
HARDROID: Transparent Integration
of Crypto Accelerators in Android

Luca Piccolboni, Giuseppe Di Guglielmo, Simha Sethumadhavan, Luca P. Carloni
Department of Computer Science, Columbia University, New York, NY, USA

Emails: {piccolboni, giuseppe, simha, luca}@cs.columbia.edu

Abstract—Accelerators have become fundamental building blocks of
any modern architecture. Accelerators are often deployed on a platform
by evaluating performance and energy consumption, while assuming that
the software applications can be modified to invoke the accelerators. In
some contexts, however, this is impractical. For instance, in an Android-
based platform changing the applications to invoke an accelerator can
affect their portability. We present Hardroid, a heterogeneous platform
that allows an Android application to offload tasks to loosely-coupled
accelerators on an FPGA in a transparent way, i.e., without modifying
the code of the application. To demonstrate the Hardroid capabilities, we
design four accelerators for cryptography with high-level synthesis (HLS)
and we compare their efficiency with two libraries for cryptography, by
executing 29 Android applications. While we use FPGAs to implement
and evaluate Hardroid, our accelerators are designed so that they can be
integrated in a system-on-chip (SoC) and we report their energy efficiency
also for an ASIC implementation. The experimental results show that
Hardroid is an effective platform that can be used to evaluate the costs
and benefits of integrating accelerators, when these are called by real-
world Android applications. We show that invoking accelerators without
modifying the code of the applications can affect the energy efficiency of
the accelerators.

Index Terms—accelerators, cryptography, embedded systems, high-
level synthesis, system-level design, reconfigurable architectures.

I. INTRODUCTION

Modern architectures combine general-purpose CPUs with domain-
specific accelerators [11], [19]. Accelerators are hardware computing
engines that deliver energy-efficient and high-performance compu-
tations for specific tasks within a certain application domain. The
adoption of specialized accelerators has been quickly rising in the last
decade in several application domains, including graph analytics [27],
machine learning [13], database processing [56], brain-computer
interfaces [22], genome sequencing [24], video decoding [35], cryp-
tography [6], and many more. This has encouraged the development of
heterogeneous platforms that make the accelerators critical components
of their architecture, e.g., [5], [21], [33], [37], [46]. For example, the
NVIDIA Deep Learning Accelerator (NVDLA), a loosely-coupled
accelerator for deep learning [44], has been integrated in various
platforms [2], [25]. NVDLA is invoked by a processor with a device
driver and it performs its task autonomously, freeing up cycles from
the processor execution. In addition to loosely-coupled accelerators,
some platforms use tightly-coupled accelerators that are located in
the processor and called with custom instructions [5]. In this paper,
we focus primarily on loosely-coupled accelerators [14], [16].

The rise of accelerators has been supported by high-level synthesis
(HLS) [40], which makes accelerator design accessible to domain
experts with little knowledge of hardware. Cycle-accurate specifi-
cations at the register-transfer level (RTL) are replaced by untimed
specifications in C or SystemC, which are automatically synthesized
into corresponding RTL specifications. Hence HLS greatly simplifies
the task of accelerator design by abstracting away most of the low-level
circuit details that burden the development process [35], [47]. The
integration of an accelerator into a platform, however, remains in large
part responsibility of the designer, who has to write the software to
invoke the accelerator and evaluate performance and programmability.

CPU Cores

Android
RuntimeLibs

HAL (Wi-Fi, GPS, ..)

Application
Framework

Android App

FPGA Reconfigurable Fabric

Linux Kernel
Crypto Accelerators (HLS)

SHA1 SHA2 AES RSA

HW Cryptographic Provider

invokes the accelerators
(no changes to the App)

Fig. 1: Hardroid, an FPGA-based heterogeneous platform.

The simplification of accelerator integration through the abstraction of
architectural details has been investigated for years [51], [52], [55].

The integration of a loosely-coupled accelerator into a platform
typically relies on the assumption that the target software applications
can be modified. This requires the replacement of the function call
that is computed by the accelerator with an invocation to the driver
of the accelerator. In turn, this may require to allocate the memory
differently such that it is accessible to both the application and the
accelerator. With NVDLA [44], for example, a contiguous region of
memory is necessary to move the data from the application to the
accelerator and vice versa. Assuming that the software applications
can be changed is realistic in many contexts. This is the case, for
instance, of non-legacy software invoking accelerators in a system-
on-chip (SoC). In other situations, however, it is preferable to avoid
modifying the applications when an accelerator is integrated. Android
is an example as there is a huge number of applications that we should
not modify to preserve their portability across different platforms.

The goal of this paper is to investigate the problem of integrating
accelerators in Android-based systems under the assumption that the
applications cannot be modified to explicitly call the accelerators.
We discuss the extent to which this is possible, the requirements it
entails, and its implications on performance and energy consumption.
Other works, instead, have focused on enabling Android applications to
invoke accelerators directly, e.g., by means of IPC mechanisms [54] or
user-level drivers [17]. In pursuing our goal, we focus on cryptographic
(crypto) accelerators given their potential for a massive use across
Android applications.

