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Abstract—Security for Internet-of-Things devices is an increasingly
critical aspect of computer architecture, with implications that spread
across a wide range of domains. We present the design and imple-
mentation of a hardware dynamic information flow tracking (DIFT)
architecture for RISC-V processor cores. Our approach exhibits the
following features at the architecture level. First, it supports a robust
and software-programmable policy that protects bare-metal applica-
tions against memory corruption attacks such as buffer overflows and
format strings, without causing false alarms when running real-world
benchmarks. Second, it is fast and transparent, having a small impact
on applications performances and providing a fine-grain management
of security tags. Third, it consists of a flexible design that can be
easily extended for targeting new sets of attacks. We implemented our
architecture on PULPino, an open-source platform that supports the
design of different RISC-V cores targeting IoT applications. FPGA-based
experimental results show that the overall overhead is low, with no impact
on the processor performance and negligible storage increase.

I. INTRODUCTION

While many forecasts differ on the specific numbers, the global
Internet-of-Things (IoT) market is estimated to reach a size of the
order of at least hundreds of billions of dollars by 2020 [1]. Many
observers expect that Open Source Hardware (OSH) [2] can help
kickstart semiconductor innovation and, in particular, innovation in
IoT devices. Among the most promising OSH solutions, the RISC-
V instruction set architecture (ISA) and the RISC-V foundation,
which was founded in 2015 and now comprises more than 100
members, will likely play a major role in promoting a new era of
processor innovation through open standard collaboration [3], [4]. In
this context, robust security and privacy mechanisms are needed to
protect personal data and monitor their flow from IoT devices to the
cloud servers [5].

Among many techniques that provide reliable protection against a
broad range of security attacks, Dynamic Information Flow Tracking
(DIFT) is a versatile method that can be applied for both security and
privacy purposes [6]. DIFT consists of mechanisms and policies that
can be combined to protect vulnerable programs against a wide range
of security exploits. For example, DIFT can be effectively applied
to deter such software attacks as information leakage [7] and code
injection [8]. The main idea of DIFT is to extend each data item of
a program with a new field, called tag. The tag identifies whether
a data item is certainly authentic, and therefore safe, or potentially
malicious, and therefore unsafe. A DIFT protection scheme relies
on three main concepts: tag initialization, tag propagation and tag
check. During the tag initialization phase, all data items coming from
potentially malicious channels are marked as spurious. In general,
a potentially malicious channel is a legitimate I/O communication
channel through which malicious inputs may be injected into the
application by an attacker. During tag propagation, the processor,
depending on the type of instruction that is being executed and

on the authenticity of each input operand (as tracked with its
corresponding tag), may decide to mark the result of a computation
as spurious. This allows the processor to keep track of all information
flows generated from spurious inputs at run-time. Finally, during
tag checking, if the processor detects that a spurious data item is
used in an unsafe manner, it raises a security exception. Thereafter,
an exception handler determines whether the use of the spurious
value is legitimate or not, i.e. whether the program should resume
or terminate. A security policy defines the rules that specify how
untrusted I/O channels are identified, how dependencies are tracked,
and how restrictions on the use of spurious values are applied.

Contributions. In this paper, we present a low-overhead imple-
mentation of DIFT that is specialized for low-end embedded systems
for IoT applications. The specific contributions of our work include:

• The design of D-RI5CY, a DIFT-protected implementation of the
RI5CY [9] processor core. RI5CY is an optimized 4-stage in-
order 32-bit RISC-V core that is based on PULPino, a state-of-
the-art platform that supports different 32-bit RISC-V cores [10].
Our modifications implement the DIFT tag-propagation and tag-
checking mechanisms in a way that is transparent to the execu-
tion of the regular instructions. In our design the manipulation
of the DIFT tags does not add any latency overhead.

• The realization of a prototype of D-RI5CY on a ZedBoard
equipped with a Xilinx XC7Z020 FPGA. The software appli-
cations running in a “bare-metal environment” are protected
against memory-corruption attacks such as buffer overflows and
format strings. We also show that D-RI5CY does not cause
any false-positive alarms when running a set of non-malicious
benchmark applications.

