) ≤ i}. Similarly, g’s i-stage transitive fanin latches

is TLIi(g) ≡ {! | ! is a latch, ! ∗
! g, µ(!

∗
! g) ≤ i}.

A partitioning P ≡
{
C1 = {V1, E1}, . . . , Cn = {Vn, En}

}

of G = {V,E} is a set of non-overlapping subgraphs of G
such that {V1, . . . , Vn} forms a partition of V . Subgraph Ci =
{Vi, Ei} is called a core; its edge set Ei = {(u, v)| (u, v) ∈
E and u, v ∈ Vi} are the edges whose source and destination
nodes are all in Vi. Given a partitioning P , the core containing
node u ∈ V is denoted as coreP [u]. A merging operation on
a set of cores merges these cores into a single one.



Given a partitioning {C1, . . . , Cn} of G = {V,E}, a node
u is called an input/output boundary if at least one of u’s
immediate fanin/fanout is in a different core. All the edges
from core Ci to Cj form a channel (Ci, Cj) ≡ {(s, t) | (s, t) ∈
E, s ∈ Ci and t ∈ Cj , Ci &= Cj}. The channel width W(i, j)
is the number of edges on the channel.

A core is sequential if the shortest sequential distance from
the core’s input boundaries to output boundaries is at least one.
That is, the core has no combinational path from its inputs to
its outputs. A partitioning of a sequential core may contain
non-sequential cores; in contrast, merging a set of sequential
cores always gives a sequential one. A partitioning in which
all cores are sequential is a sequential partitioning.

Sequential cores are required for the application of LID.
Because the minimum forward latency of the void signal
passing through the shell is one [17], the presence of a
combinational path between the core’s input and output may
result in a mismatch between the validity of the core’s output
data and the void signal generated by the shell.1

IV. THROUGHPUT-DRIVEN PARTITIONING ALGORITHM

The goal of the partitioning algorithm is to increase the
concurrency of the system topology for throughput optimiza-
tion. Before presenting the algorithm, we introduce some facts
on which it is based.2 The partitioning algorithm needs to
ensure that the resulting partitioning of the core’s logic is
sequential. Let P = {Ci,1, . . . , Ci,n} be a partitioning of core
Ci. The following two lemmas provide conditions to maintain
the sequential property for all cores in P :
Lemma 1 (Feedback) Let ! ∈ Ci be a latch. If par-
titioning P is sequential, any combinational gate g ∈
(TFI1(!) ∩ TFO1(!)) on the feedback path of ! satisfies
coreP [g] = coreP [!].
Lemma 2 (Transitive Fanin and Fanout) 3 Partitioning P
is sequential if and only if one of the following two conditions
is true for any combinational gate g ∈ Ci:

(1) ∀h ∈ TFI0(g) ∪ TLI1(g), coreP [g] = coreP [h], or
(2) ∀h ∈ TFO0(g) ∪ TLO1(g), coreP [g] = coreP [h].

Let Cj be a sequential core on a critical loop with S
cores and R RSs. Hence, the system throughput is S

S+R
(see Section I). Without loss of generality, let I be the input
boundary set of Cj induced by channel (Ci, Cj) and O be
the output boundary set induced by channel (Cj , Ck), where
all three cores {Ci, Cj , Ck} are part of the critical loop. The
next lemma states that the system throughput improvement that
can be obtained by partitioning Cj is limited by the shortest
sequential distance between inputs and outputs of Cj .
Lemma 3 (Dominance of the Shortest Sequential Distance)
Let (D + 1) with D ≥ 0 be the shortest sequential distance
from any s ∈ I to any t ∈ O of core Cj . For any sequential
partitioning P of Cj , let ϑP be the throughput of the system
in which Cj is replaced by P . Then ϑP ≤ S+D

S+D+R .

1In fact, an incoming void data could pass through the core’s combinational
path to change (and thus corrupt) the core’s output value at the same clock
cycle while the shell’s output void signal would not reflect the invalidated
output data until the next cycle.

2Proofs of Lemmas 1-3 are given in [18] and omitted here for space reasons.
3Lemma 1 is actually a special case of Lemma 2.

