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Abstract—In modern System-on-Chip (SoC) architectures, spe-
cialized accelerators are increasingly used to improve perfor-
mance and energy efficiency. The growing complexity of these sys-
tems requires the use of system-level design methodologies featur-
ing high-level synthesis (HLS) for generating these components
efficiently. Existing HLS tools, however, have limited support for
the system-level optimization of memory elements, which typi-
cally occupy most of the accelerator area. We present a complete
methodology for designing the private local memories (PLMs) of
multiple accelerators. Based on the memory requirements of each
accelerator, our methodology automatically determines an area-
efficient architecture for the PLMs to guarantee performance and
reduce the memory cost based on technology-related information.
We implemented a prototype tool, called MNEMOSYNE, that
embodies our methodology within a commercial HLS flow. We
designed thirteen complex accelerators for selected applications
from two recently-released benchmark suites (PERFECT and
CORTEXSUITE). With our approach we are able to reduce the
memory cost of single accelerators by up to 45%. Moreover,
when reusing memory IPs across accelerators, we achieve area
savings that range between 17% and 55% compared to the case
where the PLMs are designed separately.

Index Terms—Hardware Accelerator, High-Level Synthesis,
Memory Design, Multi-bank Architecture.

I. INTRODUCTION

SYSTEM-ON-CHIP (SoC) architectures increasingly fea-
ture hardware accelerators to achieve energy-efficient

high performance [1]. Complex applications leverage these
specialized components to improve the execution of selected
computational kernels [2], [3]. For example, hardware acceler-
ators for machine learning applications are increasingly used to
identify underlying relations in massive unstructured data [4],
[5], [6]. Many of these algorithms first build an internal model
by analyzing very large data sets; then, they leverage this
model to perform decisions (e.g. to give suggestions to the
users). Thanks to the inherent parallelism of their kernels, they
are good candidates for hardware specialization, especially
with loosely-coupled accelerators (LCAs) [7], [8], [9].
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Fig. 1. Accelerator-based SoC. Memory banks can be reused across acceler-
ators to reduce resource requirements.

The example in Fig. 1 shows a portion of an SoC, including
two LCAs and a processor core, connected to an external
memory (DRAM). Each LCA is composed of the accelerator
logic, which implements the computation, and the private local
memory (PLM), which stores data to be accessed with fixed
latency [7], [10]. PLMs constitute the accelerator memory
subsystem of the SoC and are composed of many units,
called PLM elements. Each of these PLM elements is used
to store a data structure of the algorithm. Although PLMs are
known to be responsible for most of the accelerator area [10],
at any given time they can contain only a portion of the
entire working data set, which is entirely stored within the
DRAM. The accelerator computation is thus organized in
consecutive iterations, where data are progressively exchanged
with DRAM through DMA transfers [7]. So, the accelerator
logic is structured with multiple hardware blocks executing
concurrently, in parallel or in pipeline (i.e. input, computek,
and output). Hardware blocks input and output manage the
data transfers, while hardware blocks computek implement
the functionality of the accelerator. The PLM management
is thus totally transparent to the processor core, which is
responsible for preparing the data in DRAM and controlling
the accelerators’ execution. The core runs an operating system
and each accelerator is managed by a device driver [11].

LCAs can achieve better performance than processor cores
thanks to specialized micro-architectures for both the accel-
erator logic and the PLM in order to execute the algorithm
for which it has been designed. The accelerator logic can
exploit spatial parallelism to execute multiple operations in

Copyright (c) 2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes
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parallel. The size of each PLM element is customized with
respect to the amount of data to be stored. Additionally,
while processor memories are designed for sequential access
(even in case of memory sharing with the accelerator [12],
[13]), PLMs require multiple ports to allow the accelerator
logic to perform multiple memory operations within the same
clock cycle and increase the hardware parallelism. There are
different solutions to implement multi-port memories [14].
Distributed registers, which are completely contained into the
accelerator logic, are used for small and frequently accessed
data structures. However, the aggregated size of these registers
is known to grow exponentially with the amount of data
to be stored. Large and complex data structures require the
allocation of dedicated memory Intellectual Property (IP)
blocks, which are more resource efficient. However, since the
size of these memory elements grows quadratically with the
number of ports [15], only single- or dual-port memory IPs
are usually offered by technology providers [16]. The available
memory IPs compose the so-called memory library, where
each of them is characterized in terms of height, width, and
resource requirements. For example, a variable number of
Static Random-Access Memories (SRAMs) are available in
standard cell-based designs. Block Random-Access Memories
(BRAMs) are used instead when targeting FPGA technologies,
which have a certain number of such configurable blocks
available in each device (e.g. between 1,500 and 4,000 16Kb
BRAMs in modern Xilinx Virtex-7 FPGAs [17]). Each PLM
element is then implemented with a multi-bank architecture,
based on the combined requirements of each hardware block
accessing the corresponding data structure. For example, in
the first accelerator of Fig. 1, hardware blocks input and
compute1 communicate through a data structure; at each clock
cycle, input updates one value with one memory-write inter-
face, while compute1 elaborates two values with two distinct
memory-read interfaces. To manage these three concurrent
memory operations, the corresponding PLM element must
have two dual-port banks.

Due to the growing complexity of these SoCs, system-level
design methodologies are used to increase design productivity
by optimizing the components at a level of abstraction higher
than RTL [18], [19]. There is also a trend to separate the IP
design, where optimized components are created for specific
purposes, from the SoC integration of these components. This
reduces the design complexity, but may limit the optimiza-
tion of the design of accelerators that are integrated on the
same SoC, especially with respect to their memory elements.
Fig. 2(a) shows how current methodologies work for the
design of accelerator-based SoCs. First, each algorithm is
specified in a high-level language (e.g. SystemC) to enable
the use of high-level synthesis (HLS) [20], [21], [22]. Then,
state-of-the-art HLS tools are used to derive multiple Pareto-
optimal implementations for the accelerator logic [23], [24].
These are alternative trade-offs in terms of performance versus
cost (area or power). They can be created by applying a rich set
of “knobs” (e.g. activating loop transformations or varying the
number of memory interfaces to access each data structure) to
the same SystemC code [23], [25]. To avoid the manual design
of the PLMs, multi-bank architectures can be specified with

Logic 
PLM 

IP DESIGN 

Logic 
PLM 

IP DESIGN 

SOC INTEGRATION 

Accelerator 
Design (SystemC) 

Algorithm  
Design (C/C++) 

Accelerator 
Design (SystemC) 

Algorithm  
Design (C/C++) 

(a)

Accelerator 
Design (SystemC) 

Algorithm  
Design (C/C++) 

Logic 

IP DESIGN 

Accelerator 
Design (SystemC) 

Algorithm  
Design (C/C++) 

 
 

SOC INTEGRATION 

Memory Subsystem Design 

Logic 

IP DESIGN 

Mem 
Reqs 

Mem 
Reqs 

(b)

Fig. 2. Traditional (a) and proposed (b) design flow for heterogeneous SoCs.

source code transformations before running HLS [26], [27].
However, the possibilities for memory-related optimizations
are limited during the SoC integration. Moreover, it may be
necessary to reiterate the IP design when changing the require-
ments for the memory subsystem (e.g. the available area). This
is time consuming and error-prone. In contrast, designing the
memory subsystem during SoC integration enables additional
optimizations to reduce the memory cost.

We thus propose an alternative approach, which is shown
in Fig. 2(b), to design and optimize the memory subsystem
of multiple LCAs during their integration in the SoC. We
first explore the micro-architectures of the accelerators with
HLS tools and collect their memory requirements. Then, we
generate optimized PLM micro-architectures by taking into
account also the characteristics of the memory IPs of the
given target technology. To reduce the memory cost, we enable
the reuse of memory IPs across the accelerators that are not
executed at the same time. This flexibility is achieved with
a memory controller that encapsulates the actual memory
IPs and coordinates the accesses from the different LCAs.
With this methodology, we can design and optimize the entire
memory subsystem for SoCs with different requirements and
without necessarily modifying the accelerators.