• A comprehensive analysis of the performance and resource
usage of D-RI5CY when running on the ZedBoard. This analysis
demonstrates that there is zero impact on the CPU time neces-
sary to execute the software applications and that the overhead
in terms of resource occupation is minimal.

Our current implementation of D-RI5CY is meant for IoT devices
and was derived with the main goal of minimizing resource usage
to prevent memory-corruption attacks. Its modular design, however,
can be the basis to derive more complex implementations of protected
RISC-V processors that support more complex DIFT policies.

II. RELATED WORK

The last fifteen years have seen a lot of research work on DIFT,
including both hardware-based and software-based implementations,
for different types of processor architectures.

One of the first hardware architectures for DIFT was developed
by Suh et al for low-level security attacks [6]. They targeted both



Fig. 1. Block diagram of the D-RI5CY processor. In red and pink the
DIFT components.

control-data attacks, which alter the program control flow, and non-
control-data attacks, which corrupt user identity data, configuration
data, user input data, and decision-making data [11].

Chen et al proposed an architecture that can detect and stop stack
buffer overflow attacks, format string attacks and heap corruption
attacks, based on the notion of pointer taintedness [12]. A pointer is
marked as tainted when its value is derived from a user supplied input.
Attempting to dereference a tainted value during program execution
triggers the detection of an attack.

With attackers focusing on the exploit of high-level semantic
vulnerabilities, other than just memory-corruption bugs, a demand for
new DIFT-based solutions arose. With Raksha, Dalton et al combined
speed and fine-grain control over the rules of transparent hardware
approaches with the flexibility and the adaptability to different types
of exploits typical of robust software approaches [13].

More recently, Oszoy et al have proposed SIFT as a low-overhead
DIFT architecture for simultaneous multithreading processors [14].
Chen et al have proposed SHIFT, which uses the speculative execu-
tion and deferred exceptions typical of some processor architectures
(Titanium) [15]. Kannan et al have proposed a decoupled implemen-
tation of DIFT functionality in a separate co-processor [16]. Vach-
harajani et al have proposed RIFLE, which focuses on information
leakage detection using a binary translation mechanism [17]. GLIFT
is an implementation of DIFT at the gate level [18]. With WHISK,
Porquet et al were the first to address the question of extending
DIFT to support heterogeneous system-on-chip architectures featur-
ing third-party intellectual-property components, such as hardware
accelerators [19]. Finally, Song et al have proposed a hardware-
assisted data-flow isolation (HDFI) technique to prevent attacks based
on memory corruption [20].

In developing D-RI5CY, we kept in mind the lesson of many of
these prior works. Our focus has been on deriving an implementation
of DIFT for a RISC-V core that protects IoT applications against
memory-corruptions attacks while presenting no performance over-
head and minimal implementation costs.

III. BACKGROUND

RISC-V Instruction Set Architecture. RISC-V is an open and
free instruction set architecture (ISA), which was originally developed
at UC Berkeley [21] and now is managed and supported by the
RISC-V Foundation [3], a non-profit corporation with over 100
members including such companies as Google, IBM and NVIDIA.
The popularity of RISC-V continues to grow in academia, for both
teaching and research purposes [22], as well as in the industry [23].
For the latter, RISC-V is expected to substantially accelerate the
growth of Open Source Hardware [2], thereby fueling semiconductor

Fig. 2. Register File and Data Memory.

innovation and market development, particularly in the areas of low-
cost embedded systems and IoT devices. The RISC-V ISA defines
a base integer ISA, which is mandatory for all RISC-V processor
implementations, plus a set of optional standard extensions [4],
[24]. The base RISC-V ISA has fixed-length 32-bit instructions,
with variable length encoding conventions only permitted in custom
extensions. The user-level base integer register state includes 32
general purpose registers (x0-x31) and the program counter (pc).
Register x0 is hardwired to the constant value 0. According to the
RISC-V calling convention, during a procedure call registers x1 and
x2 host the return address and the stack pointer, respectively. Each
particular RISC-V implementation can define an arbitrary collection
of Control and Status Registers (CSRs) to manage and provide system
functionalities.