LI-PARTITIONING(G = {V,E}, I = {I1, . . . , IN})
1 CLUSTER-LATCHES-BY-SEQ-DIST(G, I)
2 CLUSTER-LATCHES-WITH-SHARED-FEEDBACK(G)
3 CLUSTER-BY-MIN-COVERING(G)
4 CLUSTER-BY-MIN-CUT(G)
5 COST-RECOVERING(G)

Fig. 2. The partitioning algorithm at the top-level.

Fig. 2 shows the partitioning algorithm that takes as input
a core Cj = {Vj , Ej} and subsets of its input boundaries
I = {I1, . . . , In}. Suppose core Cj has n input channels
(C1, Cj), . . . , (Cn, Cj), Ii ∈ I is the set of input boundaries
induced by the input channel (Ci, Cj). The algorithm clusters
the logic elements of the core into a number of smaller sequen-
tial cores and returns the size and the connectivity information
of these smaller cores. The procedures are described below:

• Procedure CLUSTER-LATCHES-BY-SEQ-DIST clusters
latches based on their shortest sequential distances to the
input boundary nodes I = {I1, . . . , In}. For each latch
! ∈ V , the procedure computes the shortest sequential
distance across nodes in each set of the input boundary nodes
to !. The computation associates to each latch ! an n-tuple
of shortest sequential distances 〈µ1, . . . , µn〉, which establish
an equivalence relation among all latches. The latches having
the same 〈µ1, . . . , µn〉 are grouped together as a seed kernel.
These seed kernels will be “grown” into cores containing
combinational gates in the following steps.
• Procedure CLUSTER-LATCHES-WITH-SHARED-FEEDBACK

clusters combinational logic gates on feedback paths of
latches. To satisfy Lemma 1, the procedure merges certain seed
kernels if necessary. For each latch ! the procedure computes
the intersection of TFI1(!) and TFO1(!), which is the set
of the combinational gates on the feedback paths of !. These
combinational gates are grouped into the seed kernel which
contains !. If a combinational gate is on the feedback paths
shared by multiple latches, all of the seed kernels of these
latches are merged into one seed kernel.

• Procedure CLUSTER-BY-MIN-COVERING merges selected
seed kernels of latches so that Lemma 2 is satisfied. For each
combinational gate g not yet grouped into any seed kernel, let
PI(g) = {CI,1(g), . . . , CI,m(g)} be the set of the seed kernels
of latches in TLI1(g), and PO(g) = {CO,1(g), . . . , CO,n(g)}
be the set of the seed kernels of latches in TLO1(g). By
Lemma 2, one of the two sets of seed kernels, PI(g) or PO(g),
needs to be merged.

Since the goal of the algorithm is to maximize the number
of partitions of Cj between Cj’s input and output channels,
the selection of merging either PI(g) or PO(g) is formulated
as a minimum-cost covering problem. The cost is the number
of seed kernels to be merged. In the covering matrix, each row
represents a combinational gate g that satisfies |PI(g)| > 1 and
|PO(g)| > 1, and is “covered” by two columns: one represents
PI(g) with cost |PI(g)|, and the other represents PO(g) with
cost |PO(g)|. The seed kernels that correspond to a selected
column in the solution of the covering problem are merged.
Then, some combinational gates can be grouped into these
merged seed kernels. For combinational gate g, if |PI(g)| = 1
but |PO(g)| > 1, g is put into the only core in PI(g), and vice
versa for the case of |PI(g)| > 1 and |PO(g)| = 1. The case
of |PI(g)| = 1 and |PO(g)| = 1 is handled by the next step.



• Procedure CLUSTER-BY-MIN-CUT clusters the remaining
combinational gates, which are not clustered to any seed kernel
yet and satisfy |PI(g)| = 1 and |PO(g)| = 1. We call them
free gates because by Lemma 2 they can be either put into
the core of PI(g) or PO(g). In fact, the combinational nodes
not yet clustered in TFI0(g) and in TFO0(g) are also free
gates and enjoy the same degree of freedom in clustering.
The clustering of the free gates in TFI0(g) and TFO0(g)
decides the final boundary between PI(g) and PO(g). It is
desirable to minimize the number of edges crossing the two
connected cores PI(g) and PO(g) (this number is called cut
size), because these edges eventually become channel signals
and their number determines the area of the queues in the re-
ceiver’s shell. To minimize the cut size CLUSTER-BY-MIN-CUT

computes the so called unidirectional [7] minimum cut using a
maximum flow algorithm. The unidirectional constraint forces
all cut edges to be of the same direction and thus avoids
combinational paths. The flow network is constructed based
on the subgraph induced by the gates and edges that are both
in

