
Efficient Synthesis of Networks On Chip ∗

Alessandro Pinto Luca P. Carloni Alberto L. Sangiovanni-Vincentelli
EECS Department, University of California at Berkeley, Berkeley, CA 94720-1772

Abstract
We propose an efficient heuristic for the constraint-driven communica-

tion synthesis (CDCS) of on-chip communication networks. The complex-

ity of the synthesis problems comes from the number of constraints that

have to be considered. In this paper we propose to cluster constraints to

reduce the number that needs to be considered by the optimization algo-

rithm. Then a quadratic programming approach is used to solve the com-

munication synthesis problem with the clustered constraints. We provide

an analytical model that justifies our choice of the clustering cost function

and we discuss a set of experiments showing the effectiveness of the overall

approach with respect to the exact algorithm.

1. Introduction

The continued growth of the number of processors
and IP cores that are integrated on a single die [1] to-
gether with the shift from “computation-bound design” to
“communication-bound design” [6] lead many researchers
to advocate new design methodologies to organize system-
atically communication architectures for System-on-Chip
(SOC). In [9], we proposed Constraint-Driven Communi-
cation Synthesis (CDCS) as a formal method for deriving
automatically the implementation of a communication net-
work of a system from a high-level specification: the re-
sulting network is a composition of basic elements that are
instances taken from a library of pre-defined Intellectual
Property (IP) communication components, such as wires,
repeaters, and switches. In CDCS, the essential communi-
cation requirements that govern all the point-to-point com-
munications among the system modules are captured as a
set of arc constraints in a graph called communication con-
straint graph. Similarly, the communication features of-
fered by each of the components available in the IP com-
munication library are captured as a set of feature resources
together with their cost figures. Then, every communica-
tion architecture that can be built from the available compo-
nents while satisfying all constraints is implicitly encoded
as an implementation graph matching the constraint graph.
Finally, the optimum network is found by solving a con-
strained optimization problem with an exact algorithm. Un-
fortunately, even though some theoretical results enable the
reduction of the size of the search space [9], the compu-
tational complexity of the exact algorithm undermines its
scalability, and, ultimately, the applicability of the approach
to the synthesis of fairly large on-chip networks.

∗This research was supported in part by the GSRC and the SRC.

In this paper we present two efficient heuristics for
CDCS that are based on a decomposition of the optimiza-
tion problem into two steps: (1) we use quadratic program-
ming to compute quickly the cost of satisfying a set of arc
constraints with a shared communication medium, and (2)
we propose two clustering algorithms to single out sets of
constraints that should be considered together. After pro-
viding some background material on CDCS, we discuss
how the exact algorithm of [9] suffers from scalability is-
sues and we summarize the main ideas of our heuristic ap-
proach (Section 2). In Section 3, we start from the assump-
tion that the cost function of an arc implementation is a con-
cave function and we show how this enables the efficient
computation of the cost of “implementing” n arc constraints
with a shared communication medium. Then, we present
two distinct heuristics for clustering of constraints: divisive
clustering and agglomerative clustering (Section 4). Finally,
we report on a set of experiments showing the effectiveness
of our approach (Section 5).

Related Work. In [2], Benini and De Micheli present
network on chip (NOC) as a new paradigm for SOC design
based on an approach similar to the micro-network stack
model [10]. They discuss the design problems and possi-
ble solutions for each level of the stack from the application
level to the physical level through the topology and proto-
col levels. The standard solution of the topology selection
problem is the use of a single bus, but this may turn out quite
inefficient from a power consumption viewpoint. Instead,
[2] suggests to use packet-switching architectures. They fo-
cus on providing some examples of known topologies and
do not discuss the problem of selecting an optimum one.
A methodology centered on the simulation of traces is pro-
posed in [7]: the resulting communication architecture is an
interconnection of well-characterized communication struc-
tures similar to buses. Finally, in [4] the interconnection
structure between computation blocks is fixed (a grid) and
predictable. Information are routed in the communication
network by means of dedicated switches. Constraint-driven
communication synthesis (CDCS) [9] follows an approach
that is inherently different from the previous ones because it
aims to derive a communication architecture as the union of
heterogeneous subnetworks that together satisfy the original
communication constraints given by the designer.