To evaluate the integration of accelerators in Android, we need a
platform where we can easily combine general-purpose processors and
hardware accelerators. Most of the current heterogeneous computing
platforms, e.g., [2], [5], [21], [33], [37], [46], do not support Android.
A few, however, support Android, e.g., [3], [17], [54], [59] (see
Section VI). Among them, we chose Mentor Embedded Android that
is an open-source porting of Android 8.1 for Xilinx FPGAs [3].
We extended it by providing support for invoking accelerators
from Android applications through a transparent software layer.
We developed Hardroid, an FPGA-based platform that enables the

1

invocation of loosely-coupled accelerators from Android applications
(Fig. 1). Hardroid uses a general-purpose processor to run the Android
operating system and four accelerators for crypto that we designed
and implemented with HLS. Hardroid utilizes a Java software layer
(HW Cryptographic Provider in Fig. 1) to allow the applications to
invoke the accelerators in a transparent way, i.e., without requiring
changes to the code. We make the following contributions:

(1) We design four accelerators for crypto: SHA1, SHA2, AES,
and RSA. We synthesized them with commercial HLS tools
by targeting both FPGA and ASIC technologies;

(2) We design Hardroid, an FPGA-based heterogeneous platform
for supporting loosely-coupled accelerators in Android;

(3) We develop the Hardware Cryptographic Provider, a library
that allows Android applications to call accelerators for crypto
without requiring modifications to the code of the applications;

(4) We compare the energy efficiency of our accelerators against
two libraries for crypto used in Android: BouncyCastle [9] and
AndroidOpenSSL (conscrypt) [15], the Google’s optimized
porting of OpenSSL [45] for Android systems;

(5) We show that invoking crypto accelerators without changing
the applications can affect performance and energy efficiency,
because of software overheads for the invocations;

(6) We run 29 Android applications and report results on perfor-
mance and energy efficiency of the accelerators.

II. PRELIMINARIES

Three critical crypto operations that are usually implemented in all
systems are: (1) hashing, (2) symmetric encryption, and (3) asymmetric
encryption [32], [38]. We designed accelerators for these operations.

Crypto hash functions take as input an arbitrary amount of data
(e.g., a document, an image, etc.) and produce hash values, called
message digests [42]. Crypto hash functions are often used to verify
data integrity, for instance to check if a document we received has
been tampered during its transmission. Some well-known families of
hash functions are SHA1 and SHA2. SHA1 produces digests of 20
bytes, while SHA2 consists of SHA224, SHA256, SHA384, SHA512,
SHA512/224, and SHA512/256, with digests from 28 to 64 bytes.

Symmetric encryption makes data unintelligible. A block cipher,
e.g., AES [41], takes as input a block of data and a key and it produces
the encrypted or decrypted output block. A decrypted block is called
plaintext, while an encrypted block is called ciphertext. A padding
scheme must be applied when the data size is not a multiple of the
block size. Block ciphers support operation modes, which determine
how multiple blocks are encrypted or decrypted. Electronic codebook
(ECB) encrypts and decrypts each block independently. Counter mode
(CTR) uses a counter that must be incremented at each encryption or
decryption. Cipher block chaining (CBC) xors each block of plaintext
(ciphertext) with the previous block of ciphertext (plaintext) at each
encryption (decryption). The initialization vector (IV) is an additional
input block that is xored with the very first data block. Galois/counter
(GCM) is an operation mode used for authenticated encryption, which
provides additional protection against chosen ciphertext attacks.

Asymmetric encryption [49] is used when it is difficult to have a
symmetric key shared between two entities. Asymmetric encryption
uses two keys, a public key and a private key. The data is encrypted
with the public key and can only be decrypted with the corresponding
private key. RSA is one of the most popular algorithms.

III. MOTIVATION

We focus on crypto accelerators because the tasks they implement
are performed by many Android applications directly or with third-
party libraries. For the experiments discussed in Section V, we

0%
25%
50%
75%

100%

SHA1 SHA2 AES RSAus
ag

e
pe

rc
en

ta
ge

Fig. 2: Usage percentage of SHA1, SHA2, AES, and RSA.

executed 29 applications on Hardroid. Fig. 2 shows the percentage
of these applications that use each of the four crypto accelerators.
Specifically, SHA1 is used by 76% of the applications, while almost
all the applications use SHA2 (97%). About 45% of the applications
use AES, while about 14% invoke the RSA accelerator.

Android-based systems support an ecosystem where it is possible
to run real-world applications and evaluate accelerators in realistic
scenarios. In this context, it is preferable to avoid changing the code of
the applications to support accelerator invocation. In this way, we can
preserve the portability of the applications across different platforms,
where certain hardware accelerators may or may not be available. We
use Android as a case study, but in other contexts there are similar
requirements for the applications.

Hardroid addresses these challenges by allowing Android applica-
tions to invoke an accelerator without requiring modifications to their
code. In general, applications must be modified to invoke a loosely-
coupled accelerator. The software function that can be performed by
means of an accelerator must be replaced with code that performs
the accelerator invocation. This requires to write application-specific
and error-prone code that configures the accelerator, prepares the
input data, calls a device driver, uses a synchronization mechanism
to wait for the completion of the accelerator, and obtains the results.
Alternatives ways to invoke accelerators, specifically for Android,
include using custom libraries, which abstract away the low-level
details, and intents [17], [54]. In this work, we exploited the concept
of provider, which is the basis for the Java crypto library [31]. In
Java, the applications perform crypto operations through a common
set of application programming interfaces (APIs). These APIs can be
implemented by multiple providers and the applications do not need
to know which particular provider is used to perform an operation. We
develop a new provider (Section IV-B) such that applications call our
accelerators on the FPGA. The concept of provider is well-known and
we exploited it to invoke accelerators on the FPGA. Other approaches
may be used to invoke accelerators transparently.