Contributions. After introducing a paradigmatic example
in Section II, we present our main contributions:
• a methodology to automatically derive the accelerator

memory subsystem for LCAs (Section III);
• a set of technology-unaware and technology-aware opti-

mizations to reduce the cost of the accelerator memory
subsystem (Section IV and Section V, respectively).

• a flexible controller to manage the accesses to the gener-
ated PLM micro-architecture (Section VI);

We implemented these combined contributions in a prototype
CAD tool, called MNEMOSYNE, which we used to optimize
the memory subsystems of many complex accelerators that we
designed for applications selected from two new benchmark
suites, PERFECT [28] and CORTEXSUITE [29] (Section VII).

II. ACCELERATOR DESIGN

In this section, we introduce a relatively small example to
illustrate the main issues that must be addressed when design-
ing hardware accelerators with system-level methodologies.
Listing 1 reports a portion of the synthesizable SystemC code
of Debayer, an accelerator for image debayering [28]. This
accelerator has been designed with three concurrent processes
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Listing 1. Synthesizable SystemC code of Debayer, an accelerator for image debayering [28].
1 #include <systemc.h>
2 SC_MODULE(Debayer) {
3 sc_in<bool> clk, rst;
4 private:
5 sc_signal<bool> i_valid, i_ready, o_valid, o_ready;
6 int A0[6][2048]; // circular buffer
7 int B0[2048];
8 int B1[2048];
9 public:

10 //...
11 SC_CTOR(debayer) {
12 SC_CTHREAD(input, clk.pos());
13 reset_signal_is(rst, false);
14 SC_CTHREAD(compute, clk.pos());
15 reset_signal_is(rst, false);
16 SC_CTHREAD(output, clk.pos());
17 reset_signal_is(rst, false);
18 //...
19 }
20 void input(void) {
21 // reset ...
22 unsigned circ = 0; // circular buffer write pointer
23 wait();
24 while(true) {
25 L0: for (int r=0; r<2048; r++) {
26 // DMA request
27 // read input ...
28 L1: for (int c=0; c<2048; c++)
29 { A0[circ][c] = f(...); } //write to A0
30 // output ...
31 if (r >=5){
32 // wait for ready from compute then notify as valid
33 }
34 circ++;
35 if (circ == 6)
36 circ = 0;
37 }
38 }
39 }

40 void compute(void) {
41 int PAD = 2; bool flag = true;
42 int r_r = 0; // central row of the mask
43 // reset ...
44 wait();
45 while(true) {
46 L2: for (int r=0; r<2048-PAD; r++) {
47 // (wait for valid from input then notify as ready)
48 r_r = circ_buffer_row(r + 2);
49 L3: for (int j=PAD; j<2048-PAD; j++) {
50 if (flag) B0[j] = g(A0[r_r][j-2], A0[r_r][j-1],
51 A0[r_r][j], A0[r_r][j+1], A0[r_r][j+2], ...);
52 else B1[j] = g(A0[r_r][j-2], A0[r_r][j-1],
53 A0[r_r][j], A0[r_r][j+1], A0[r_r][j+2], ...);
54 }
55 // (valid to output, ready to compute)
56 flag = !flag;
57 }
58 }
59 }
60 void output(void) {
61 int PAD = 2; bool flag = true;
62 // reset ...
63 wait();
64 while(true) {
65 L4: for (int r=PAD; r<2048-PAD; r++) {
66 // (wait for valid from compute then notify as ready)
67 // prepare DMA request
68 // send data
69 L5: for (int c=PAD; c<2048-PAD; c++) {
70 if (flag) h(B0[c], ...); //read from array B0
71 else h(B1[c], ...); //read from array B1
72 }
73 // (ready to compute)
74 flag = !flag;
75 }
76 }
77 }
78 };

outputinput compute
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Fig. 3. Graphical representation of the Debayer accelerator presented in
Listing 1, along with associated Pareto-set implementations.

(input, compute, and output) that are connected as shown
in the upper part of Fig. 3. They execute in pipeline on
a 2,048×2,048-pixel image, which is stored in DRAM, to
produce the corresponding debayered version. The accelerator
is connected to the rest of the system as shown in Fig. 1.

Example. Process compute elaborates each row of the input
image (lines 46-54). It uses a mask around each pixel and thus
requires four additional rows, two above and two below the
current one. Three data structures are used to store the data:
one for the input rows (i.e. array A0) and two for the results
(i.e. arrays B0 and B1). Array A0 (line 6) is implemented as
a circular buffer with the capacity of storing 6×2,048 pixels.
In fact, an additional row is stored to overlap communication

and computation. So, after reading the first five rows, process
input fetches one new row at each iteration through the DMA
controller (lines 26-30), discarding the oldest one. Arrays B0
and B1 (lines 7-8) are used, instead, to form a ping-pong buffer.
Each array stores one row (i.e. 2,048 pixels). In this way, process
output can send one row back to DRAM (lines 67-71), while
process compute is producing the next one into the other array.
The three processes work in pipeline and synchronize their
execution through explicit protocol signals (valid, ready)
such that one process cannot start its computation before the
previous one has produced the required amount of data (lines 32
and 47, and lines 55 and 66). By using such latency-insensitive
protocol [30], it is possible to vary the execution time of one
process without affecting the execution of the others. �

The circular buffer and the ping-pong buffer are mechanisms
widely used in high-throughput accelerators to optimize com-
munication and computation at the cost of increasing the PLM
size [7]. The former allows the reuse of local data, thus min-
imizing the amount of data transfers with DRAM. The latter
allows the overlapping of computation and communication.

Design Space Exploration. HLS tools allow the design of
accelerators at a higher level of abstraction. The designer can
generate many alternative RTL implementations by applying
multiple “knobs” to trade off performance metrics (e.g. la-
tency) and area/power costs. In the set of resulting designs, it
is possible to identify Pareto-optimal choices, as shown in the
lower part of Fig. 3.

Example. Consider the implementations of process compute.
Implementation E is obtained by unrolling L3 for two itera-
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tions, which requires two concurrent memory-read operations.
Implementation F is obtained by unrolling L3 for four iterations
to maximize performance at the cost of more area, but with
only two memory-read interfaces; this creates a bottleneck
because the four memory operations cannot be all scheduled
in the same clock cycle. Implementation G, which Pareto-
dominates implementation F , is obtained by unrolling L3 for
four iterations and having four memory-read interfaces to allow
the four memory-read operations to execute concurrently. �

Accelerator Logic Design. Based on the overall require-
ments of the SoC architecture, the designer then selects an
implementation for each process to create the final system (i.e.
compositional high-level synthesis [23], [24]). Compositional
HLS allows IP designers to optimize the different hardware
blocks separately and more efficiently, but requires that se-
lecting an implementation for one block does not imply any
changes to the others. This is critical for shared resources,
such as memory elements. In fact, changing the number of
concurrent memory operations on a data structure shared
between two components may impact the memory operations
of the other components.

Example. Assume that implementations A and E are selected
for processes input and compute, respectively; then, array A0

must be stored in a PLM with one memory-write interface and
two memory-read interfaces. Instead, if implementation G is
selected for process compute, the PLM for storing the same
array requires four memory-read interfaces. �

System-level Memory Optimization. We aim at generating
an optimized memory subsystem for one or more accelerators.
The designer provides information on the data structures to
be stored in the PLMs, along with additional information on
the number of memory interfaces for each accelerator and the
compatibilities between the data structures. This information is
used to share the memory IPs across accelerators whenever it
is possible. Our approach is motivated by the following obser-
vations. First, when a data structure is not used, the associated
PLM does not contain any useful data; the corresponding
memory IPs can be reused for storing another data structure,
thus reducing the total size of the memory subsystem [10].
Second, in some technologies, the area of a single memory IP
is smaller than the aggregated area of smaller IPs. For example,
in an industrial 32nm CMOS technology, we experimented
that a 1,024×32 SRAM is almost 40% smaller than the area
of two 512×32 SRAMs, due to the replicated logic for address
decoding. In these cases, it is possible to store two data
structures in the same memory IP provided that there are
not conflicts on the memory interfaces, i.e. the data structures
are never accessed at the same time with the same memory
operation. Next, we formalize these situations.