2. A Heuristic Approach for CDCS

A communication constraint graph C G(V,A, p,b) is a
directed bipartite connected graph where each vertex v ∈V

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

is associated to a port of a computational module of the sys-
tem and each constraint arc a∈A represents a point-to-point
communication channel between two modules. The set of
vertices V is partitioned in a set of source ports Vs and a set
of target ports Vt , each vertex v ∈ V has unit degree, a pair
p(v) = (px(v), py(v)) is associated to each vertex v ∈ V to
denote its position on the plane, and a weight b(a) is as-
sociated to each arc a ∈ A to denote the required channel
bandwidth. Given an arc a = (u,v), the distance between its
ports is denoted as d(a) = ||p(u)− p(v)||.

A communication library L = L ∪N is a collection of
communication links and communication nodes. Each node
n ∈ N has a cost c(n). Each link l ∈ L has a set of link prop-
erties: (1) the link length (or, distance) d(l) corresponds to
the length of the longest communication channel that can
be realized by this link, (2) the link bandwidth b(l) corre-
sponds to the bandwidth of the fastest communication chan-
nel that can be realized by this link, and (3) the link cost c(l)
is defined with respect to the other library links based on an
optimality criterion that varies with the type of application.

Given a constraint graph C G(V,A, p,b) and a com-
munication library L = L ∪ N, an implementation graph
I G(C G ,L) = G(V ′ ∪N′,A′) is a directed graph where each
vertex corresponds to either a vertex of V or a communica-
tion node instance from L , each arc is associated to a link
instance from L , and for each arc of C G there is a corre-
sponding path in I G . The cost of an implementation graph
I G is defined as: C(I G) = ∑n′∈N′ c(n′)+∑a′∈A′ c(a′). Gen-
erally, for a given library there are many possible implemen-
tation graphs that satisfy the requirements expressed by the
constraint graph while having different costs. In particu-
lar, one implementation graph, the optimum point-to-point
implementation graph, is guaranteed to exist and it is de-
rived by implementing a single arc constraint independently
from all the others present in the constraint graph. On the
other hand, by analyzing the definition of implementation
graph it is clear that some of its arc implementations may
share paths (i.e. links and/or communication vertices). Fig-
ure 1 illustrated the case where 3 arc constraints share a
path. This structure is called a 3-way merging. In general,
we may have a k-way merging, with 2 ≤ k ≤ |A|. A k-way
merging is characterized by the presence of two communi-
cation nodes: a node s at the beginning of the shared path
and a node t ad the end. This structure models a shared
communication medium such as a bus. Usually, the cost
of an implementation graph is smaller than the sum of the
costs of its point-to-point arc implementations. Hence, it
is natural to define the following constrained optimization
problem that can be seen as a special case of 0-1 integer
linear programming (ILP).

Problem 2.1 Given a constraint graph C G and a commu-
nication library L = L∪N, minimize the cost C(I G) over
all implementation graphs I ′(C G ,L).

t
u

u

v

v

v

2

3

1

2

3

1 u

u

u

v

v

v

2

3

1

2

3

1

s

u

Figure 1. Example of 3-Way Merging.

The exact algorithm presented in [9] to find the solution
of Problem 2.1 is divided in two steps: first a set of can-
didate k-way mergings are generated and added to the set
of minimum-cost point-to-point implementations for all the
given arc constraints, then an instance of the Unate Cover-
ing Problem (UCP) is solved. The algorithm is exact, but it
is computationally expensive and it scales poorly with the
cardinality of the set A of constraint arcs. The main contri-
bution of this paper is the idea of solving Problem 2.1 with
an heuristic approach that is centered around the efficient
solution of a clustering problem [8]. In fact, we focus on
finding an optimal partition of the set A of constraint arcs to
minimize the overall cost of the implementation graph that
is obtained by implementing separately each element of the
partition with an optimum sub-network of communication
library components. We propose two distinct algorithms for
clustering of constraints: a divisive one and an agglomera-
tive one. The former starts from a single cluster contain-
ing all constraints arcs and subsequently consider a series
of smaller clusters that are derived by splitting the larger
ones found at the previous step. Conversely, the latter starts
from considering a set of singleton clusters, one for arc con-
straint, and subsequently attempts to merge smaller clusters
to derive larger ones. In both cases, only a subset of all
possible clustering configuration is considered, and the one
with best implementation cost is chosen. Both algorithms
need an estimation of the cluster cost which, generally, is
represented by a function on a metric space (e.g., the max-
imum distance between members of the clusters). Instead,
we use the actual implementation cost of the cluster. This
would be either a point-to-point channel if the cluster con-
tains only a single constraint or a k-way merging structure
if it contains k arc constraints, with k ≥ 2. For the latter
case, this cost function may be quite complex. However, as
discussed next, a reasonable assumption on the implementa-
tion cost of one constraint allows us to derive a closed-form
expression for the cost of a k-way merging structure.