IV. THE HARDROID PLATFORM

A. Hardware Architecture

Hardroid combines general-purpose processors that are responsible
for the execution of the Android Software Stack (Android 8.1) and
accelerators for crypto (Fig. 3). The processors are hard-core units,
while the accelerators are soft-core units deployed on the FPGA. The
accelerators are fixed-function, i.e., they do not execute instructions.
The accelerators are loosely-coupled [14], [16]. We offload tasks to
an accelerator by means of a device driver. Each accelerator has some
memory-mapped configuration registers that are exposed to software.
These registers define where the input and the output of the accelerator
are located and the values of accelerator-specific parameters, e.g., the
number of input bytes and the operation mode used for encryption.
Once configured, the accelerator executes the task on behalf of the
application, without interrupting the main processors until the task
is completed. To communicate with software, the accelerator uses a
DMA buffer, which is a contiguous memory region (CMA) that is
accessible by both software and hardware (allocated with [30]).

2

Android App

FPGA Reconfigurable Fabric

CPU Cores Memory

ACP (AXI4)

Crypto Accelerator (HLS)

L1$ L2$ DMA Buffer (CMA)

HW Crypto
Provider (Java)

memory-mapped registers (AXI4-Lite)

L2$ cached

L2$ cached

Fig. 3: Architecture of Hardroid. The crypto accelerator sits on the
reconfigurable fabric and it is invoked by Android applications.

Accelerator Interface. To be integrated in Hardroid, the accelerators
have to expose two interfaces. The first is an AXI4-Lite interface that
is used for the memory-mapped registers. This interface allows the
software to read and write single values to configure the accelerator.
The second is a standard AXI4 interface that is used by the accelerator
to read from and write to the DMA buffer. These interfaces simplify
the integration of alternative microarchitectural implementations of
a given accelerator according to the principles of latency-insensitive
design [10]. We used the Accelerator Coherency Port (ACP) to connect
our accelerators to the L2 cache of the processor (Fig. 3). The ACP is
recommended for accelerators working on small datasets [39], which
is often the case for crypto accelerators in Android (Section V). We
used an open-source ACP adapter that converts the AXI4 requests of
the accelerators to ACP-compliant requests [29]. There are several
other options to handle the coherency of accelerators [12], [26], which
we plan to explore in the future. For example, a common choice is to
use the High-Performance Port (HP) that is faster for larger datasets.

Accelerator Architecture. We designed four accelerators: SHA1,
SHA2, AES, and RSA. Fig. 4 shows the architecture of AES as
an example. The accelerators are implemented in C and can be
synthesized to RTL with different commercial HLS tools, thus allowing
both their deployment on FPGA and their use in new chip designs1.
To design SHA1, SHA2, and AES, we started from optimized C
implementations in OpenSSL [45]. For RSA, we borrowed the ideas of
Daly et al. [20]. We patched the unsynthesizable code of OpenSSL and
we optimized each function to obtain the hardware implementation:

• SHA1 and SHA2: we designed an accelerator for SHA1 and an
accelerator for SHA2 that comprises SHA224, SHA256, SHA384,
and SHA512. We unrolled the computations of each block (the
block is 512 bits for SHA1 and SHA256, and 1024 bits for
SHA512) and we pipelined the fetching of the next block with
the computation of the current block.

• AES: we developed an implementation based on T-tables [18]. We
implemented single-block encryption and decryption functions
(encrypt() and decrypt() in Fig. 4) and we pipelined them. We
added support for four operation modes: ECB, CBC, CTR, and
GCM. We pipelined the computation of different blocks of data
to improve performance except for CBC encryption and GCM,
which have some parts that must be performed sequentially. The
operation modes share encrypt() and decrypt(). Alternatively, we
can create multiple instances of them to enable more parallelism.

• RSA: we implemented a Montgomery exponentiation function,
by applying the optimizations discussed in [20]. We keep the
computation of C = 22nmod M in software. We currently
support keys of 256, 512, 1024, and 2048 bits.

1We support both Xilinx Vivado HLS and Mentor Graphics Catapult HLS.

Memory (BRAMs)

HLS Function (C)

in, aad
iv, tag

in, iv

in, iv

in

out, tag

out

out

out

decrypt()
HLS PIPELINE

te0 te1 te2 te3 td0 td1 td2 td3 td4expand()

ekey encrypt()
HLS PIPELINE

key

rcon

AXI4 AXI4
GCM-mode()
HLS PIPELINE

CTR-mode()
HLS PIPELINE

CBC-mode()
HLS PIPELINE

ECB-mode()
HLS PIPELINE

ekey = expanded key, rcon = round constants,
te*, td* = T-tables for encryption/decryption

additional authenticated data

Fig. 4: Architecture of the AES accelerator.

We verified the HLS implementations with the NIST test suite [43].
We decided to implement our own accelerators because we wanted to
support many of the configuration options that are used by Android
applications. For example, the MachSuite [48] has AES, but it supports
keys of 256 bits and the ECB operation mode only. CHStone [28] and
S2CBench [50] have implementations of AES that work with multiple
key sizes, but they support ECB only. In contrast, our implementation
of AES supports multiple key sizes and four operation modes. Xilinx
released some accelerators for crypto in the Vitis Libraries [58]. We
plan to evaluate the integration of these accelerators in the future.