To understand when two data structures can share the same
memory IPs, we recall the definition of data structure lifetime.

Definition. The lifetime of a data structure b is the interval
time between the first memory-write and the last memory-read
operations to the data structure [31]. �

Having two data structures with no overlapping lifetimes
means that while operating on one data structure the other
remains unused. Hence, we can use the same memory IPs to
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Fig. 4. Methodology overview for accelerator memory design.

store both of them. On the other hand, even when two data
structures have overlapping lifetimes, it is still possible to share
memory interfaces to potentially reduce the accelerator area.

Definition. Two data structures bi and bj are address-space
compatible when their lifetimes are not overlapping for the
entire execution of the accelerator. They are memory-interface
compatible when it is possible to define a total temporal
ordering of the memory operations so that two read (resp. write)
accesses to bi and bj never happen at the same time. �

When two data structures are memory-interface compatible,
memory-read and memory-write operations are never executed
at the same time on the same data structure.

Example. Processes compute and output of the Debayer ac-
celerator in Listing 1 use arrays B0 and B1 to exchange data.
When process compute is writing into B0, process output is
reading from B1 and vice versa. Hence, the two arrays are never
written (read) at the same clock cycle. �

III. PROPOSED METHODOLOGY

To assist the system-level optimization of the memory
subsystem for K accelerators, we propose the methodology
shown in Fig. 4. Our methodology takes as input the SystemC
descriptions of the accelerators (Accelerator Design1...k) and
the information about compatibilities among their data struc-
tures (Compatibility Information). We first use a commercial
HLS tool to perform design space exploration and generate
many alternative micro-architectures of each accelerator logic
in order to optimize the performance (HLS and DSE). Each
implementation is characterized by a set of data structures
to be stored in the PLM and the corresponding requirements
in terms of memory interfaces (Memory Requirements1...k).
After selecting an implementation for each component, we
determine the combined requirements in terms of memory
interfaces to access each data structure in order to guarantee
performance and functional correctness (Technology-unaware
Transformations1...k). We combine the information on all data
structures (Memory Requirements1...k), the information on
compatibilities (Compatibility Information), and the character-
istics of the memory IPs in the Memory Library to determine
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an optimized architecture for each PLM. First, we apply
transformations for each accelerator (Local Technology-aware
Transformations1...k). Then, we consider all accelerators at
the same time and identify when the memory IPs can be
reused across different data structures to minimize the cost
of the entire memory subsystem (Global Technology-aware
Transformations). As output, we produce the RTL description
of the memory subsystem (Generation of RTL Architecture)
that can be directly integrated with the RTL descriptions of
the accelerator logic generated by the HLS tool.

We implemented the steps related to memory optimiza-
tion (from 2 to 5 of Fig. 4) in a prototype tool, called
MNEMOSYNE. We interfaced MNEMOSYNE with a commer-
cial HLS tool to automatically derive the memory requirements
based on the knobs’ configuration. In the following sections,
we describe each of the memory-optimization steps.

IV. TECHNOLOGY-UNAWARE TRANSFORMATIONS

In the HLS phase, the designer applies a set of micro-
architectural optimization knobs to trade-off performance and
cost for the accelerator logic. The corresponding PLM archi-
tecture has then to be designed so that the accelerator behaves
correctly and achieves the desired performance. Specifically,
the PLM must provide each data to the accelerator logic in
the number of cycles (usually one) assumed by the HLS
scheduling phase. For functional correctness, no more than
one operation must be executed on each port of the memory
IP at the same time (i.e. conflict-free accesses to the banks).
It is thus necessary to determine the number of concurrent
memory operations required to access each data structure and
the corresponding number of memory interfaces. These com-
bined memory requirements determine the number of parallel
blocks required by each data structure to avoid conflicts when
accessing the banks. To reduce the cost of the entire memory
subsystem, we identify data structures that can be assigned
to the same PLM element and share the same memory IPs.
So, this logical organization of the physical memory IPs into
parallel blocks can vary from one data structure to the other
of the same PLM element.

Example. Consider two address-space compatible data structures
bi and bj . Each requires one memory-write interface, while
they require four and two memory-read interfaces, respectively.
The PLM element is organized in four parallel blocks for bi;
this requires at least four memory IPs, which can be logically
reorganized in two parallel blocks for bj . �

To identify the minimum number of memory interfaces that
can access the data at the same time allows us to minimize
the number of parallel blocks and, in turn, of memory IPs.

Example. Assume a 512×32 array to be stored in the PLM.
Process input produces the data. Processes compute1 and
compute2 need access to the data with two memory-read
interfaces each. Without any additional information, the array
requires four parallel blocks, two for compute1 and two for
compute2. The designer may specify that, by construction,
processes compute1 and compute2 never access the data at the
same time (e.g. they execute serially). If so, two parallel blocks

TABLE I
SUMMARY OF THE NOTATION USED IN THIS WORK.

SYMBOL DEFINITION

b PLM data structure of size Height×Width

Rb Read interfaces for the data structure b

W b Write interfaces for the data structure b (i.e. write blocks)

Lb Number of read interfaces for accessing data structure b based on
sharing information

P b Total number of parallel blocks for data structure b

CPB Capacity of each parallel block

Size Capacity of the selected physical memory IP

are sufficient since the two available memory-read interfaces
can be used alternatively by compute1 and compute2. �

We propose the following approach to identify the minimum
number of parallel blocks. During HLS, the designer specifies
the read and write interfaces (Rb and W b, respectively) to
access each data structure b. Multiple write operations from
one process can be supported only if they write consecutive
addresses. This defines the number W b of write blocks. Write
operations from different processes can be supported only if
they can share the same interfaces (i.e. only one process writes
the data at each time). To identify the minimum number of read
interfaces, we apply graph coloring to a conflict graph of the
read interfaces based on compatibility information provided by
the designer. Each node represents a read interface rb ∈ Rb,
while an edge is added between two interfaces rbi and rbj if
the designer specifies that they may access the data at the
same time. Let proc(·) be a function that returns the process
associated with the corresponding interface rb ∈ Rb. A conflict
edge is added when: 1) the two interfaces refer to the same
process, i.e. proc(rbi ) = proc(rbj); 2) processes proc(rbi ) and
proc(rbj) execute concurrently. We use a greedy heuristic to
assign a color to each node of a graph such that two connected
nodes have different colors. The resulting number of colors
corresponds to the number |Lb| of memory-read interfaces
needed to access the data structure.

To determine the final number and capacity of the parallel
blocks P b for a data structure b of size Height, we analyze its
access patterns and determine how to allocate the data. If the
read patterns are deterministic and can be statically analyzed,
we can distribute the data structure across many blocks; this
cyclic partitioning technique [26] assigns consecutive values
of the data structure to different blocks, as shown in the upper
part of Fig. 5 (here, the number of parallel blocks is the least
common multiple between W b and |Lb| (P b = lcm(W b, |Lb|))
and each block has capacity CPB = dHeight/P be). Other-
wise, we must create identical copies of the data in the write
blocks (P b =W b×|Lb|), each with capacity CPB = Height,
as shown in the lower part of Fig. 5; in this way, each memory-
read interface is assigned to a distinct parallel block and is
guaranteed to access the data without conflicts [9] as long as
the corresponding memory-write operations create consistent
copies of the data in each bank.