The PULPino Platform. In recent years, there has been a flurry
of activity in developing various RISC-V processor implementations
and RISC-V-based systems-on-chip. In particular, researchers at ETH
Zurich and Universita’ di Bologna have created PULPino, a state-
of-the-art platform that supports different RISC-V cores [10], [25].
PULPino is released under the Solderpad Hardware License and
the source code can be freely accessed and adapted. The memory
subsystem includes two single-port 32kB data and instruction RAMs
and a boot ROM that contains a boot loader that can load a program
via SPI from an external flash device. For communicating with the
outside world, PULPino contains a broad set of peripherals, including
GPIO, I2C, SPI, JTAG and UART. Among the different RISC-V cores
supported by PULPino, we selected RI5CY [9] as the target processor
to secure through the application of DIFT. RI5CY is a 4-stage in-
order 32-bit RISC-V core that is optimized for low-power embedded
systems and IoT application. RI5CY fully supports the base integer
instruction set (RV32I), compressed instructions (RV32C) and the
multiplication instruction set extension (RV32M) of the RISC-V ISA.
In addition, it implements a set of custom extensions (RV32XPulp)
that include supports for hardware loops, post-incrementing load and
store instructions, ALU and MAC operations.

IV. SECURING RISC-V WITH DIFT

In this section, we describe the architectural choices for D-RI5CY.
Our choices are general and can be easily applied to securing
other IoT RISC-V implementations. In particular, we set the fol-
lowing guidelines for our protection scheme. The D-RI5CY must be
able to detect and stop various known memory-corruption attacks;
the protection must be flexible and extendable through software-
programmable security policies to target future kinds of attacks;
finally, the protection must provide a transparent and fine-grain
management of security with no latency and small storage overhead.
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A. Protection Scheme Overview

In D-RI5CY, with the goal of the minimum hardware overhead, we
use a one-bit tag to indicate whether the corresponding data block is
authentic or spurious. It is straightforward to extend our scheme to
multiple-bit tags to further distinguish the data values; for example,
it may be helpful to distinguish the I/O inputs from the intermediate
computation values. In the following discussion, tags with zero values
indicate authentic data and tags with one values indicate spurious
data.

Figure 1 illustrates the main components of the D-RI5CY archi-
tecture that we secured with DIFT. In the processor, we introduced
additional components to propagate, check, and update the tags (in
pink in Figure 1). We augmented the general-purpose registers and
the program counter with a one-bit tag (marked as T). In the data
memory, we added a one bit-tag to each byte because this is the
smallest granularity that can be accessed by RISC-V processors. The
use of four extra bits per 32-bit word introduces a quite acceptable
storage overhead. In a future extension, the memory space overhead
can be significantly reduced by using a more efficient tag management
based on the concept of multi-granularity security tags, where all
words in a chunk of data may be associated to the same tag value [6].
Figure 2 provides a detailed view of the tag-extended register file
and data memory. Each data element is physically stored in memory
with its associated tag. To access both data and tag, we use the same
index (register id) for the register file and the same address for the
data memory. The data and tag are always transmitted atomically and
this required the extension of the data-memory bus from 32 bits to
36 bits.

We defined a library of routines to initializes the tags of the data
coming from potentially malicious channels, while, at program start-
up, D-RI5CY initializes the tags of the registers, program counter,
and memory blocks to zero. In particular, we extended the RI5CY
ISA with memory and register tagging instructions.

In addition, we modified the hardware implementation of ev-
ery instruction in the base integer-instruction set (RV32I), the
multiplication-instruction-set extension (RV32M), as well as the post-
incrementing-load and -store instruction set belonging to the PULP
custom extension (RV32XPulp). The tag propagation and check hap-
pen in the D-RI5CY pipeline in parallel with the standard behavior,
without incurring any latency overhead.