B. Software Modifications

Android (and Java) applications invoke crypto functions through
the Java Cryptography Extension (JCE) and the Java Cryptography
Architecture (JCA) [31]. These are APIs for crypto that belong to
the standard Java Library. JCE/JCA define the important concepts of
service and provider. The service is the task that must be performed,
e.g., SHA2. The provider supplies implementations of one or more
services. Since there are multiple providers for each service, they are
given a preference order. An application asks for a service by calling
a function called getInstance(). This method looks at the available
providers to see if there is one that implements the requested service.
If there are multiple providers, precedence is given to the one that
comes first. The application then receives an instance of a class, e.g.,
MessageDigest for SHA2, that can be used to complete the service.
The application does not need to know which is the provider; as long
as there is at least one implementing that service, the application
can get the service seamlessly and transparently. An application can
potentially ask for a particular service from a specific provider, but this
is not recommended as it limits the portability of the application [31].

In order to provide to any Android application the ability to invoke
crypto accelerators transparently, we implemented a provider for
JCE/JCA, that we called Hardware Crypto Provider. We can install
it as default to force all the Android applications to use it. In this
way, we obtain transparent invocation of accelerators, without the
need of changing the applications. Fig. 5 shows how an Android
application can invoke the SHA2 accelerator by using the Hardware
Crypto Provider. After obtaining an instance of MessageDigest with
getInstance(), an application can use some methods to perform hashing.
The application specifies the input data with update(), and then gets
the result of the hashing with digest(). When the method digest() is
called, the Hardware Crypto Provider copies the input data specified by
the application to a reserved region of contiguous memory, the DMA
buffer. We allocate this region of memory with u-dma-buf [30].

3

CPU Cores

Android App

ge
tIn

st
an

ce
()

Memory

FPGA Rec. Fabric

SHA-2 Accelerator

up
da

te
()

di
ge

st
()

HW Crypto
Provider

DMA
Driver

JCE/JCA Interface

DMA Buffer (CMA)

Config. Registers

1 2

4

5

6

3

Fig. 5: How we invoke accelerators in Hardroid. We show how to
invoke SHA2; the interface is slightly different for AES and RSA.

The provider then configures the memory-mapped registers of the
accelerator. In particular, it specifies the offset of the input data in
the DMA buffer, the offset where the output data should be placed,
and other accelerator-specific parameters, such as the number of input
bytes. The accelerator is then invoked. As soon as the accelerator
completes its execution, the provider copies the output data from
the DMA buffer and returns them to the application. This process is
transparent to the application.

Programmability & Performance. Thanks to the Hardware Crypto
Provider and the decoupling of the concepts of service and provider
of the JCE/JCA, we can run unmodified Android applications and
redirect the execution of the tasks to the FPGA accelerators. In
Section IV-D, we discuss to what extent this approach is applicable to
other accelerators and application domains. Unfortunately, programma-
bility advantages can have performance implications. To invoke an
accelerator, the Hardware Crypto Provider must copy the input data
specified by the application to the DMA buffer and then copy the
output data from the DMA buffer. In fact, we cannot control where
the data of the applications are allocated. If we are allowed to change
the application, we could allocate the data directly in the region of
memory that is accessed by the accelerator. This is the approach taken,
for example, by Mantovani et al. [36]. The application can then work
with the data allocated in a particular region of memory, avoiding
frequent data copies when an accelerator is invoked. In addition to the
data copies, there are other overheads for configuring and clearing the
DMA buffer and for performing accelerator-specific operations such
as handling the padding schemes of AES. These overheads depend,
of course, on the specific accelerator and application domain.

Future Improvements. Currently, our provider uses a single DMA
buffer for the accelerator invocation that is created with u-dma-buf
and accessed as explained by I. Kawazome [30]. In the future, we
plan to support multiple DMA buffers for concurrent accelerator
invocations. In addition, for simplicity, currently we grant access
to the DMA buffer to the Android applications that can access it
through the crypto provider. The buffer should be protected by granting
access only to trusted code and by guaranteeing isolation among
different applications. With Hardroid, our current goal is to provide
an evaluation platform for the integration of accelerators in Android.
We leave the important issue of investigating their secure invocation
to future work.

C. Design Automation

Hardware Flow. Hardroid supports the integration of any accelerator
that complies with the interfaces we explained in Section IV-A. We
automated the entire hardware flow thanks to Xilinx Vivado HLS and
Xilinx Vivado. First, we generate the RTL code of the accelerator

MHz FFs LUTs BRAMs

SHA1 187 13393 28501 1
SHA2 187 73479 104700 4

AES 187 38512 55233 434
RSA 149 87356 92342 4

(a) FPGA target.

Area (mm2)

0.415
1.997
1.331
0.698

(b) ASIC Target.

TABLE I: Characteristics of the FPGA and ASIC accelerators.

with Vivado HLS. Then, we integrate the accelerator with the hard-
core processor (ARM) on the FPGA board by using (i) the AXI4
interconnects made available by Xilinx and (ii) an open-source ACP
adapter [29] that translates the AXI4 requests of the accelerator to
ACP-compliant requests. This process terminates with the generation
of the bitstream that is used to configure the FPGA at boot time.

Software Flow. The software flow requires significant effort from
the designer if a new accelerator is added to Hardroid. The designer
must define a Java class that exposes an API to invoke the accelerator.
This class manages the DMA buffer, configures the memory-mapped
registers of the accelerator, and handles the execution of the accelerator
Some parts of this class could be automatically generated, but other
parts must be written for the specific accelerator and the target
applications that invoke it. The accelerator can then be called from
an Android application at runtime.