Example. Consider array A0 of the Debayer accelerator in
Listing 1 (6×2,048 integer values). Assume that process input

produces the data with four memory-write interfaces (writing
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Fig. 5. Examples for the identification of parallel blocks in case of cyclic
partitioning (top) and data duplication (bottom).

consecutive elements of the array), while process compute

reads the data with six memory-ready interfaces (|Lb| = 6).
The write block is composed of four parallel blocks (each
of 3,072×32 bits) to allow the four parallel memory-write
operations (W b = 4). If the six memory-read operations also
access consecutive addresses, array A0 can be implemented with
cyclic partitioning. In this case, only twelve banks are sufficient
(P b = lcm(4, 6) = 12) to store the data, and the data will be
distributed over the entire set of banks, as shown in the upper
part of Fig. 5. The size of each bank is 1,027×32 bits. On the
contrary, if array A0 is implemented with data duplication, the
write block (and the corresponding data) must be replicated six
times (P b = 4 × 6 = 24 parallel blocks, each of 3,072×32
bits) so that the six memory-read interfaces can access the data
independently (see lower part of Fig. 5). �

V. TECHNOLOGY-AWARE TRANSFORMATIONS

Based on the technology information in the memory library,
we can determine the composition of each parallel block in
terms of memory IPs. Specifically, the capacity of the parallel
block CPB may be larger than the capacity of the selected
memory IP (Size). In this case, the data must be partitioned
into multiple consecutive memory IPs. This technique is called
block partitioning [26] and determines the number of memory
IPs into each parallel block, which is equal to dCPB/Sizee.

Example. In the Debayer accelerator of Listing 1, the bi-
dimensional array A0 contains 6×2,048 integer elements
(12,288 integer values) to be stored in the PLM. If only one
memory-write and one memory-read interfaces are required to
access A0, then a parallel block of capacity CPB = 12, 288 is
sufficient. The array can be implemented with three 4,096×32
SRAMs in case of standard-cell technology and twenty-four
512×32 BRAMs in case of FPGA devices. �

A. Local Transformations

After defining the parallel blocks, we apply more optimiza-
tions on the bank architecture to obtain a data layout that
maximizes the use of memories, while minimizing their cost.

Data merging. When a process has multiple memory-write
interfaces that produce consecutive values, it is possible to
write them in a single clock cycle. Additionally, if the aggre-
gated bitwidth of these memory-write operations is supported
by the memory IPs in the technology libraries, it is possible
to write them with a single memory operation.

Example. Assume that the Debayer accelerator of Listing 1 is
configured to process 128×128-pixel images. Array A0 thus
stores 768 values (6×128). Assume also that process input is
implemented with implementation b (two memory-write opera-
tions) and connected to a 32-bit data bus and array A0 can be
represented with 16 bits. This implementation corresponds to
two 16-bit write blocks (each of 384×16 bits) that need to be
stored into two BRAMs. However, these parallel write blocks
can be merged into a single 384×32-bit write block where the
two values are concatenated and written in the same clock cycle.
The read interface will simply select the proper part of data
obtained from the block based on the given address (i.e. signal
slicing). The resulting write block can be completely contained
into a single BRAM, thus reducing the resource requirements
for the implementation of the array. �

The input data to the memory IP is obtained by concatenating
the values from the memory-write interfaces. For memory-
read operations, the interface reads the entire memory line
and provides only the part that is effectively requested.

Data splitting. This transformation can optimize the imple-
mentation of data structures whose bitwidth is different from
the one of the memory IPs available in the library. Specifically,
the data structure is split into smaller data tokens and written
into different parallel blocks. When a memory-read operation
is performed, all parts are read from the parallel blocks and
concatenated to recompose the data.

Example. Consider the implementation of a 12,264×35 array
on FPGA, where the available BRAMs have a maximum width
of 32 bits. We thus need at least two parallel blocks to store this
array. Using the 512×32 configuration of the BRAMs requires
24 BRAMs to store the array (d12, 264/512e) with two parallel
blocks. The resulting implementation consists of 48 BRAMs.
Alternatively, we can use the 4,096×4 configuration, splitting
each input value into nine parallel blocks. This corresponds to
three parallel blocks (d12, 264/4, 096e) replicated nine times,
for a total of 27 BRAMs. �

Each memory-write operation corresponds to multiple writes
to each parallel block (at the same address). Similarly, a
memory-read operation gets the different parts from the proper
banks and recomposes the data by concatenating the values.

Optimization algorithm. To identify the proper com-
bination of merge and split factors, we developed Algo-
rithm 1. We first determine all candidates for block merging
(MergeCandidates, line 3), which capture all the possi-
bilities to combine the current number of parallel blocks P b.
For each of these candidates, we compare the resulting data
structure with all memory IPs in the library (lines 4-11) in
order to determine whether split (lines 6-8) or merge (lines
10-11) operations are possible. The resulting configuration of
the blocks (obtained with the function GetCfg) is generated
by considering the hypothetical implementation of the data
structure with the current bank mem (lines 8 or 11). Finally,
these configurations are sorted in ascending order, starting
from the one with the minimal memory cost (line 12). This
configuration determines which operation must be performed
on the banks (split or merge); width and number of blocks are
updated accordingly (lines 13 and 14, respectively).
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Algorithm 1: Algorithm to determine merge/split opera-
tions to be performed on the parallel blocks.

1 Procedure DetermineBlockOptimization(b, P b, width)
Data: b is the buffer to be implemented
Data: w is the current width of the write block
Data: P b is the current configuration of the write block
Result: ŵ is the updated width of the write block
Result: P̂ b is the updated configuration of the write block

2 L← ∅
3 foreach m ∈MergeCandidates(P b) do
4 foreach mem ∈MemoryLibrary do
5 if m == 1 then
6 if w > Width(mem) then
7 split← dw/Width(mem)e
8 L← L ∪ GetCfg(b, P b,mem,w, 1, split)

9 else
10 if w ∗m ≥ Width(mem) then
11 L← L ∪ GetCfg(b, P b,mem,w,merge, 1)

12 cfg ← GetFirst(OrderByTotalArea(L))
13 ŵ ← w ∗ cfg.merge / cfg.split
14 P̂ b ← P b ∗ cfg.split / cfg.merge
15 return {w, P̂ b}

B. Analysis of Compatibility Information

The compatibility information provided by the designer is
combined into a Memory Compatibility Graph (MCG), which
captures the sharing opportunities among the data structures.

Definition. The Memory Compatibility Graph is a graph
MCG = (B,E) where each node b ∈ B represents a data
structure to be stored in the entire memory subsystem; an
edge e ∈ E connects two nodes when the corresponding data
structures can be assigned to the same physical memory IPs.
Each edge e ∈ E is also annotated with the corresponding type
of compatibility (e.g. address-space or memory-interface). �

MCG is the dual of the Memory Exclusion Graph presented
by Desnos et al. [32], which instead contains information
on the data structures that cannot be allocated at the same
address space in an MPSoC. A MCG with no compatibility
edges corresponds to implementing each data structure in a
dedicated PLM element. Increasing the number of edges into
the MCG corresponds to increasing the number of compatible
data structures. This can potentially increase the number of
banks that can be reused across different data structures.
An accurate compatibility graph is the key to optimize the
memory subsystem of the accelerators. In most cases, the
designer has to analyze the application’s behavior or modify
the interconnection topology of the accelerator to increase
sharing possibilities.

Identification of Compatibilities. Control signals between
the processes can be used to synchronize their execution and
vary the lifetime of the data structures, thus increasing the
situations in which it is possible to identify compatibilities.