Our architecture supports software-programmable security policies.
These policies consist of rules, which have fine-grain control over
tag propagation and check for different classes of instructions. The
rules specify how the tags of the instruction operands are combined
and checked. The propagation and check rules are stored in the Tag
Propagation Register (TPR) and Tag Check Register (TCR) that we
added to the D-RI5CY Control and Status Registers (CSRs). TPR
and TCR require the highest privilege of access (machine mode).
We program them through the RISC-V SYSTEM instruction, which

TABLE I
D-RI5CY INSTRUCTIONS PER SECURITY CLASSES.

CLASS INSTRUCTIONS

Load/Store LW, LH[U], LB[U], SW, SH, SB,
LUI, AUIPC, XPulp Load/Store

Logical AND, ANDI, OR, ORI, XOR, XORI
Comparison SLTI[U], SLT[U]

Shift SLL, SLLI, SRL, SRLI, SRA, SRAI
Jump JAL, JALR

Branch BEQ, BNE, BLT[U], BGE[U]

Integer Arithmetic ADD, ADDI, SUB, MUL,
MULH[U], MULHSU, DIV[U], REM[U]

TABLE II
TAG PROPAGATION REGISTER CONFIGURATION.

FIELD VALUE RULE

Load/Store Enable 001 Source tag enabled
Load/Store Mode 10 Dest tag = Source tag

Logical Mode 10 Dest tag = Source1 tag OR Source2 tag
Comparison Mode 00 No Propagation

Shift Mode 10 Dest tag = Source1 tag OR Source2 tag

Jump Mode 10 JAL: New PC = Old PC
JALR: New PC = Source tag

Branch Mode 00 No propagation
Integer Arith Mode 10 Dest tag = Source1 tag OR Source2 tag

is used to access system functionality and performs atomic read-
modify-write operations on CSRs [26].

B. Tag-Propagation Mechanisms

We chose to specify the policy rules at the granularity of classes
of instructions to balance flexibility and fine-grain control. We
organized the RV32I, RV32M, and RV32Xpulp instruction set in
seven classes: Load/Store, Logical, Comparison, Shift, Jump, Branch
and Integer Arithmetic. All the instructions assigned to a certain
class share the same tag-propagation and tag-check rules. Table I
summarizes this organization for the D-RI5CY instructions.

The tag-propagation rules define how tag values must be propa-
gated from the input operands to the output operand of an instruction.
For example, a tag propagation rule may be “For an addition
instruction, if one (or both) of the input operands are tagged as
spurious then the output operand is tagged as spurious”. This rule
can be implemented as the Boolean OR between the addition input-
operand tags.

The tag-propagation rules must be specified in the Tag Propagation
Register (TPR), whose structure is shown in Figure 3. TPR is a 17-
bit register organized in eight fields. There is a Mode field for each
class of instructions and an additional Enable field for the Load/Store
class.

Given an instruction, the corresponding Mode field specifies how
to propagate the tags of the input operands to the output operand tag.
There are four possibilities: the output tag keeps its old value (00);
the output tag is set to one, if both the input tags are set to one (01);
the output tag is set to one, if at least one input tag is set to one
(10); finally, the output tag is set to zero (11).

The Load/Store Enable field introduces a finer-granularity rule to
enable/disable the input operands before applying the propagation
rule specified in the Load/Store Mode field. In particular, the three
bits in the field allow the policy to enable the source, source-address,
and destination-address tags, respectively.

C. Tag-Checking Mechanisms

The tag-check rules restrict the operations that may be performed
on tagged data. For example, a tag-check rule may be “If a tag of



a register is set to one then it cannot be used to address the data
memory”. If this happens, the system rises a security exception.

The tag-propagation rules must be specified in the Tag Check
Register (TCR), whose structure is shown at the bottom of Figure 3.
TCR is a 22-bit register and organized in eight fields. There is a
Check field for each class of instructions and an additional Check
field for the program counter.