D. Applicability to other Domains

In the case of crypto accelerators, it is possible to invoke them
without changing the applications thanks to the decoupling of the
concepts of service and provider in the JCE/JCA. There are other
libraries that have a similar concept. For example, Tensorflow [1] uses
delegates to run machine learning tasks with different computational
engines (e.g., GPUs, CPUs). For some application domains, a similar
decoupling might not be available in the software library for which
we want to develop hardware accelerators. Therefore, it would be
necessary to modify the Android applications to support accelerator
invocation. We believe, however, that the concept of provider used
in the JCE/JCA has broad applicability and might be adopted in
other application domains to simplify accelerator integration and
improve portability. Future software libraries can be developed with
a similar decoupling mechanism to enable hardware acceleration. In
addition, this idea can be exploited in other contexts besides Android
and cryptography, e.g., in standard Linux-based systems for machine
learning, to support transparent integration of accelerators.

V. EXPERIMENTAL EVALUATION

We developed Hardroid targeting the Xilinx ZynqMP UltraScale+
ZCU102 [57]. It includes a quad-core ARM Cortex-A53, where we
run Android 8.1.0, and a 16-nm programmable logic fabric, where we
deployed our accelerators. We configured the FPGA at boot time. We
leveraged an open-source porting of Android to the ZCU102 [3]. We
added our crypto accelerators (Section IV-A) and the software stack
(Section IV-B) to call the accelerators from the Android applications.
We designed the accelerators for FPGA by using Xilinx Vivado HLS
2018.2 and performed logic synthesis with Vivado. We ported the
accelerators to Mentor Graphics Catapult HLS 10.6a to calculate the
power for ASIC, using the 45-nm Nangate standard-cell library.

We evaluate Hardroid in two ways. In Section V-A, we compare
the energy consumption of our crypto accelerators with two popular
libraries: BouncyCastle 1.57 [9] and AndroidOpenSSL 1.0.0 (con-
scrypt), an optimized porting of OpenSSL [45] to Android systems.
In Section V-B, we perform an analysis of 29 Android applications.

4

100
101
102
103
104
105

28 213 214 215 216 217 218 222

input size (bytes)

en
er

gy
 (

re
la

tiv
e)

best sw sw+fpga fpga asic SHA1

100
101
102
103
104
105

28 213 214 215 216 217 218 222

input size (bytes)

en
er

gy
 (

re
la

tiv
e)

 SHA256

100
101
102
103
104
105

28 213 214 215 216 217 218 222

input size (bytes)

en
er

gy
 (

re
la

tiv
e)

 SHA512

100
101
102
103
104
105

25 26 27 28

input size (bytes)

en
er

gy
 (

re
la

tiv
e)

 RSA

100
101
102
103
104
105

28 213 214 215 216 217 218 222

input size (bytes)

en
er

gy
 (

re
la

tiv
e)

 AES−ECB

100
101
102
103
104
105

28 213 214 215 216 217 218 222

input size (bytes)

en
er

gy
 (

re
la

tiv
e)

 AES−CBC

100
101
102
103
104
105

28 213 214 215 216 217 218 222

input size (bytes)

en
er

gy
 (

re
la

tiv
e)

 AES−CTR

100
101
102
103
104
105

28 213 214 215 216 217 218 222

input size (bytes)

en
er

gy
 (

re
la

tiv
e)

 AES−GCM

Fig. 6: The figure reports the energy consumption of performing crypto operations in Hardroid. We compare (i) the best software implementation
(best sw), (ii) our accelerators by considering the software overheads for invoking them (sw+fpga), (iii) our FPGA accelerators only (fpga),
and (iv) our ASIC accelerators only (asic). The values are relative to the energy consumed by the ASIC accelerators for the smallest inputs.

A. Custom Applications

We designed our crypto accelerators with HLS for FPGA and
ASIC. TABLE I (a) reports the results for FPGA in terms of clock
frequency (MHz), FFs, LUTs, and BRAMs. TABLE I (b) shows
the results for the ASIC implementations in terms of area (mm2).
We synthesized the accelerators with the same frequency (187 for
SHA1, SHA2 and AES and 149 for RSA) for both ASIC and FPGA
and the same architecture2 (Section IV-A). The RSA code generated
with HLS was difficult to close at a higher frequency due to the use
of large operators. The goal was to get a conservative estimation of
what can be obtained in ASIC. For real ASIC deployment, it is likely
that the accelerators are synthesized at the same frequency of the
processor (1.2 GHz), thus obtaining an additional speedup of about
6× (8× for RSA). For power estimations, we use the dynamic power
returned by Vivado and the dynamic power reported by simulations
based on switching activity after synthesis with Catapult HLS.

We compared the execution time and power consumption of our
accelerators against those of the implementations of the corresponding
algorithms in the BouncyCastle and the AndroidOpenSSL libraries,
which are executed on the ARM Cortex-A53 processor. We measured
the performance on FPGA by executing Android applications that we
developed. We installed the Android applications and interacted with

2The coding style we used for AES for Vivado HLS is not fully compatible
with Catapult HLS. Thus, to obtain the results for ASIC we used a 32-bit AXI4
interface (instead of 128 bits) and adjusted the size of the internal memories.
Similarly, we estimated the power of AES/GCM from the power of AES/CBC
by considering the area difference.

them to trigger accelerator invocations. Just-In-Time (JIT) compilation
is combined with Ahead-of-Time (AOT) compilation in Android [4].
JIT uses heuristics to cache the translation of methods that are executed
at run-time. To obtain better performance for the BouncyCastle library,
we warmed up the JIT cache so that the overheads of the JIT caching
mechanism are not considered. For the power of the accelerators, we
consider the power of the task that they execute in a particular test.
For example, for SHA256 we used the power for SHA256, rather than
the power of the whole SHA2 accelerator, which includes SHA512.
We account for the power spent by the CPU to interact with the
accelerator (i.e., configuring it, preparing the input data in memory,
and retrieving the output data from memory) but not for the power
of the CPU while it is idle during the accelerator execution.