Example. Assume two computational processes C1 and C2,
each having a local 512×32 data structure to store temporary
results. The standard implementation requires two memory
blocks (e.g. two 512×32 BRAMs) for storing the two data
structures because the two processes may access them at the
same clock cycle. However, we can introduce additional signals
between C1 and C2 to serialize the execution so that process
C2 can start only when process C1 terminates and process C1

can restart only after process C2 ends. As a result, the two local
data structures have non-overlapping lifetimes and can be stored
in the same memory block (e.g. a single 512×32 BRAM). �

Two data structures can also share the memory banks when
they are always accessed by mutually exclusive parts of the
accelerator’s code. The analyses of the code to be synthesized
can also identify local data structures of a process that are
never active at the same time, as well as the exact dependences
between input and output ones. For example, when different
computations are performed based on control conditions, dif-
ferent data structures may be read/written; in this case, they
can share the same storage resources because these are always
accessed in mutual exclusion. To identify such compatibilities,
the designer has to perform an accurate dataflow analysis at
different levels, i.e. both on the accelerator’s interconnection
topology and on the code of each process. On the other hand, it
is also possible to use the following conservative assumptions:

• the lifetime of a data structure shared between two pro-
cesses spans from the beginning of the producer execution
to the end of the consumer execution; if there are multiple
consumer processes, the termination of the last consumer
process determines the end of the data structure lifetime.

• local data structures are alive from the beginning to the
end of the process, when they store temporary local data,
or from the beginning to the end of the entire accelerator
execution, when they are used to maintain the state.

Moreover, when accelerators are never executed simultane-
ously, all data structures belonging to different accelerators
are address-space compatible with each other. This allows the
reuse of memory IPs across multiple accelerators.

Based on the characteristics of the available memory IPs,
the designer can decide to implement the data structures in a
larger memory IP.

Example. The two memory-interface compatible arrays B0 and
B1 of the Debayer accelerator in Listing 1 (each having the
size of 2,048×32 bits) can be implemented in standard-cell
technology with a single 4,096×32 SRAM (with array B1

starting in the second half of the memory block), instead of two
2,048×32 SRAMs. In our industrial 32nm CMOS technology,
this reduces the memory area by almost 20%. Conversely, in
FPGA technologies, BRAMs have a maximum capacity of
512×32 bits and we need multiple instances to virtually increase
the size. Since both implementations require 10 BRAMs there
is no difference in using one or the other. �

Memory-interface compatibilities can be also enabled by the
different representations used by the designer who implements
the communication mechanisms in the SystemC design. For
example, the same ping-pong buffer can be represented as a
single data structure with an offset or as two distinct arrays.

Example. Consider again the Debayer accelerator of Listing 1.
The ping-pong buffer between processes compute and output

is implemented with two distinct arrays B0 and B1 (each
containing 2,048 integer values) to be accessed independently.
However, it can be also represented as a single array, whose size
is 2×2,048 integer values since it needs to contain both parts
at different offsets. Even if the two solutions are functionally
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Algorithm 2: Algorithm to determine the physical banks
required to implement each clique.

1 Procedure DeterminePhysicalBanks(Ci)
Data: Ci is the clique to be implemented
Result: N is number of memory IPs required to implement the clique
Result: Size is the size of each memory IP

2 Pi ← GetMinParallelBlocks(Ci)
3 b← GetFirst(OrderByNumBlocks(Nodes(Ci),Pi))
4 N ← GetMinParallelBlocks(b) // current bank number
5 Size← 0 // current capacity of each bank
6 if IsPartitioned(b) then
7 Size← GetDataSize(b) / N
8 else
9 Size← GetDataSize(b)

10 foreach b ∈ OrderByNumBlocks(Nodes(Ci),Pi) do
11 S ← Floor(N/ GetBanks(b))
12 if IsPartitioned(b) then
13 if GetDataSize(b) / GetBanks(b) > Size ∗ S then
14 Size← GetDataSize(b) / (GetBanks(b) ∗S)

15 else
16 if GetDataSize(b) > Size ∗ S then
17 Size← GetDataSize(b) /S

18 〈N,Size〉 ← SplitBanks(N,Size)
19 return 〈N,Size〉

equivalent and the total amount of data to be stored is the same,
the first implementation requires two distinct PLM elements. �

With our approach, we use technology-aware information to
determine the best implementation for the data structures
rather than being limited by the way in which the designer
defines them before HLS.

C. Global Transformations

Definition of Memory Subsystem. We target the problem
of optimizing the memory subsystem at the system level by
identifying possibilities for reusing banks across different data
structures, even from different accelerators. For doing this, let
us first recall the definition of clique.

Definition. A clique Ci of a graph G = (V,E) is a non-empty
subset of nodes (i.e. Ci ⊆ V ) inducing a complete subgraph
(not necessarily maximal) of G. �

In our context, each clique Ci of the MCG represents a set
of data structures that can share the same physical banks
(i.e. a PLM element). Given a clique Ci, each data structure
b ∈ Ci is characterized by the minimum number of parallel
blocks P b needed to satisfy its combined requirements of
read and write interfaces, as described in Section IV. This
information is used to compute the organization of the memory
architecture (in terms of number and characteristics of the
physical banks) for the clique Ci and its cost Ai. We can
thus formulate the system-level memory allocation problem
as a graph partitioning problem.

Definition. Let MCG = (B,E) be the MCG associated with
the set of data structures B. The optimal memory allocation
consists in finding a partition of B into n disjoint cliques C =
(C1, . . . , Cn) of minimum cost. The cost A of a partition is:

A =

n∑
i=1

Ai (1)

where Ai is the cost of clique Ci. The cost A of the entire
memory subsystem is the value to be minimized. �

Algorithm 2 determines the number of banks and their size
to efficiently implement each clique Ci. In our implemen-
tation, each clique has a homogeneous organization, where
all physical banks have the same size. This has multi-
ple advantages: it eases the reorganization of the banks to
store different data structures; it benefits the floorplanning
of the modules by enforcing a regular design [33]; and it
simplifies the logic to create the associated memory con-
troller. Specifically, for each data structure contained into the
clique, we compute its minimum number of parallel blocks
(GetMinParallelBlocks) with the approach discussed
in Section IV. We sort the data structures in a descending
order (OrderByNumBlock), from the one that requires the
maximum number of parallel blocks to the one with the
minimum number. This determines the maximum number of
parallel blocks and, thus, the minimum number of banks that
are required to provide this bandwidth (lines 3-5). We also
determine an initial size for these banks based on the data
allocation strategy to be implemented (lines 6-9).

Then, we analyze all data structures following the same
descending order and we seek for opportunities to reuse the
banks. In particular, when a data structure requires a lower
number of parallel blocks, it can reuse the exceeding ones in
series to virtually increase the capacity of the parallel blocks
(lines 11-17). We also check if the data structure can fit into
this new configuration (line 12). If not, the size of the banks
is updated accordingly to the data allocation strategy.

Example. Let’s assume that the current number of banks is four
(each having size of 128 words) and that we need to store a
data structure which has size of 900 integer values, partitioned
in three parallel blocks. The existing four banks cannot be
redistributed into the parallel blocks and for this reason S = 1

(line 11). Since this organization is not sufficient to store the
entire data structure (line 13), each of the four banks is expanded
to store 300 integer values (line 14). �

On the other hand, if the banks can be rearranged and reused,
it is not necessary to change their size.

Example. Let’s assume that we now have four banks, which have
a size of 300 words, and we need to store a data structure of
512 integer values, which requires two parallel banks (P = 2)
but with data duplication. The four banks can be rearranged in
two blocks of two banks each (S = 2); the two serial banks
provides a virtual capacity of 600 words for each parallel block.
Here we can store the data with a serial reorganization of the
banks without any changes to their size (line 16). �

Finally, if the current size is greater than the largest memory
IP of the library, the banks are implemented with the necessary
number of serial memory IPs (SplitBanks, line 18).

Memory Footprint Minimization. To obtain an efficient
system-level allocation of the memory elements, we partition
the MCG in cliques such that the total cost is minimized
(see Equation 1). The cost of each clique is computed as
the aggregated requirement of resources (either silicon area
or number of BRAMs) for its implementation. Specifically,
we enumerate all admissible cliques and compute the bank
organization for each of them with the above procedure. Based
on the information in the technology library, we associate the
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resulting cost to each clique, which is expressed as µm2 for
standard-cell technologies and as a number of BRAMs for
FPGA technologies.