3. Finding the Structure of an K-Way Merging
In CDCS, the cost of an n-way merging is defined as

the sum of the cost of all arcs plus the cost of all com-
munication nodes in the implementation graph. This sum
depends on the required bandwidths of all the constraint
arcs to be merged and on the position of the corresponding
source and destination ports. We make the following as-
sumption on the cost of the implementation of a constraint
arc: Given an arc a = (u,v) of a constraint graph C G with
bandwidth b(a) = b the cost of its point-to-point implemen-

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

tation is C(a) = f (b) · ||p(u)− p(v)||22, where f (b) is a con-
cave function of b. It is reasonable to assume that the cost
of a communication link depends on the distance to be cov-
ered, while the assumption of the concavity of function f (b)
is justified by the following consideration: the cost of cover-
ing a distance with a link supporting bandwidth 2 ·b should
be at most twice the cost of covering the same distance with
a link of bandwidth b. With the previous assumption we can
show that the cost of a n-way merging can be computed an-
alytically after deriving the detailed structure of an n-way
merging through the solution of a quadratic programming
problem. For each constraint arc ai in the implementation
graph I G we pick the link in the library with the smallest
bandwidth greater then b(ai). Let ci be the cost of this link.
Also we pick the link in the library with the smallest band-
width greater then ∑n

i=1 b(ai) and let c0 be the cost of this
link. Then, the minimization problem can be written as:

min
s,t

n

∑
i=1

ci ·
(||p(u)− p(s)||22 + ||p(v)− p(t)||22

)
+ c0 · ||p(s)− p(t)||22

where s and t are the two communication nodes in th n-
way merging. This problem can be decomposed into two
independent sub-problems along the x,y coordinates of the
plane. For the x coordinate, the minimization problem is:

min
s,t

n

∑
i=1

ci ·
(
(px(u)− px(s))2 +(px(v)− px(t))2)+ c0(px(s)− px(t))2

This can be re-written as minx xT Px+ xT q+ r, where:

x = (px(u), px(v))T , P =
(

∑n
i=0 ci −c0
−c0 ∑n

i=0 ci

)
,

q = −2

(
∑n

i=1 ci · px(u)
∑n

i=1 ci · px(v)

)
, r =

n

∑
i=1

ci · (px(u)2 + px(v)2)

Note that P is responsible for all the quadratic terms while
q for all the linear terms. The matrix P is positive semidef-
inite, the objective function is convex and the problem has
only one solution [3]. The solution to the unconstrained
minimization problem can be computed in closed-form by
setting the gradient of the differentiable function equal to
zero: ∇(xT Px + xT q + r) = 2Px + q = 0 ⇒ x� = − 1

2 P−1q.
The inverse of the matrix always exists unless all costs are
zeroes:

P−1 =
1(

∑n
i=0 ci

)2 −c2
0

(
∑n

i=0 ci c0
c0 ∑n

i=0 ci

)

The cost of the n-way merging is, then, p� = − 1
2 qT x� + r.

Note that P is a two-by-two matrix because the structure of
an n-way merging has only 2 switches s,t. However, one
could envision other structures with more than two commu-
nication nodes. While the sizes of P and q would change
accordingly, the nature of the optimization problem would
remain the same as long as the routing path of the data from
the source to the target ports is decided a priori. If this is not
the case, the optimization problem becomes an instance of
geometric programming that can be still solved easily [3].

4. Hierarchical Clustering of Constraints
We use the cost of an n-way merging to estimate the cost

of a cluster of constraints and we focus on clustering as the

first step towards finding an optimal implementation graph.
As clustering is known to be NP-complete, we propose two
heuristic algorithms: divisive clustering and agglomerative
clustering. Both algorithms explore efficiently a subset of
all possible clustering by generating them using a hierarchi-
cal technique.