Given an instruction, the corresponding Check field specifies which
operands tags are checked in order to generate a security exception.
If the check bit for an operand tag is set to one and the corresponding
tag is equal to one, an exception is raised. For all the classes except
Load/Store, there are three tags to consider: first input, second input,
and output tags. For the Load/Store class there are four tags to
take into account: source-address, source, destination-address, and
destination tags.

Finally, the additional Execute Check field is associated with the
program counter and specifies whether to raise a security exception
when the program-counter tag is set to one.

D. Security Policy for Memory Protection

The security policies specify how potentially malicious I/O chan-
nels are identified, how processor tracks spurious information (tag
propagation), and when unsafe uses of spurious values result in a
security exception (tag check). This section describes the security
policy that we have defined to protect our IoT system against
memory-corruption attacks. It is built on top of the mechanisms from
Sections IV-B and IV-C.

Our policy marks all user-supplied inputs as spurious. This is a
conservative choice, but based on the fact that IoT applications usu-
ally run in bare metal environments, without loading and executing
an operating-system module that is capable of distinguishing between
trusted and untrusted I/O channels.

To initialize the security tags of user-supplied inputs to one, we
introduced four new instructions and extended the RI5CY version of
the RISC-V toolchain. The new assembly instructions are:

• p.set rd sets to one the security tag of the destination register
rd;

• p.spsb x0, offset(rt) sets to one the security tag of the memory
byte at the address value-stored-in-register-rt + offset;

• p.spsh x0, offset(rt) sets to one the security tags of the memory
half-word at the address value-stored-in-register-rt + offset;

• p.spsw x0, offset(rt) sets to one the security tags of the memory
word at the address value-stored-in-register-rt + offset.

Table II and Table III report the tag-propagation and tag-check
rules of our memory-protection policy. These are configurations of the
TPR and TCR in Figure 3. The tag-propagation rules are quite conser-
vative: for all the instructions except for comparison and branch, our
rules establish that the destination tag is computed as the Boolean OR
of the two sources tags. For comparisons and branch instructions, our
rule avoids tag propagation because this would generate false-positive
situations, as observed in the literature [6], [13]. For Load/Store
instructions, the destination tag simply corresponds to the source tag.
The tag-check rules prohibit tagged information from being used as
a load address, store address, or program-counter value. Intuitively,
this prevents the execution of malicious code.

TPR and TCR are programmed by a start-up routine at the begin-
ning of each program, right before the main function is executed. The
routine sets the content of the register according to the policy that the
system operator is willing to enforce. The tag-propagation rules are
applied on load and store operations at byte granularity: it is worth
underlining that on half-word-store and word-store operations, the tag

TABLE III
TAG CHECK REGISTER CONFIGURATION.

FIELD VALUE RULE

Load/Store Check 1010 Source address tag checked
Destination address tag checked

Logical Check 000 No check

Comparison Check 011 Source1 tag checked
Source2 tag checked

Shift Check 000 No check
Jump Check 000 No check

Branch Check 00 No check
Integer Arith Check 000 No check

Execute Check 1 Program Counter checked

bit is extended to two or four bits. On half-word-load and word-load
operations, the rule for merging many-bit tags is the OR-reduction.

Finally, when a security exception occurs, the offending instruction
is not committed and an exit routine is executed instead. The routine
saves all caller-saved registers, loads back registers from the stack,
and halts the program execution.

V. EXPERIMENTS

We extended the RI5CY/PULPino implementation from ETH
Zurich and Università di Bologna and defined a complete prototype
system to evaluate the feasibility and cost of applying DIFT to
a RISC-V core for IoT applications. To evaluate the effectiveness
of our approach, we tested it with two main classes of attacks,
which are based on buffer-overflow and format-string vulnerabilities,
respectively. For the buffer-overflow attacks, we choose the suite
developed by Wilander and Kamkar [27]. For the format-string
attacks, we choose two well-known vulnerabilities from the TESO
group [28]. Finally, we studied if D-RI5CY may incorrectly detect
non-existing attacks, i.e. false positives.