Selecting the best MCG partition can be formulated as a
clique partitioning problem, which is NP-hard. The goal is to
minimize the memory cost of the system, defined as

MEM =

N∑
i=1

Ai ∗ ci (2)

where N is the total number of admissible cliques, Ai is the
resource requirement of the clique Ci, while ci is a Boolean
variable that specifies whether the clique is included in the
final solution or not.

Given each data structure bi and assuming that Ci represents
the set of cliques that contains bi, we need to ensure that the
data structure is contained into only one clique. Hence, for
each data structure bi, we impose the following constraint:

∀bi :
∑
n∈Ci

cn = 1 (3)

Each of the resulting cliques requires the generation of the
logic to convert the requests from the memory interfaces into
the proper requests to the actual physical banks.

VI. GENERATION OF THE PLM CONTROLLER

This section describes the architecture and the design of
the flexible memory controller that we use to coordinate
accesses between the accelerator logic and the PLM element
architectures that we generate. From the accelerator logic’s
viewpoint, each data structure b has a certain number of
memory interfaces, based on the requirements of the processes
that need to access it. An active request performed by the
accelerator logic on one of these interfaces corresponds to
a memory operation on the data structure b. The physical
implementation of the PLM is transparent to the accelerator
logic, which simply specifies an offset (logical address) with
respect to the beginning of the data structure.

Based on the organization of the PLM element where the
data structure is stored, two steps must be performed for each
memory operation: 1) identify which physical bank effectively
contains the requested data and activate the memory operation
only on that one; and 2) translate the logical address into the
corresponding physical address of the bank.

Example. Let us consider array A0 of the Debayer accelerator
of Listing 1. Let us assume that process compute needs to read
the 6th element of this array. The corresponding read interface
will have an active request with logical address set to 5 (i.e.
A0[5]). If array A0 is implemented with cyclic partitioning
over two banks (e.g. implementation E with two parallel reads),
this corresponds to reading the third element of the second bank.
If cyclic partitioning is performed instead over four banks (e.g.
implementation G with four parallel reads), this corresponds to
reading the third element of the second bank. Conversely, if
array A0 is implemented with data duplication, the access will
refer to the sixth element of any of the banks. �

Each memory interface provides five main signals:
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Fig. 6. Architecture of the Address Translation Unit (ATU) proposed in this
work and address decomposition.

• Chip Enable (CE): it indicates the presence of an active
request on the associated interface.

• Address (A): for processes, it represents the logical
address to be accessed, while, for memories, it corre-
sponds to the physical address to be accessed. In case of
processes, the bitwidth of A corresponds to the size of
the data to be accessed, since they have no information
about the memory organization. In case of memories, the
bitwidth of A corresponds to the size of the memory IP.

• Input Data (D): it represents the data to be written into
the memory and thus it is present only in write interfaces.

• Output Data (Q): it represents the data read from the
memory and thus it is present only in read interfaces.

• Write Enable (WE): when active, the request is a write
operation and the corresponding input data D is valid.

In case of cyclic partitioning over P parallel blocks, the
function to translate a logical address into the corresponding
block address is: block(i) = logical(i)/P . The logic to
implement the translation is greatly simplified if P is a
power of two because the operation can be transformed into a
hardware-friendly shift operation. In case of data duplication,
all banks contain the same copy of the data structure and
the corresponding function is: block(i) = logical(i). When
the address block(i) is larger than the bank capacity Size,
the physical address of the actual bank is determined as:
physical(i) = block(i) mod Size. Again, this operation is
greatly simplified if the bank capacity is a power of two.

With this approach, we need to synthesize the accelerators
only once and we can combine them in multiple scenarios
without any changes. For this, we use a flexible memory
controller with an Address Translation Unit (ATU) that we
generate directly in RTL from a high-level template. The
ATU is generated for each port of the memory banks and
is composed of two parts: 1) the activation unit determines
if the memory interface is accessing a value that is effectively
stored in the bank. 2) the translation unit translates the logical
address from the accelerator logic into the physical address
of the bank. Specifically, each bank has tags assigned during
the controller generation, based on the configuration of the
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data structures. The activation unit then analyzes the memory
request corresponding to a data structure (i.e. Chip Enable
and Address) to determine whether it matches with the related
tags. By construction, in each clique only one request is active
during the same clock cycle time on any given bank port.
Since no more than one activation unit is active at each clock
cycle, the CE signal of one port is the output of an OR gate
with the results of all corresponding activation units as input
(Fig. 6). This signal is also used to control the multiplexing
of the translation units and the values connected to the Input
Data port of the memory when writing.

Example. The PLM controller of Fig. 6 accesses two banks for
two different data structures (A and B) that are never accessed
at the same time. In the upper part, array A is accessed with
two memory-read interfaces and it is thus allocated with cyclic
partitioning over the two banks (tag P ). The less significant bit
of the address is used to identify which bank is accessed by each
operation. In the lower part, array B is larger than the single
bank and it is thus stored with block partitioning over the two
banks (tag S). The most significant bit of the address identifies
which bank is accessed by the memory-read operation. �

The ATU is a specialized component similar to the Memory
Management Unit (MMU) for processor cores. Differently
from the MMU that uses a TLB to convert the addresses, the
ATU design is customized for the specific data structure [34]
and to guarantee that the translation does not introduce any
additional cycle. The ATU architecture is greatly simplified if
both the number of parallel blocks P b and the size of each
physical bank are a power of two. In this case, the logical
address to access a data structure b of size Hb is composed
of dlog2(Hb)e bits that can be decomposed as follows:

dlog2(Hb)e = {dlog2(S)e, log2(Size), log2(P b)}

Hence, the translation unit simply implements signal slicing.

VII. EXPERIMENTAL RESULTS

We implemented our methodology in MNEMOSYNE1, a C++
prototype tool where the problem described in Section V-C
has been formulated as an Integer Linear Programming (ILP)
problem and solved with COIN-OR [35].

A. Experimental Setup

We selected and analyzed several computational ker-
nels from two recently-released benchmark suites, i.e. PER-
FECT [28] and CORTEXSUITE [29]. These suites contain
kernels of various domains of interest, ranging from computer
vision to machine learning. The selected benchmarks, shown in
Table II, represent a variety of memory-access patterns and are
suitable for memory-related optimizations. We designed syn-
thesizable SystemC descriptions of these accelerators starting
from the C-based implementations provided in the benchmark
suites. The structure of all accelerators follows the template de-
scribed in Section II, with multiple communicating processes.

In our experiments, we targeted two different technologies:

1Mnemosyne was the personification of memory in Greek mythology.

TABLE II
DETAILS OF THE APPLICATIONS CONSIDERED IN THIS WORK.

SUITE BENCHMARK DETAILS
DATA SIZE

(MB)

P
E

R
F

E
C

T
[2

8]

Sort Quicksort of 1,024 vectors of 1,024
fixed-point elements each 4.00

FFT-1D One dimensional FFT on 216

fixed-point elements 0.25

FFT-2D
Two dimensional FFT on
4,096×4,096 matrix of fixed-point
values

64.00

Debayer Debayering of a 2,048×2,048-pixel
image 16.00

Lucas Kanade Registration algorithm for a
2,048×2,048-pixel image 32.00

Change Detection Detecting regions of change in five
2,048×2,048-pixel images 320.00

Interpolation 1 Polar format algorithm
(kernel 1, 2,048×2,048-pixel image) 32.04

Interpolation 2 Polar format algorithm
(kernel 2, 2,048×2,048-pixel image) 64.01

Backprojection Back projection algorithm
(2,048×2,048-pixel image) 256.04

C
O

R
T

E
X

S
U

IT
E

[2
9] Disparity Computing pixel distance between

two 1,920×1,080-pixel images 15.82

Principal Component
Analysis (PCA)

Feature extraction from a
5000×1059 matrix of integer values 20.19

Restricted Boltzmann
Machine (RBM)

Model training and prediction on 100
movies for 1,000 users 3.81

Superresolution
Reconstruction (SRR)

Creation of a high-resolution image
from 16 low-resolution images 4.76

• CMOS: an industrial 32nm CMOS process with the
corresponding memory generator to create SRAMs of
different sizes. For this, we generated a library of 18
SRAMs, ranging from 128×16 to 2,048×64. Synopsys
Design Compiler J-2014.09-SP2 is used for logic synthe-
sis, with a target frequency of 1 GHz.