1: DivisiveClustering(CG)
2: SG ← deriveSimilarityGraph(CG)
3: SF ← computeSpanningForest(SG)
4: i ← 0
5: while ||SF || > n do
6: (e,sol[i],cost[i]) ← selectSplittingEdge(SF)
7: remove e from SF
8: i ← i+1
9: end while

10: return sol[argminicost[i]]
1: selectSplittingEdge(SF)
2: for all edges e ∈ SF do
3: remove e from SF
4: sol[e] ← Implement(SF)

5: cost[e] ← ∑∀t∈SF
cost(t)
|t|

6: add e to SF
7: end for
8: pick e that minimizes cost[e]
9: return (e,sol[e],cost[e])

Divisive Clustering. This algorithm is centered around
the notion of similarity functions between pairs of con-
straints, which captures the advantage of implementing two
constraints with a shared communication medium as op-
posed to realized them with a dedicated connection. The
similarity function σ(a1,a2) between two constraints a1 and
a2 in C G is defined as σ(a1,a2) = c(a1,a2)−c(a1)−c(a2),
where c(a1,a2) denotes the cost of implementing a1,a2 as
a two-way merging, while c(ai) is the cost of implement-
ing ai as a point-to-point connection. From the constraint
graph C G(V,A, p,b), we derive a directed complete simi-
larity graph SG(W,E,ω) as follows: (1) a vertex w(a) ∈W
is associated to each constraint arc a ∈ A, (2) an edge
e = (w1,w2) ∈ E is drawn between any pair of vertices
w1,w2 ∈W , and (3) a weight ω(e) is attached to each edge
e = (w1,w2) such that ω(e) = σ(a1,a2), where wi = w(ai).
The divisive clustering algorithm is divided in three steps:
First, the similarity graph SG is derived from the constraint
graph C G . This step requires n(n− 1)/2 similarity func-
tion computations. Then, the minimum spanning forest
SF is found for the similarity graph SG . This step takes
time O(E logV) and, since SG is a complete graph, re-
turns a minimum spanning tree. This spanning tree cap-
tures the similarities among the vertices of SG (i.e. the
constraint arcs of C G), as “more similar” vertices end up
being adjacent in the tree. The algorithm proceeds by re-
moving one edge at the time from SF , which becomes a
spanning forest with two trees after the first removal, and,
sees the “generation” of a new tree after each subsequent
removal. The edge to be removed is found invoking the
routine selectSplittingEdge, which returns also the cluster-

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

y

α

α

αα

j+ j+α/2α/2

x

0
2

4
6

8
10

0.5

1

1.5

2

2.5

3
−200

0

200

400

600

800

1000

1200

1400

α

b

d

0
2

4
6

8
10

1

1.2

1.4

1.6

1.8

2
−100

0

100

200

300

400

500

α

c
2

d

Figure 2. Experiment settings (l), σ vs. position and bandwidth (c), σ vs. position and cost (r)

ing encoded by the new forest together with its cost effec-
tiveness (i.e. the cost of the corresponding implementation
divided by the number of trees in the forest). After n invoca-
tions of routine selectSplittingEdge, SF becomes a forest
without edges, while n distinct implementations have been
considered and stored, together with their costs, in the array
variables sol and cost. Finally, the clustering with mini-
mum cost effectiveness is returned. Overall, assuming that
the solution of the quadratic programming problem is ob-
tained with a constant number of operations, the algorithm
complexity can be derived as follows: the main while loop
is executed n times and at the i-th iteration, the inner proce-
dure has to remove/add n− i− 1 edges. So the number of
constant time operations is the sum of the first n− 1 inte-
gers. The complexity is then O(n2).