A. Experimental Setup

We synthesized D-RISCY/PULPino on a ZedBoard equipped with
a Xilinx XC7Z020 FPGA. The width of the data-memory bus is
36 bits to accommodate four tag bits. The overall data memory
of the system is 36KB (32KB data RAM and 4KB tag RAM).
This introduces a 12.5% storage overhead. In our protection scheme
instructions are not tagged because the application is loaded via
SPI from an external flash device into the instruction RAM, that is
afterwards used as a read-only memory. For this reason, instruction
RAM, whose content is never spurious, is not tag extended. The
integration of the DIFT support on RI5CY/PULPino requires an
overall increase in the usage of LUT resources that does not exceed
0.82%. In addition, there is no impact on the processor performance
because the tags are processed in parallel and independently from the
instruction execution across all pipeline stages.

B. Buffer-Overflow Attacks

Table IV summarizes the twenty classes of attacks in the Wilander
suite and the protection results with D-RI5CY. The attacks are
classified according to the buffer LOCATION, the attack TARGET, and
the TECHNIQUE to overwrite the buffer. The possible RESULTs of
an attack are: the attack is detected by our security mechanisms; the
attack is not successful in a RISC-V environment and D-RI5CY does
not generate a false positive; finally, the attack cannot be executed
due to portability issues.

The attacks of the suite target x86 architectures and are imple-
mented in C language. We successfully ported the source code of
thirteen attacks to the RISC-V calling convention [29] and compiled
them with the RI5CY version of the RISC-V GNU toolchain [30].



TABLE IV
WILANDER’S BUFFER-OVERFLOW TEST SUITE AND RESULTS WITH D-RI5CY.

ATTACK # LOCATION TARGET TECHNIQUE RESULT

1 Stack Return Address Direct Detected
2 Stack Base Pointer Direct No False Positive
3 Stack Function Pointer (local variable) Direct Detected
4 Stack Function Pointer (function parameter) Direct Detected
5 Stack Longjmp Buffer (local variable) Direct Not portable
6 Stack Longjmp Buffer (function parameter) Direct Not portable
7 Heap/BSS/Data Function Pointer Direct Detected
8 Heap/BSS/Data Longjmp Buffer Direct Not portable
9 Stack Return Address Indirect Detected

10 Stack Base Pointer Indirect No False Positive
11 Stack Function Pointer (variable) Indirect Detected
12 Stack Function Pointer (function parameter) Indirect Detected
13 Stack Longjmp Buffer (variable) Indirect Not portable
14 Stack Longjmp Buffer (function parameter) Indirect Not portable
15 Heap/BSS/Data Return Address Indirect Detected
16 Heap/BSS/Data Base Pointer Indirect No False Positive
17 Heap/BSS/Data Function Pointer (variable) Indirect Detected
18 Heap/BSS/Data Function Pointer (function parameter) Indirect Detected
19 Heap/BSS/Data Longjmp Buffer (variable) Indirect Not portable
20 Heap/BSS/Data Longjmp Buffer (function parameter) Indirect Not portable

1 #define SIZE 16
2
3 void tag_words(u32 *data_ptr, u32 size) {
4 for(u32 i = 0; i < size; i++) {
5 /* p.spsw set to one the security tags
6 of each byte in a memory word */
7 asm volatile ("p.spsw x0, 0(%[offset]);"
8 :
9 :[offset] "r" (data_ptr));

10 data_ptr++;
11 }
12 }
13
14 void vuln_function(u32 input_1[SIZE], /*malicious*/
15 u32 input_2[SIZE], /*malicious*/
16 u32 input_3[SIZE]){/*non-malicios*/
17
18 /* Tag initialization phase */
19 tag_words(SIZE, input_1);
20 tag_words(SIZE, input_2);
21
22 /* Function body */
23 /* ... */
24 }

Listing 1. Tag routine.

For example, in all the buffer-overflow attacks based on the direct-
overflow technique, we use the frame-pointer register (x8) to access
the portion of the stack dedicated to the function arguments, because
it is not always placed at the beginning of the stack frame as for x86
architectures. We could not port the seven attacks that use longjmp
buffer to RI5CY because of an incompatibility with the current
version of the RISC-V GNU toolchain. We marked them with a darker
background in the Table IV.