• FPGA: a Xilinx Virtex-7 FPGA device. For this, we
used dual-port 16 Kb BRAMs as memory blocks (in
the six available configurations that have different port
aspect ratios [17]). Xilinx Vivado 2015.2 is used for logic
synthesis, with a target frequency of 100 MHz.

We used Cadence C-to-Silicon 14.2 to generate implementa-
tions for the accelerator logic. Table III reports the number of
data structures to be stored in the PLM of each accelerator
and their total size. It also reports the resource requirements
for the Baseline versions of the accelerators (i.e. without
any proposed optimizations). We report information for the
accelerator logic (LOGIC) and the memory (PLM) for both
technologies (CMOS and FPGA). We then used MNEMOSYNE
to design the memory subsystem for these accelerators in dif-
ferent experiments. As part of each experiment, we performed
RTL simulation with Mentor ModelSim 10.1 to evaluate the
functional correctness and performance of the resulting accel-
erators. This analysis confirmed that all accelerator designs
work correctly without any possible performance overhead
due to the PLM controller. In case of CMOS technology, we
used these simulations also to collect the switching activity of
the generated netlists in order to perform power analysis with
SAIF back-annotations. We also tested our accelerators in an
FPGA-based full-system prototype, where the processor core
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TABLE III
DETAILS OF ACCELERATORS’ IMPLEMENTATIONS.

BENCHMARK DATA CMOS FPGA RESOURCES

STRUCTURES LOGIC PLM LOGIC PLM

(#) (KB) (µm2) (µm2) LUTs FFs DSPs BRAMs

Sort 6 24.00 54,408 210,640 33,312 23,240 0 12

FFT-1D 10 40.00 93,558 299,605 9,357 4,295 144 20

FFT-2D 4 128.00 44,785 785,210 7,195 2,109 59 64

Debayer 4 95.86 9,436 684,355 5,184 1,888 5 48

Lucas Kanade 11 20.28 42,488 319,629 6,831 3,471 48 18

Change Det. 10 62.13 90,420 1,305,130 20,692 6,582 121 70

Interpolation 1 6 48.05 136,689 343,144 25,346 6,517 84 25

Interpolation 2 7 64.05 123,599 441,296 25,649 6,476 55 33

Backprojection 8 99.00 129,153 639,922 19,169 5,031 126 50

Disparity 11 145.56 24,082 2,196,741 14,225 4,033 15 153

PCA 3 117.19 20,539 1,140,592 6,971 2,410 21 80

RBM 8 65.27 24,804 2,888,981 11,544 8,853 6 67

SRR 32 76.20 36,631 1,222,102 11,059 4,264 36 71

running a complete Linux OS executes software applications
that invoke the accelerators through device drivers [7]. The
accelerators that share memory IPs are serialized by their
device driver so that they never execute at the same time.
They also share the same interface with the rest of the system
(i.e. DMA controller and configuration registers in Fig. 1).

B. Single-Accelerator Optimization

In the first set of experiments, we used MNEMOSYNE
to analyze the impact of the proposed optimizations on the
accelerator PLMs. We performed four experiments for each
accelerator: Baseline with no optimizations; Compatibility
where we use compatibility information to share memory IPs
and the computation of the parallel blocks is performed with
a conservative approach; Coloring where the computation of
parallel blocks is performed with our graph coloring-based
approach (Section IV); and Final with all our optimizations
active at the same time. Fig. 7 and Fig. 8 show the results for
the two target technologies, respectively. Each bar represents
the cost of the corresponding memory subsystem (either in
terms of µm2 for CMOS or number of BRAMs for FPGA),
normalized with respect to the Baseline one.

Baseline results show that our methodology can fully auto-
mate the design of accelerators’ memory subsystems. In these
cases, the designer does not provide any information about
compatibilities and MNEMOSYNE generates a conservative
memory subsystem, at the cost of more area.

Compatibility results show that compatibility information
about data structures can be used to reduce the area of the
memory subsystem. For example, we obtain almost a 20% area
reduction in CMOS technology for Sort, FFT-1D, and Lucas
Kanade. However, there is no area reduction when targeting
FPGA for the same benchmarks because the data structures
are larger than the capacity of the BRAMs. Note that these
accelerators were designed for high-throughput processing.
Since all data structures are used for the entire execution of
the accelerator, there is no potential for address-space com-
patibility. Hence, all area savings are obtained by exploiting
memory-interface compatibilities on ping-pong buffers.
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Fig. 7. Normalized area (with respect to Baseline) for each memory subsystem
when the accelerators are designed separately (CMOS technology).
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Fig. 8. Normalized area (with respect to Baseline) for each memory subsystem
when the accelerators are designed separately (FPGA technology).

Coloring results show that the proper identification of
parallel blocks effectively reduces the area of the memory
IPs by 20% on average, especially when the same data
structure is accessed by multiple processes. This optimization
is particularly efficient for Change Detection (up to 45% of
area saving) and most of CORTEXSUITE accelerators. Indeed,
in these accelerators, we avoid unnecessary duplication of
the parallel blocks (and data) by properly sharing memory
interfaces between the different processes.

Final results show that the combined optimizations can
reduce the memory area by around 20% and in some cases up
to 50% (e.g. Change Detection). Similar results are obtained
in terms of power consumption, which is proportional to the
amount of memory required to implement the PLM.

C. Multi-Accelerator Optimization

A Case Study: the RBM application. The implementa-
tion of the Restricted Boltzmann Machine algorithm in the
CORTEXSUITE is used for predicting movie ratings based
on a data set of previous users. To analyze the possibilities
of sharing memory IPs among accelerators, we redesigned
the RBM accelerator previously used by splitting it into
two distinct ones to be optimized separately. The TRAIN
accelerator analyzes the training data to build the underlying
model (i.e. a bipartite neural network), while the PREDICT
accelerator uses this model to make predictions on new users.
For each accelerator, we created three different versions, each
capable of locally storing a variable number of movie ratings
and the correponding part of the RBM model (from 10 to
100 movies). The memory footprint of these data structures
ranges from 64 to 256 KB. This affects the size of the PLMs
and changes the number of DMA data transfers. The resulting
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TABLE IV
AREA SAVINGS FOR THE RBM CASE STUDY.

Tech. TRAIN V0 TRAIN V1 TRAIN V2

CMOS
PREDICT V0 -37.15% -29.84% -24.33%

PREDICT V1 -39.25% -37.29% -29.25%

PREDICT V2 -32.21% -38.20% -37.39%

FPGA
PREDICT V0 -20.90% -28.28% -17.39%

PREDICT V1 -25.27% -42.28% -28.11%

PREDICT V2 -45.39% -30.06% -43.40%

speed-up varies between 10× and 20×. Since, however, the
same computational kernel is repeated over the entire set of
data just with a different number of iterations proportional to
the PLM size, to vary the PLM size has almost no impact on
the area of the accelerator logic.

First, we used MNEMOSYNE to generate distinct PLMs
for each accelerator. This is the baseline for the following
experiments. Then, we combined the different versions of the
two accelerators and we used MNEMOSYNE to generate the
memory subsystem of each of these combinations, allowing
the possibility to share memory IPs. As reported in Table IV,
the sharing of the memory IPs yields area savings ranging
from 18% to more than 45%. Better results are obtained when
the data structures of the two accelerators have similar amount
of data to be stored. In the other cases, the accelerator with
the largest data structures dominates the cost of the memory
subsystem. Results show that MNEMOSYNE can derive an
optimal PLM organization for the given target technology
and memory library. For CMOS technology, the configuration
with TRAIN V0 and PREDICT V1 is the one with the biggest
area improvement (-39.25%), while, for FPGA technology, we
achieve the best results (-45.39%) with TRAIN V0 and PRE-
DICT V2. This area saving can be used to implement bigger
PLMs for each accelerator (improving the overall performance
of the RBM application) at the same total memory cost. Note
that the performance of the RBM application is not affected
because the two phases are always executed serially even
without the reuse of memory IPs.