(
TFI0(g) ∪ TLI1(g)

)
and

(
TFO0(g) ∪ TLO1(g)

)
. Each

induced edge in the flow network has unit capacity. In addition,
to maintain the unidirectional property, for each induced edge
a “reverse” edge having infinity capacity running in opposite
direction is added. We also add a source node and edges of
infinite capacity connecting it to all of the latches in TLI1(g).
Similarly, we add a sink node and edges of infinite capacity
connecting all of the latches in TLO1(g) to it. The min-cut
of the flow network is computed by solving the max-flow
problem. Nodes in the same cut set are clustered together.

V. THROUGHPUT-PRESERVING MERGING ALGORITHM

Following the throughput-driven partitioning a new floor-
plan is derived. Based on the new floorplan it is possible
to reduce shell area overhead while maintaining the data
processing throughput by merging cores on non-critical loops.
The area saving comes from the fact that the merging of two
cores connected by a channel allows the queue storing data of
the channel in the downlink shell to be removed. The area of
a shell is linear to the total width of the input channels of the
shell. Thus minimizing the shell area overhead is equivalent
to minimizing the total channel width by core merging.

Iteratively the throughput-preserving merging algorithm se-
lects cores eligible for merging. The algorithm is as follows:

1) Select pairs of cores for merging such that the following
four conditions are satisfied: (i) a core can only be merged with
at most one of its neighbors; (ii) the merging of the cores does
not change the data processing throughput; (iii) the channel
connecting any selected pair of cores is not pipelined by any
RS; and (iv) the total area of each pair of cores cannot exceed
the maximum allowable area A to avoid long intra-core wires.

2) Merge the selected cores and update the system topology.
Repeat Step 1 if at least one pair of cores is selected and
merged, otherwise stop.

The selection of the cores that are eligible for merging is
done by solving a mixed integer linear program (MILP). The
objective is to minimize the total channel width after merging.

MILP 1 (Core Merging MILP) Let 1/T be the data pro-
cessing throughput of a LI system with n cores {C1, . . . , Cn},

fsm

port

sv_chip0

ram1 ram2 ram3 ram4

sv_chip1

v_fltr_left_1 v_fltr_left_2 v_fltr_left_4

h_fltr_left_1 h_fltr_left_2 h_fltr_left_4 h_fltr_right_2

v_fltr_right_1 v_fltr_right_2 v_fltr_right_4

h_fltr_right_1 h_fltr_right_4

sv_chip3

PI PO gates FF memory (bits) area (µm2)
246 137 574522 199042 344064 7651710

Fig. 3. The top-level block diagram of stereo_vision based on its
functional partition. Primary inputs and outputs are not shown.

A(i) be the area of core Ci, A be the maximally allowable
core area, R(i, j) be the number of relay stations inserted on
channel (Ci, Cj), W(i, j) be the width of channel (Ci, Cj),
and M be a large constant s.t. M , 2×

∑
i,j R(i, j).

Variables: {π1, . . . ,πn} are variables of real values assigned
for each core. For channel (Ci, Cj) connecting core Ci and
Cj a binary variable mi,j ∈ {0, 1} is used to encode whether
core Ci and Cj are to be merged (mi,j = 0 if merged).
Objective: min

∑
(i,j) mi,jW(Ci, Cj).

Constraints: For channel (Ci, Cj) ∈ E, the following con-
straints are used:

πi − πj +T×mi,j ≥ (R(i, j) + 1)mi,j (1)
πj − πi + (T ·M)×mi,j ≥ (R(i, j) + 1)mi,j , (2)

mi,j = 1 if R(i, j) ≥ 1 (3)
mi,j = 1 if A(i) + A(j) ≥ A (4)

Eq. (1)–(2) are used to maintain the throughput 1/T. For each
channel (i, j), if (mi,j = 0) in the solution of the MILP then
core Ci and Cj are merged as a new core Ck whose area
is A(k) = A(i) + A(j). For any core C! feeding both core
Ci and Cj , channels (C!, Ci) and (C!, Cj) are replaced by
a new channel (C!, Ck) with W(!, k) = W(!, i) + W(!, j)
and R(!, k) = max(R(!, i),R(!, j)). Similar rules apply to
the case in which core C! is fed by both Ci and Cj .