From its definition, similarity function σ depends on
the constraints specification and on the communication li-
brary. However, by reporting on a couple of experiments,
we show here that the dependency from the library is in-
deed quite weak. In Figure 2, two bounding boxes are de-
picted such that their position in the Euclidean plane de-
pends on two parameters j and α. Let’s assume that the
bounding boxes define two distinct areas where each of two
arc constraints may respectively reside and that the posi-
tion of the source and the destination port of each constraint
are chosen randomly and uniformly within each bounding
box. For a given α, we sweep parameter j to increase the
distance between the two constraints: for each position of
the bounding boxes, we randomly generate 1000 pairs of
constraints and compute the corresponding value of σ. Fi-
nally, we calculate the arithmetic mean. We repeated this
procedure for two different experimental scenarios. First,
we set the bandwidth of the two constraints to be the same
(equal to b) and we repeat the above procedure for different
values of b. In this experiment we consider a communica-
tion library characterized by the following pairs of band-
width and cost per unit length: {(1,1),(2,1.8),(3,2.6),
(4,3.4),(5,4.2),(6,5.0)}. It is easy to verify that the li-
brary is concave, meaning that the cost per unit length as a
function of the bandwidth is a concave function. Figure 2
illustrates the dependency of the mean value of σ on both
α and the required bandwidth b. In the second experiment,

we keep the required bandwidth of the two constraints equal
to 1 and we consider a library presenting two kind of links.
The first link can support a bandwidth equal to 1 with a cost
per unit length c1. The second link can support a bandwidth
equal to 2 with a cost per unit length c2 = c1(1 + δ) where
0 ≤ δ ≤ 1. Notice that for each possible value of delta the
library is still concave. Figure 2(right) shows that the sim-
ilarity function doesn’t depend sensibly on the parameter δ
and, therefore, neither on the characteristics of the library.
To understand this fact, let’s reconsider the quadratic pro-
gramming approach of Section 3. The cost of 2-way merg-
ing can be written as cx = xT Px+xT q+ r =− 1

4 qT P−1q+ r,
where r is independent from the cost c2. Matrix P−1 is the
only factor depending on c2 and is written as follows:

P−1 =
1

c2
1 +2c1c2

(
c2 + c1 c2

c2 c2 + c1

)
=

1
c1(3+2)δ

(
2+δ 1+δ
1+δ 2+δ

)

where the equality holds when c2 = c1(1 + δ). The matrix
eigenvalues are λ1 = 1/c1 and λ2 = −2/(c1(3+2δ)). They
determine the shape of the paraboloid over which the cost
is computed. While λ1 is independent from δ, λ2 has a very
smooth dependency. Hence, the value of the quadratic func-
tion computed at q is almost the same for all the values of δ
(note: q and r don’t depend on δ). In summary, the similar-
ity function can be considered as technology independent,
i.e. only dependent on the problem specification.

1: Agglomerative Clustering(CG)
2: K

0 ← /0
3: for all constraints arcs ai ∈ R do
4: K

0 ← K
0 ∪ai

5: end for
6: l ← 0
7: while |Kl | > 1 do
8: (i, j) ← argminu,v∈[1,n−l]σ(ku,kv)
9: K

l+1 ← K
l\{ki,k j}

10: K
l+1 ← K

l+1 ∪{ki,k j}
11: l ← l +1
12: end while
13: return K

opt where opt = argmint∈[0,n−1]c(K
t)

Agglomerative Clustering. This is a greedy algorithm
that, at each step, considers more complex clusters that are
derived by composing the simpler clusters found at the pre-
vious step. Before, we defined the similarity function be-
tween two constraints. Now, we extend the concept to clus-

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

Exact Algorithm Divisive Agglomerative
|A| cost time cost time cost time
15 4.74 210 15.99 160 5.77 230
20 6.82 1422 15.57 350 6.84 470
25 6,63 8882 18.34 410 8.18 961
30 − t/o 20.38 911 7.12 1932

S3D3

S4

D4

S9

D9

S16

D16

S18

D18

S19

D19

S7

D7

S20

D20
S6

D6

S11

D11

S8

D8

S12

D12

S1

D1

S17

D17

S15

D15

S5

D5

S13

D13

S2

D2

S10

D10S14

D14

Figure 3. Exact algorithm (left), results table (center), agglomerative clustering (right)

ters of constraints. The intuition is the same: the similar-
ity function measures the advantage of implementing two
clusters with the same communication medium versus using
two dedicated media: The similarity function between two
constraint clusters ki,k j is σ(ki,k j) = c(ki ∪ k j)− c(ki)−
c(k j). This function is used by the agglomerative clustering
algorithm to derive an optimum clustering. The algorithm
first builds a single cluster for each constraint in C G . The
set of these clusters is denoted as K

0 = {a1, . . . ,an}. Then,
at each step of the “while loop”, the two more similar clus-
ters are greedily selected and merged together. Thus, the
algorithm considers n distinct clustering configurations be-
fore returning the optimal one from an implementation cost
viewpoint. The complexity of this algorithm is O(n3).