Resource-Oriented SoCs. To further evaluate the impact of
memory sharing across accelerators for reducing the resource
requirements, we designed four additional systems: Required,
WAMI, SAR, and Cortex. In each system, multiple accelerators
are combined as follows: Required contains accelerators Sort,
FFT-1D, and FFT-2D. WAMI contains accelerators Debayer,
Lucas Kanade, and Change Detection. SAR contains accel-
erators Interpolation 1, Interpolation 2, and Backprojection.
Finally, Cortex contains the four CORTEXSUITE accelerators.

For each of these scenarios, we reused the accelerator
logic that we synthesized for the previous experiments with
no modifications. The memory subsystem is generated with
MNEMOSYNE both with and without activating the sharing
of the memory IPs across accelerators (SHARING and NO
SHARING, respectively). Our flexible memory controller is
used to coordinate the memory requests between the accel-
erator logic and the different PLM elements. Specifically, to
synthesize the accelerators independently (NO SHARING),
we used MNEMOSYNE with no address-space compatibili-

ties between data structures from different accelerators. For
each accelerator of each scenario, this generates the same
PLMs obtained in the single-accelerator scenarios. To share
memory IPs between accelerators, we apply all proposed
optimizations and we specified address-space compatibilities
between data structures of different accelerators. In this case,
we create a single memory subsystem for each scenario, where
MNEMOSYNE identifies the best configuration of the banks.
The experiments are replicated for the two target technologies,
e.g. CMOS and FPGA. Table V shows the results for these
experiments. We report the total number of data structures and
the corresponding memory footprint in KB. Then, for each
scenario, we report the number of PLM elements (i.e cliques)
that have been generated (#Ctrl), along with the size (in KB)
and the cost of the entire memory subsystem. Clearly, when no
sharing is activated, each data structure is implemented with
its own PLM element. Hence, the number of resulting PLM
elements corresponds to the number of initial data structures.
Activating sharing across accelerators allows us to reduce the
number of PLM elements and their total size by implementing
more data structures with the same physical banks. Moreover,
the total area and power are generally reduced by more than
30% and 20%, respectively. Best results are obtained for
applications that have similar data structures in terms of width
and height (e.g. SAR and WAMI). In these cases, the same
configuration of the banks can be instantiated only once and
reused with almost no modifications (i.e. no area overhead).

VIII. RELATED WORK

The specialization of the memory subsystem has been
widely studied since it critical to improve performance, while
reducing both area and power [27], [36]. Recently, many
approaches have been proposed to promote the use of HLS
in the design of specialized accelerators, but memory as-
pects are often ignored. Liu et al. compose pre-characterized
components to create a Pareto set of the entire system [23].
Li et al. extend a method to compose pre-characterized IPs
through a pre-defined architectural template [24] to the design
of the memory subsystem, but without considering design
parameters like the number of memory interfaces [37]. Panda
et al. study how to create custom architectures and improve the
system’s performance, both in terms of memory organization
and data layout [36]. Benini et al. propose a technique to
customize the memory subsystem given an application pro-
filing while accounting for layout information to minimize
power consumption [38]. These approaches can be extended
to hardware accelerators. Baradaran and Diniz propose data
duplication and data distribution to improve performance
while considering the capacity and bandwidth constraints of
the storage resources of the accelerators [39]. Their compiler-
based approach has been extended with a theory for data
partitioning to support more complex data access patterns [26],
[27]. All these approaches are complementary to our work
and can be used to improve our ATU design. However, in
these cases, varying the PLM micro-architecture to share the
memory IPs across many accelerators would require multi-
ple iterations through the HLS steps. In our methodology,
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TABLE V
SCENARIOS WITH MULTIPLE ACCELERATORS SHARING THE MEMORY IPS.

DATA INDUSTRIAL 32NM CMOS XILINX VIRTEX-7 FPGA

BENCH. STRUCTURES NO SHARING SHARING NO SHARING SHARING

(#) (KB) PLM
(KB)

Area
(µm2) #Ctrl.

PLM
(KB)

Area
(µm2)

Diff
(%)

Power
(mW )

Diff
(%)

PLM
(KB) BRAMs #Ctrl.

PLM
(KB) BRAMs

Diff
(%)

Required 13 192.00 192.00 1,295,454 4 140.00 880,237 -32.05 102.86 -22.72 192.00 96 4 136.00 68 -29.17

WAMI 25 178.27 221.00 1,692,080 8 131.00 948,812 -43.93 213.19 -20.85 212.00 106 8 90.00 45 -57.55

SAR 21 211.10 213.00 1,424,362 8 100.00 639,922 -55.07 150.81 -32.10 216.00 108 8 100.00 50 -53.07

Cortex 54 404.23 1,1018.00 7,053,948 32 653.50 4,484,684 -36.42 1,060.95 -20.10 690.00 345 32 368.00 184 -46.67

instead, the global optimization of the memory subsystem is
independent from the optimization of each accelerator (see
Fig. 2). In fact, as shown in Section VII, the logic of each
accelerator is reused without any modifications when creating
multi-accelerator scenarios.

Abdelhadi and Lemieux analyze various techniques to per-
form multiple memory operations in the same clock cycle [14].
Among these, raising the memory frequency is usually limited
by the technology, while bank arbitration affects the acceler-
ator performance. Hence, we focus on register-based RAM
(created by HLS tools) and conflict-free banking (created by
MNEMOSYNE). Similar architectures are created by combining
data reuse, memory partitioning, and memory merging for
FPGA [40]. Zuo et al. extend this approach to the concur-
rent optimization of multiple processes but only to optimize
fine-grained communication, not the memory elements [41].
Desnos et al. explore the sharing and reusing of memory
elements in MPSoCs to minimize memory allocation [32], but
do not consider multi-bank architectures and the constraints
imposed by the limited number of the physical ports. Vasiljevic
and Chow explore the possibilities to store multiple data
structures in the same BRAM through buffer packing [42]. All
these solutions are applied before HLS. This is efficient and
elegant, but it has limitations in case of multiple accelerators
to be jointly designed and optimized. Our approach, instead,
decouples the design of the components from their PLMs.
Hence, it enables the system-level optimization of the mem-
ory subsystem with multiple memory IPs, eventually shared
among different data structures.

Some architectures are aimed at sharing memory IPs across
many accelerators. Lyons et al. propose the Accelerator Store,
where a predefined set of memory IPs are dynamically as-
signed to the accelerators [10]. This requires the memories to
be latency insensitive [30] since their controller may introduce
an overhead. Cong et al. propose a NoC-based architecture
where each tile contains small blocks that are dynamically
composed to create larger accelerators and memory blocks are
shared in each tile [43]. Instead, we generate the memory sub-
system for large accelerators with multiple memory interfaces.
Our work is more similar to the work by Cong and Xiao [44],
who design a crossbar to connect the accelerators to a set
of memory banks so that each accelerator can access multi-
ple ports. However, our specialized PLM micro-architecture
guarantees no performance overhead. It also allows designers
to tailor the memory IPs to the data structures and to apply
technology-related optimizations to this micro-architecture.

IX. CONCLUSIONS

We presented a methodology for the system-level design of
accelerator local memory and a supporting CAD flow which
combines a new tool, MNEMOSYNE, with commercial high-
level synthesis tools. With our approach we can design and
optimize the local memory of multiple accelerators at the
system level, by identifying possibilities to share physical
memory IPs across many data structures. This allows us to
achieve area savings up to 55% compared to the case where
the accelerators are designed separately.
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