We noticed that all the RISC-V cores are intrinsically protected
against the three buffer-overflow attacks that use the base pointer
as an attack target (attacks number 2, 10, 16 in Table IV). When
returning from a procedure call, the RISC-V calling convention
assumes that all the accesses to local variables and the saved return
value are relative to the stack pointer, and not to the base pointer.
Indeed, in modern RISC architectures the stack-pointer register is
enough to denote and address the current stack frame. Being these
attacks not possible in a RISC-V environment, we investigated
whether our protection scheme produces false positives on them. It
turned out that the D-RI5CY does not incur false positives when it
executes the attacks targeting the base-pointer register.

For the following experiments, we defined four tagging routines
to mark the potentially malicious inputs of the applications that have

to be protected. Each of these routines encapsulates a call to one
of the assembly instructions that we introduced in the RI5CY ISA
as described in Sec. IV-D. One of the routines and a simple usage
example are shown in the Listing 1. At Line 3, tag_words is
the tagging routines, which, given a pointer to a memory location
(data_ptr), marks a certain number (size) of memory words as
spurious. At Line 14, vuln_function is the vulnerable function.
Because input_1 and input_2 are input parameters of the
function and they can be malicious, we mark them as spurious.
While we do nothing for input_3 that is safe. Notice that since
the applications run on the bare-metal D-RI5CY, we must explicitly
mark the inputs that may be malicious at the beginning of the
vuln_function execution. Conversely, with an operating system,
the tag-initialization routine can be moved in a kernel module and
be completely transparent to the user-space code.

D-RI5CY detects and stops all of the ten remaining classes
of attacks that are a threat on a non-protected RI5CY core. A
combination of Load/Store-source-propagation and program-counter-
check rules detect the attacks using the direct-overflow technique.
A combination of Load/Store-source-propagation and Load/Store-
destination-address-check rules detect the attacks using the indirect-
overflow technique.

For example, let us analyze the simplest class of buffer-overflow
attacks as it is shown in Listing 2. The attack goal is to call the
shellcode function that executes security-critical operations. The
vulnerability is the absence of a control on the size of the target
stack_buffer before the memcpy operation is executed (at Line
32). The attack targets the return address of vuln_function which
is located in the stack frame through a direct overflow. The config-
uration of the stack frame for the vuln_function is shown in
Figure 4 (a). The code in the example is in the style of the Wilander’s
suite where the malicious inputs and the attacker operations are
hardcoded in the application without loss of generality. In particular,
the overflow variable contains the distance (in bytes) between the
address of the section dedicated to the function arguments args
and the address of the stack_buffer, which is in the section
dedicated to the function local variables. At Line 28 and 29, the
attacker initializes the buffer overflow_buffer with a sequence
of filler values (e.g. ‘A’) and the address of the shellcode
function. For simplicity, those values are hard-coded in the example,
but they can be user-supplied inputs of the vulnerable application.



1 #define BUFSIZE 16
2 #define OVERFLOWSIZE 256
3 u32 overflow_buffer[OVERFLOWSIZE];
4
5 void shellcode() {
6 /* Security-critical operations */
7 }
8
9 void vuln_function(u32 args) {

10 u32 stack_buffer[BUFSIZE];
11 char police_buffer[10];
12 u32 overflow;
13
14 /* Store the address of the stack-frame section
15 which is dedicated to the function arguments */
16 register u32 sf asm("x8");
17
18 /* Check the stack structure:
19 function arguments must be allocated on higher
20 addresses than function local variables */
21 if (sf > (u32)&police_buffer)) {
22
23 /* Initialize the overflow_buffer with
24 - a sequence of ’A’s
25 - the address of the shellcode function
26 (as last element) */
27 overflow = (int)((long)sf - (long)&stack_buffer);
28 memset(overflow_buffer, ’A’, overflow-4);
29 overflow_buffer[overflow/4-1] = (long)&shellcode;
30
31 /* Overwrite stack_buffer with overflow_buffer */
32 memcpy(stack_buffer, overflow_buffer, overflow);
33 }
34
35 /* ... */
36
37 return;
38 }

Listing 2. A simplified example of direct-overflow attack that targets the
return address of a function [27].