5. Simulation and Result
We implemented the proposed clustering algorithms

in a C++ package called SENC (Synthesis Engine for
Networks-on-Chip). To derive the optimum n-way merg-
ing topology, SENC uses the NEWMAT matrix library [5].
The table of Figure 3 reports the experimental results ob-
tained by running the two clustering algorithms and the ex-
act optimization algorithm from [9]. We used a communi-
cation library with only three types of links having respec-
tively bandwidth 100,500,1000 and cost per unit length
2,2.2,2.4. We randomly generated four constraints graphs
with arc cardinality |A| equal to 15,20,25,30. For each al-
gorithm, we report the cost of the implementation graph and
the CPU time in milliseconds (on a 750MHZ, 256Mbyte
Pentium III). The exponential nature of the exact algorithm
is clear: for |A| = 30 it does not return the solution in the
allotted time (10 minutes). As expected from the complex-
ity analysis, divisive clustering is faster than agglomerative
clustering. However, the latter returns better results that are
quite close to the exact solution (when this is computed).
Note that the cost of the implementation graph may be non-
monotonic in the number of requirements because adding
new constraints may lead to the generation of new merg-
ings with constraints that previously were implemented as
point-to-point dedicated links. The two diagrams of Fig-
ure 3 show the synthesis results for the exact algorithm and
the agglomerative clustering one (case |A| = 20). For each

constraint ai, Si is the source port and Di the target port.
Note the similarities between the results obtained with the
two approaches. Also notice how outliers are singled out by
the clustering algorithm (particularly constraints 3,4,9,18).
Constraints 3,4, and 9 are so short and with low bandwidth
that are better implemented as point-to-point channels. Arc
constraint 18 is oriented orthogonally to all its neighbors,
which are long arc constraints that get merged together.

Concluding Remarks. We divided the optimization
problem of CDCS [9] into two steps: clustering of con-
straints and optimal synthesis of the clustered constraints.
We cast the latter as a quadratic programming problem. For
the former, we developed two heuristic algorithms, divisive
clustering and agglomerative clustering, whose complexity
is respectively O(n2) and O(n3), where n is the number of
constraints. Experimental results show that the agglomer-
ative algorithm is closer to the exact solutions than the di-
visive one, which, however, runs faster. Even though we
focused on bus-based communication networks, the appli-
cability of our approach is quite general because changing
the cluster implementation does not change the nature of the
optimization problem.

References
[1] A. Allan, D. Edenfeld, W. J. Jr., A.B.Kahng, M. Rodgers, and Y. Zo-

rian. 2001 Technology Roadmap for Semiconductors. IEEE Com-
puter, 35(1):42–53, Jan. 2002.

[2] L. Benini and G. De-Micheli. Networks on-chips: A new soc
paradigm. IEEE Computer, January 2002.

[3] S. Boyd and L. Vandenberghe. Convex Optimization. available at
http://www.stanford.edu/ boyd/cvxbook.html, 2000.

[4] W. J. Dally and B. Towles. Route packets, not wires. In Proc. of the
Design Automation Conf., pages 684–689, 2001.

[5] R. Davies. Newmat C++ Matrix Library. available at
http://www.robertnz.net/nm intro.htm, 2000.

[6] R. Ho, K. Mai, and M. Horowitz. The Future of Wires. Proc. of the
IEEE, 89(4):490–504, Apr. 2001.

[7] K. Lahiri, A. Raghunathan, and S. Dey. Efficient exploration of the
soc communication architecture design space. In Proc. Intl. Conf.
on Computer-Aided Design, pages 424–430, 2000.

[8] B. Mirkin. Mathematical Classification and Clustering. Kluwer
Academic Publishers, 1996.

[9] A. Pinto, L. P. Carloni, and A. L. Sangiovanni-Vincentelli.
Constraint-Driven Communication Synthesis. In Proc. of the De-
sign Automation Conf., pages 783–788. IEEE, June 2002.

[10] J. Walrand and P. Varaija. High Performance Communication Net-
works. Morgan Kaufmann,San Francisco, 2000.

Proceedings of the 21st International Conference on Computer Design (ICCD’03)
1063-6404/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