Fig. 6 shows the results obtained from multiple executions on the
FPGA. On the x-axis we report the size in bytes of the inputs. On the
y-axis we report the energy consumption (in log scale) for the best
software implementation (best sw in Fig. 6), for the FPGA accelerators
including the software overheads due to the invocation (sw+fpga), for
the FPGA accelerators only (fpga), and for the ASIC accelerators only
(asic). The best software implementation is either AndroidOpenSSL
or BouncyCastle depending on the crypto task and the input size.
Note that the results are relative to the energy consumed by the ASIC
accelerators to perform the smallest tasks (for the smallest task in
each graph, the ASIC energy consumption is 1). We can observe that
the energy overhead of the software to invoke the accelerators is very
high, especially for smaller input sizes. Part of this overhead is due
to the data copies of the inputs and outputs of the accelerator. For

5

100

101

102

103

SHA1 SHA2 AES RSA

en
er

gy
 (

re
la

tiv
e)

best sw sw+fpga fpga

Fig. 7: Energy consumption (geometric mean) of the 29 applications.

SHA1 and SHA2 the copy overhead is more manageable as the output
size has a fixed dimension (20 bytes for SHA1 and up to 64 bytes for
SHA2). For AES, this becomes a more important issue as the output
size scales with the input size. For RSA, this is less of an issue as
the input sizes are relatively small. If one is allowed to change the
applications to invoke the accelerators, part of this overhead could be
mitigated by avoiding data copies [36]. Some software overhead is
due to the time required to set up the DMA buffer and to handle the
different configuration options of the accelerators. If we take a look
at the energy consumption of the FPGA accelerators (or the ASIC
accelerators), we can see how the software overhead impacts their
efficiency. By moving towards larger input sizes, the relative distance
in energy consumption between the best software implementation (best
sw) and the FPGA accelerators (fpga) becomes smaller. Switching
to HP ports would provide better performance for larger inputs [39].
Note that the energy consumption is sometimes higher for smaller
input sizes; although we report the average of multiple runs, short
execution times can be affected by other processes and/or Java.

B. Android Applications

We downloaded 29 applications from the Google Play Store. We
installed each application in Hardroid and we interacted with the
graphical user interface (GUI) of the application (with keyboard and
mouse). Being already supported by Mentor Embedded Android [3],
this is not part of our contributions. A contribution of Hardroid,
however, is that the actions on the GUI can trigger accelerator
invocations. We interacted with the applications and generated about
3000 invocation calls to our crypto accelerators. The invocations
are for SHA1, SHA256, SHA512, AES-CBC, AES-GCM, and RSA.
As explained in Section IV-B, none of the 29 applications required
modifications. In order to evaluate the performance and check the
correctness of our accelerators, we modified our provider such that it
invokes also BouncyCastle and AndroidOpenSSL. We monitored the
logging system of Android to collect the performance measurements.

Fig. 7 reports the estimated energy consumptions as the geometric
mean across 29 applications. Each set of three bars report the
energy consumption for the best software implementation, the FPGA
accelerator with the addition of the invocation overhead in software,
and the standalone FPGA accelerator, respectively. The reported values
are relative to the energy consumption of the ASIC implementations
of these accelerators, which are used as baseline. The results confirm
that the invocation cost in software is high, especially considering
that the input sizes for many invocations of the accelerators consist
of only hundreds of bytes. We could mitigate the energy cost of the
software in invoking the accelerators by executing the smaller tasks
with the ARM core rather than using the accelerators, while leaving
the bigger tasks to the accelerators for better energy efficiency.

Fig. 8 reports the accelerator performance as the geometric mean
across 29 applications relative to the best software implementations,
which are used as baseline in this case. By considering only the
accelerator execution time (fpga), we can observe that we obtain better

0

1

2

3

4

SHA1 SHA2 AES RSA

sp
ee

du
p

(r
el

at
iv

e)

best sw sw+fpga fpga

Fig. 8: Performance (geometric mean) of the 29 applications.

performance than software, thanks to the ACP port that guarantees
higher performance for small inputs.

VI. RELATED WORK

The increasing adoption of domain-specific accelerators has fostered
the development of several heterogeneous architectures and platforms,
for example [2], [5], [7], [21], [33], [37], [46], which have been
often made available open-source. All these platforms support Linux-
based environments, but they do not support Android applications.
There are, however, platforms that can run Android applications. In
particular, to develop Hardroid, we started from Mentor Embedded
Android [3]. This is an open-source porting of Android 8.1 to some
Xilinx FPGAs. The same platform has been used to support dynamic
reconfiguration of the FPGA [23]. Zedroid, a platform that supports
Android on a Zynq SoC [59], has been used to accelerate a kernel
for network traffic analysis [8]. Ting et al. [53], [54] show how
to provide accelerator services for machine learning to Android
applications. Their platform supports multiple applications invoking
the accelerators as well as multiple accelerators. Similar mechanisms
can be added to Hardroid. Coughlin et al. [17] described an approach
to add reconfigurable hardware into an Android-based system. ‘App
Hardware’ are accelerators that can be deployed on the FPGA and
called by the traditional applications (‘App Software’). Our goal is
different because Hardroid is a platform to evaluate the integration
of accelerators in Android-based system before these are taped out
as components of a new chip.