VI. EXPERIMENTAL RESULTS

To evaluate the proposed high-level physical synthesis flow
we completed a case study with stereo_vision, a real SoC
design that measures stereo depth [9]. It consists of 16
instanced IP blocks for a total of over half a million gates
and about 200,000 flip-flops. The top-level block diagram of
this SoC and its characteristics after synthesis and technology
mapping are reported in Fig. 3. We synthesized two versions
of stereo_vision with Synopsys DesignCompiler [25] and a
90nm industrial standard cell library4: the original (“strict”)
system implementation and a latency-insensitive one.5

Applicability. The first experiment analyzes the potential
improvements of data processing throughput resulted from our
throughput-driven partitioning algorithm. The potential gain of
throughput depends on the increase of the number of cores
on a critical loop after a core on the loop is partitioned.

4We re-targeted the design from FPGA to ASIC platforms. We replace all
FPGA-specific IP cores used in the design with equivalent ones from Synopsys
DesignWare [26]. The SRAMs are generated by a register file generator.

5The queue capacity of all shells in the LI implementation is set to two.



minimum length increase partitioning
core min Q1 median Q3 max run time (sec.)
sv chip0 2 2 4 ∞ ∞ 17.26
sv chip1 4 5 5 ∞ ∞ 52.46
sv chip3 2 2 ∞ ∞ ∞ 0.06
h fltr (×5) 5 11 11 11 ∞ 2.83
v fltr 226 (×2) 1 4 232 ∞ ∞ 10.15
v fltr 316 (×2) 1 4 322 ∞ ∞ 17.30
v fltr 496 (×2) 1 4 502 ∞ ∞ 41.93
fsm 1 1 1 3 ∞ 0.21
port 3 3 3 3 ∞ 0.20

Fig. 4. The five-number summaries of the length increases after partitioning.

Fig. 4 reports the five-number summaries of all potential
length increases caused by partitioning the top-level cores of
stereo_vision, and the run time of the partitioning on Intel
Core 2 Duo with 2GB memory. For a core with n input and
m output channels, there are potentially n×m loops passing
through the core in the system whose lengths may increase
after partitioning. The maximum, the first and third quartiles,
the median, and the minimum (the five numbers) of these
n × m length changes are listed in each row. Some of the
paths affected by the core’s partitioning become disconnected
(indicated by the ∞ symbols). The disconnection implies that
if the original path is part of a loop, the loop will disappear
after the core’s partitioning. Further all but one of the medians
of length increase are greater than 1, indicating the chances
of throughput improvement are high.

Comparative Analysis. In the second experiment we
floorplanned three latency-insensitive implementations of
stereo_vision obtained with our physical synthesis flow. As a
reference point, we also floorplanned the strict implementation
with PARQUET [1]. The results are summarized in Fig. 5.
Each row reports cell area (broken down into core and shell
area), channel width, total number and width of relay stations,
floorplan area, and data processing throughput. Row “strict”
shows the results of floorplanning the strict implementation:
since this is not latency-insensitive, the shell area is zero and
throughput is one. The next three rows report the floorplan
results after each of the three steps of our synthesis flow (see
Section II). The corresponding floorplans are shown in Fig. 6.
Row “starting floorplan” shows the results of the traditional
flow which applies throughput-driven floorplanning [5] to the
latency-insensitive implementation based on the original SoC
organization, i.e. without using our partitioning and merging
algorithms to reorganize the logic across the cores. Row
“post-partitioning” shows the results after throughput-driven
partitioning is applied to core sv_chip0 to divide it into
smaller cores. Row “post-merging” gives the floorplanning
results after the throughput-preserving merging is performed.

All floorplans are required to fit into a fixed outline of
unit aspect ratio with 15% white space. The best in terms
of throughput of 50 different floorplanning tries is used. The
minimum half-perimeter of the largest core is set as the critical
length: channels longer than this length need pipelining.6 The
area of the largest core is used as the maximum allowable area
in the merging algorithm. For each core the allowable area is
set 10% larger than the core’s aggregate cell area, anticipating
the extra room required in the later placement stage.