At Line 32, there is the vulnerable memcpy operation which allows
the attacker to overwrite the stack_buffer, the base pointer, and
the return address of the function without any security check. In
particular, it overwrites the return address with the pointer to the
shellcode function (Figure 4 (b)). When the vuln_function
terminates and returns, the unprotected core executes the instructions
of the shellcode function.

D-RI5CY detects and stops the previously described attack through
the following steps:

• in the synthetic application, the content of overflow_buffer
(i.e., the filler values and the shellcode address) are assumed
user-supplied inputs, therefore we mark them as spurious with the
tag initialization routine (as shown in Listing 1);

• the rule of load/store-source propagation applies to the instructions
at Lines 28 and 29 in Listing 2 and it marks the whole content of
overflow_buffer as spurious;

• the same rule applies to the memcpy function at Line 32 and it
marks as spurious the content of the stack_buffer, the base
pointer, and the return address;

• when D-RI5CY executes the return instruction, it loads the spurious
return address value into the program counter; the program-counter-
check rule detects the use of a spurious value and raises a security
exception.

A similar application of the security policies allows D-RI5CY to
detect and stop all the other buffer-overflow attacks (both direct and
indirect techniques).

C. Format-String Attacks

We tested the format string vulnerability with two paradigmatic
attacks, QPOP 2.53/bftpd and wu-ftpd 2.6.0. In both cases, the
vulnerability is the use of an unchecked user input as the format string
parameter in functions that perform formatting, e.g. printf(). An

Fig. 4. The configuration of the stack for the function vuln_function in
Listing 2. .

attacker can use the format tokens, to write into arbitrary locations
of memory.

D-RI5CY detects and stops both attacks: a combination of
Load/Store-source-propagation and program-counter-check rules de-
tect the first attack; the store destination-address check rule detects
the second attack.

D. False-Positive Analysis

We also investigated whether D-RI5CY produces false positives
on well-known non-malicious benchmarks. We chose the software
regression suite provided with PULPino to validate the correctness
of our security mechanisms. In particular, the suite contains eight
programs: 2D Convolution, AES, Discrete Cosine Transform, Fast
Fourier Transform, Finite Impulse Response, Inflection Point Method,
Matrix Multiplication, and Keccak/SHA-3.

For example, in the matrix multiplication application we marked
the two input matrices as spurious. Due to our tag propagation rules,
the content of the result matrix is spurious as well. However, the tag
check rules are not violated, because the content of the spurious result
matrix is never used as program counter, load/store source address, or
load/store destination address, therefore, D-RI5CY does not rise any
security exception. We similarly tested all of the other non-malicious
applications. We marked the inputs as spurious for each of them.
As expected, there were no security exceptions, because none of the
generated (intermediate) results were used in an unsafe manner.

VI. CONCLUDING REMARKS

We presented D-RI5CY, an application of DIFT to a RISC-V
processor for IoT. We showed that securing a RISC-V core with
DIFT is feasible, does not incur in any run-time overhead, and
requires negligible resources (less than 1% in area overhead). D-
RI5CY detects and stops memory-corruption attacks, such as buffer
overflows and format strings from well known security suites. The
implemented mechanisms and the software-programmable security
policy make D-RI5CY flexible and extendable. As future work, we
plan to focus on the security of RISC-V cores that can run a fully-
featured Linux OS. For this, we will target new sets of attacks and
enhance the policy infrastructure by introducing an OS module that
detects potentially malicious channels and performs further software
analysis when a security exception is raised. Moreover, we plan to
support multiple concurrently active policies that target both high-
level and low-level vulnerabilities. Finally, we plan to investigate
efficient multi-granular mechanisms for managing tag storage with
reduced memory overhead.
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