There are several papers about accelerator integration. For example,
Giri et al. [26] describe the advantages of supporting multiple cache-
coherence models for different accelerators. They also show how to
seamlessly integrate third-party accelerators [25], e.g., NVDLA, into
the ESP architecture [37]. Min et al. [39] evaluate approaches that
can be used to integrate accelerators on an FPGA-based platform. Lee
et al. [34] focus on improving the programmability of data-parallel
accelerators. Our paper complements these works by discussing the
trade-offs between programmability and performance in integrating
accelerators in Android systems.

VII. CONCLUSIONS

We presented Hardroid, an FPGA-based heterogeneous platform
that allows Android applications to call crypto accelerators on
an FPGA in a transparent way. The applications do not need
to be modified to perform accelerator invocations thanks to the
decoupling of providers and services in the JCE/JCA. We believe
that the same approach can be used to invoke the accelerators for
other important application domains. We explored the trade-offs
between programmability, performance and energy efficiency for
crypto accelerators, showing that programmability benefits can affect
performance and energy efficiency. In the future, we will evaluate
more approaches for better accelerator design and integration and we
will explore their applicability to other domains.

6

ACKNOWLEDGMENTS

This work was supported in part by DARPA (C#:HR0011-18-C-
0122) and the National Science Foundation (A#:1764000). The views
and conclusions expressed are those of the authors and should not
be interpreted as representing the official views or policies of the
Department of Defense or the U.S. Government.

REFERENCES

[1] M. Abadi et al., “Tensorflow: A System for Large-scale Machine
Learning,” in Proc. of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2016.

[2] A. Amid et al., “Chipyard: Integrated Design, Simulation, and Imple-
mentation Framework for Custom SoCs,” IEEE Micro, vol. 40, no. 4,
2020.

[3] https://github.com/MentorEmbedded/mpsoc-manifest, Android for Xilinx
Zynq UltraScale+ MPSoC.

[4] https://source.android.com/devices/tech/dalvik/jit-compiler, ART JIT.
[5] K. Asanović et al., “The Rocket Chip Generator,” EECS Department,

University of California, Berkeley, Tech. Rep. UCB/EECS-2016-17, 2016.
[6] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost and Area-efficient

FPGA Implementations of Lattice-based Cryptography,” in Proc. of the
IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST), 2013.

[7] J. Balkind et al., “OpenPiton at 5: A Nexus For Open And Agile Hardware
Design,” IEEE Micro, vol. 40, no. 4, 2020.

[8] M. Barbareschi, A. Mazzeo, and A. Vespoli, “Network Traffic Analysis
Using Android on a Hybrid Computing Architecture,” in Proc. of the
International Conference on Algorithms and Architectures for Parallel
Processing (ICA3PP), 2013.

[9] https://bouncycastle.org/, Bouncy Castle.
[10] L. P. Carloni, “From Latency-Insensitive Design to Communication-Based

System-Level Design,” Proceedings of the IEEE, vol. 103, no. 11, 2015.
[11] ——, “The case for Embedded Scalable Platforms,” in Proc. of the

ACM/IEEE Design Automation Conference (DAC), 2016.
[12] M. Cavalcante et al., “Design of an Open-source Bridge between Non-

coherent Burst-based and Coherent Cache-line-based Memory Systems,”
in Proc. of the ACM Conference on Computing Frontiers (CCF), 2020.

[13] T. Chen et al., “Diannao: A Small-Footprint High-Throughput Accel-
erator for Ubiquitous Machine-Learning,” in Proc. of the ACM/IEEE
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[14] J. Cong et al., “Charm: A Composable Heterogeneous Accelerator-rich
Microprocessor,” in Proc. of the ACM/IEEE International Symposium
on Low Power Electronics and Design (ISPLED), 2012.

[15] https://github.com/google/conscrypt, Conscrypt.
[16] E. G. Cota et al., “An Analysis of Accelerator Coupling in Heterogeneous

Architectures,” in Proc. of the ACM/IEEE Design Automation Conference
(DAC), 2015.

[17] M. Coughlin, A. Ismail, and E. Keller, “Apps with Hardware: Enabling
Run-time Architectural Customization in Smart Phones,” in Proc. of the
USENIX Annual Technical Conference (ATC), 2016.

[18] J. Daemen and V. Rijmen, The design of Rijndael: AES — the Advanced
Encryption Standard. Springer-Verlag, 2002.

[19] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific Hardware
Accelerators,” Communications of the ACM, vol. 63, no. 7, 2020.

[20] A. Daly and W. Marnane, “Efficient Architectures for Implementing
Montgomery Modular Multiplication and RSA Modular Exponentiation
on Reconfigurable Logic,” in Proc. of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2002.

[21] S. Davidson et al., “The Celerity Open-Source 511-Core RISC-V Tiered
Accelerator Fabric: Fast Architectures and Design Methodologies for
Fast Chips,” IEEE Micro, vol. 38, no. 2, 2018.

[22] G. Eichler et al., “MasterMind: Many-Accelerator SoC Architecture
for Real-Time Brain-Computer Interfaces,” in Proc. of the International
Conference on Computer Design (ICCD), 2021.

[23] https://github.com/1chor/master-thesis, FPGA Reconfiguration Android.
[24] D. Fujiki et al., “Genax: a Genome Sequencing Accelerator,” in Proc.

of the ACM/IEEE International Symposium on Computer Architecture
(ISCA), 2018.

[25] D. Giri et al., “Accelerator Integration for Open-Source SoC Design,”
IEEE Micro, vol. 41, no. 4, 2021.