With respect to the traditional flow, which returns a LI im-
plementation with a throughput of 0.83 and an area overhead

6This length is about 67% of the width of the chip, or 2255µm.

of 5% compared to the strict implementation, our flow not only
improves the system throughput but also the floorplan area.
After applying the partitioning algorithm and re-floorplanning
the design, the throughput is improved to 1.0, the ideal value.
Although the area overhead is increased after partitioning due
to shell encapsulation (12% in cell and 16% in floorplan area,
compared to the strict system), it is fully recouped by the
throughput-preserving merging algorithm:7 merging not only
retains the ideal throughput, but also reduces the area overhead
to 3%. In summary, after one iteration of our synthesis flow,
the throughput of the LI implementation of stereo_vision

is improved by 16.7% while the floorplan area overhead,
compared to the strict system, is reduced from 5% to 3%.

VII. RELATED WORK

Partitioning and floorplanning are important physical syn-
thesis techniques. However many of the earlier works precede
LID and do not consider its optimization goals and constraints.
Classic partitioning algorithms aim for the minimization of
the number of nets crossing different partitions, called “cut”.
These algorithms usually do not avoid combinational paths
between inputs and outputs of the resulting partitions, and
thus are not suitable for LID. Cut-minimization partitioning
was recently combined with floorplanning and placement [6],
[24]. On the other hand, several partitioning algorithms avoid
the combinational paths in the resulting partitions [7], [13],
[20], [29], but none of them considers system topology for
throughput optimization of LID. As to floorplanning, classic
optimization goals include area and total wire length, while
more recent works optimize the instruction execution rate of
microprocessors in the presence of multi-cycle communication
latencies between computation units [11], [21], [23].

Lin et al. in [19] identify the upper bound of the “data
processing rate” or equivalently the effective clock frequency
of a latency-insensitive system as the minimum ratio of the
number of latches to the total delay across all loops in the
system. In [19] a clustering algorithm is proposed to optimize
this upper bound. Their algorithm allows gate duplications and
assigns a constant delay to each of the inter-core wires. In con-
trast, our approach does not change the RTL implementation of
the original design, and thus is more suitable to large SoCs.
Further our integrated flow estimates inter-core wire delays
from the system-level floorplan, which is more accurate than
the constant-delay assumption in [19].

Two floorplanning approaches specifically designed for
performance optimization of latency-insensitive systems have
been recently proposed. In [5] a fast algorithm approximating
the data processing throughput is used as part of the cost
calculation of PARQUET [1]. In [28], instead, the floorplanner
computes the exact value of the aforementioned upper-bound
as part of its main cost function. Differently from these works
on LID floorplanning, we perform combined optimizations
of floorplan with RTL shell encapsulation by analyzing the
logical structures and physical locations of the cores.

VIII. CONCLUSION

The proposed physical synthesis flow combines a
throughput-driven partitioning and a throughput-preserving

7The merging algorithm finishes in 5 seconds.



implementation cell area (µm2) channel width RS RS width floorplan area
core shell total overhead (bits) (number) (bits) (µm2) overhead throughput

strict 7651710 0 7651710 1.00 – – – 8741760 1.00 1.00
a) LI: starting floorplan 7651710 225871 7877581 1.03 3124 9 378 9200440 1.05 0.83
b) LI: post-partitioning 7651710 939332 8591042 1.12 12685 19 1075 10151900 1.16 1.00
c) LI: post-merging 7651710 190812 7842522 1.03 2625 0 0 9005140 1.03 1.00

Fig. 5. Results of floorplanning stereo_vision: strict version and LI versions (after each step of the proposed physical synthesis flow.)
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Fig. 6. Fixed-outline floorplans of stereo_vision after each of the steps of the proposed flow: (a) starting floorplan; (b) post-partitioning; (c) post-merging.

merging algorithm with a published floorplanner to optimize
the global floorplan of latency-insensitive implementation of
a multi-core SoC by analyzing and leveraging the local,
intra-core logic structure of its individual cores. Experimental
results on a large SoC design shows a 16.7%-speedup in data
processing throughput and a 2.1%-reduction in area occupa-
tion, confirming the effectiveness of the proposed approach.
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