[26] D. Giri, P. Mantovani, and L. P. Carloni, “Accelerators and Coherence:
An SoC Perspective,” IEEE Micro, vol. 38, no. 6, 2018.

[27] T. J. Ham et al., “Graphicionado: A High-Performance and Energy-
Efficient Accelerator for Graph Analytics,” in Proc. of the ACM/IEEE
International Symposium on Microarchitecture (MICRO), 2016.

[28] Y. Hara et al., “Chstone: A Benchmark Program Suite for Practical
C-based High-Level Synthesis,” in Proc. of the IEEE International
Symposium on Circuits and Systems (ISCAS), 2008.

[29] https://github.com/ikwzm/ZynqMP-ACP-Adapter, I. Kawazome, Adapter.
[30] https://github.com/ikwzm/udmabuf, I. Kawazome, U-DMA-BUF.
[31] https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/

CryptoSpec.html, JCE/JCA.
[32] J. Katz and Y. Lindell, Introduction to Modern Cryptography. Chapman

and Hall, CRC Press, 2014.
[33] A. Kurth et al., “HERO: Heterogeneous Embedded Research Platform

for Exploring RISC-V Manycore Accelerators on FPGA,” Proc. of the
Workshop on Computer Architecture Research with RISC-V (CARRV),
2017.

[34] Y. Lee et al., “Exploring the Tradeoffs between Programmability and
Efficiency in Data-Parallel Accelerators,” ACM Transactions on Computer
Systems, vol. 31, no. 3, 2013.

[35] X. Liu et al., “High Level Synthesis of Complex Applications: An
H.264 Video Decoder,” in Proc. of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), 2016.

[36] P. Mantovani et al., “Handling Large Data Sets for High-Performance
Embedded Applications in Heterogeneous Systems-on-Chip,” in Proc.
of the ACM/IEEE International Conference on Compilers, Architectures
and Synthesis for Embedded Systems (CASES), 2016.

[37] ——, “Agile SoC Development with Open ESP,” in Proc. of the
International Conference on Computer Aided Design (ICCAD), 2020.

[38] A. J. Menezes, P. C. V. Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 2001.

[39] S. W. Min et al., “Analysis and Optimization of I/O Cache Coherency
Strategies for SoC-FPGA Device,” in Proc. of International Conference
on Field Programmable Logic and Applications (FPL), 2019.

[40] R. Nane et al., “A Survey and Evaluation of FPGA High-Level Synthesis
Tools,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 35, no. 10, 2016.

[41] “Advanced Encryption Standard (AES),” Federal Inf. Process. Stds. (NIST
FIPS) - 197, National Institute of Standards and Technology, 2001.

[42] “Secure Hash Standard (SHS),” Federal Inf. Process. Stds. (NIST FIPS)
- 180-4, National Institute of Standards and Technology, 2015.

[43] https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-
Program, NIST, Cryptographic Algorithm Validation Program.

[44] https://github.com/nvdla/, NVDLA Deep Learning Accelerator.
[45] https://github.com/openssl, OpenSSL.
[46] D. Petrisko et al., “BlackParrot: An Agile Open-Source RISC-V Multicore

for Accelerator SoCs,” IEEE Micro, vol. 40, no. 4, 2020.
[47] L. Piccolboni et al., “COSMOS: Coordination of High-Level Synthesis

and Memory Optimization for Hardware Accelerators,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 16, no. 5s, 2017.

[48] B. Reagen et al., “Machsuite: Benchmarks for Accelerator Design and
Customized Architectures,” in Proc. of the IEEE International Symposium
on Workload Characterization (IISWC), 2014.

[49] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems,” Communications of
the ACM, vol. 21, no. 2, 1978.

[50] B. C. Schafer and A. Mahapatra, “S2CBench: Synthesizable SystemC
Benchmark Suite for High-Level Synthesis,” IEEE Embedded Systems
Letters, vol. 6, no. 3, 2014.

[51] O. Segal et al., “PSparkcl: A Unified Programming Framework for
Accelerators on Heterogeneous Clusters,” arXiv:1505.01120, 2015.

[52] I. Stamelos et al., “A Novel Framework for the Seamless Integration of
FPGA Accelerators with Big Data Analytics Frameworks in Heteroge-
neous Data Centers,” in Proc. of the International Conference on High
Performance Computing Simulation (HPCS), 2018.

[53] H.-Y. Ting et al., “Dynamic Sharing in Multi-accelerators of Neural
Networks on an FPGA Edge Device,” in Proc. of the International
Conference on Application-specific Systems, Architectures and Processors
(ASAP), 2020.

[54] H.-Y. Ting, A. A. Sani, and E. Bozorgzadeh, “System Services for
Reconfigurable Hardware Acceleration in Mobile Devices,” in Proc. of
the International Conference on ReConFigurable Computing and FPGAs
(ReConFig), 2018.

[55] M. Vuletid, L. Pozzi, and P. Ienne, “Seamless Hardware-Software
Integration in Reconfigurable Computing Systems,” IEEE Design &
Test of Computers, vol. 22, no. 2, 2005.

7

[56] L. Wu et al., “Q100: The Architecture and Design of a Database
Processing Unit,” in Proc. of the ACM/IEEE International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2014.

[57] “Zynq UltraScale+ MPSoC ZCU102,” https://www.xilinx.com/products/

boards-and-kits/ek-u1-zcu102-g.html, Xilinx.

[58] https://github.com/Xilinx/Vitis Libraries, Xilinx Vitis.

[59] http://wpage.unina.it/mario.barbareschi/zedroid/index.html, Zedroid.

8

