
Work-in-Progress: An Open-Source Platform for
Design and Programming of Partially Reconfigurable

Heterogeneous SoCs
Biruk B. Seyoum
Computer Science

Columbia University
New York, USA

biruk@cs.columbia.edu

Davide Giri
Computer Science

Columbia University
New York, USA

davide giri@cs.columbia.edu

Kuan-Lin Chiu
Computer Science

Columbia University
New York, USA

chiu@cs.columbia.edu

Luca P. Carloni
Computer Science

Columbia University
New York, USA

luca@cs.columbia.edu

Abstract—Dynamic partial reconfiguration (DPR) enables the
design and implementation of flexible, scalable and robust adap-
tive systems. We present an FPGA-based DPR flow for partially
reconfigurable heterogeneous SoCs that uses an incremental com-
pilation technique to reduce the total FPGA compilation time.

I. INTRODUCTION

By providing the capability to swap only a portion of the

logic on the FPGA at runtime, dynamic partial reconfiguration

(DPR) unlocks a great potential for implementing complex

adaptive systems. Furthermore, it can be used to expand

the space of system design for reconfigurable heterogeneous

system-on-chip (SoC) architectures, which combine general-

purpose processors with multiple domain-specific hardware

accelerators. With the progress in semiconductor technology,

SoCs hosts more and more heterogeneous components, mak-

ing integration very challenging. Addressing these challenges

requires the adoption of system-level design approaches [2]. In

recent years, several open-source platforms have been proposed

to support the system-level design of SoC architectures [1],

[4], [5]. To date, however, most of these platforms target

FPGA technologies only for rapid prototyping or functional

verification purposes, without employing DPR-based design

methodologies. This leaves behind the opportunity to use DPR

for improving system performance and optimizing the FPGA

compilation time (synthesis, place and route, and bitstream

generation runtime) by using CAD-tool parallelism.

Realizing a platform that automates the integration of

partially reconfigurable heterogeneous SoCs while improving

FPGA compilation time demands a system-level design ap-

proach that addresses questions related to: (i) defining a system

architecture that is compliant with DPR-related design con-

straints, (ii) creating algorithms that automate and parallelize

the DPR FPGA flow using commercial CAD tools, and (iii)
extending the heterogeneity of the architecture down to the

FPGA implementation to enable a fine-grained incremental

compilation of the design.

To address these challenges, we developed a DPR-based

system-level design flow for partially reconfigurable hetero-

geneous SoCs. Our flow uses the heterogeneous tile-based

distributed architecture of the open-source platform ESP [3],

[5] as a baseline, and augments its architecture. Moreover, it

introduces a novel DPR design flow that optimizes the bitstream

generation runtime. This work-in-progress paper presents the

incremental flow aspect of our approach. Our flow integrates

an algorithm that enables a find-grained FPGA compilation of

the design as well as a parallelization of the FPGA CAD flow,

to reduce the total FPGA compilation runtime.

II. THE INCREMENTAL FLOW

ESP is an open-source research platform for heterogeneous

SoC design and programming [3], [5]. It combines a scalable

tile-based architecture and a flexibile methodology to integrate

processors and loosely-coupled accelerators on a single chip.

Our incremental flow for DPR focuses on supporting the

introduction of reconfigurable accelerator tiles in ESP, while

all the other tiles remain as static parts of the SoC design.

Our flow introduces a fine-grained FPGA compilation that is

aimed at reducing the recompilation runtime during iterative

FPGA implementations, where only some of the reconfigurable

tiles are modified in each iteration. The incremental flow

detects the presence of newly modified reconfigurable tiles

in the SoC design and generates new partial bitstreams only

for them. The flow also introduces a novel approach for an

on-demand parallelism during the synthesis and place and

route (P&R) stages. While our flow exploits the out-of-context

(OoC) synthesis mode that is offered by Vivado, the P&R of

reconfigurable tiles is performed in parallel, on top of a pre-

implemented static part, by using separate Vivado instances.

The incremental flow utilizes a custom algorithm, which

is described with a high-level pseudo-code in Listing 1. In

each design iteration, the algorithm starts with a comparison

of the SoC configurations between the current and previous

design runs to determine if the static part or any of the

reconfigurable tiles have been modified. The changes in the

static and reconfigurable parts are mainly detected by parsing

the name, type, and additional parameters of the tiles inside

both configurations. If a change is detected in the static part

(e.g., tiles in the static region are modified or the total number

of tiles in the SoC is changed), then this invalidates all the

previous design runs and the algorithm invokes the full flow

to implement the entire SoC (line 16). Instead, if the changes

are only limited to reconfigurable tiles, then the flow performs

25

2022 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES)

2643-1726/22/$31.00 ©2022 IEEE
DOI 10.1109/CASES55004.2022.00019

20
22

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pi

le
rs

, A
rc

hi
te

ct
ur

e,
 a

nd
 S

yn
th

es
is

 fo
r E

m
be

dd
ed

 S
ys

te
m

s (
C

A
SE

S)
 |

97
8-

1-
66

54
-7

29
6-

8/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

A
SE

S5
50

04
.2

02
2.

00
01

9

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 25,2023 at 12:44:58 UTC from IEEE Xplore. Restrictions apply.

Listing 1. pseudo-code for our incremental compile flow
1 //struct variables that hold the esp SoC configuration
2 struct new_config, old_config;
3 int modified_tiles;
4 //implementation mode {PARALLEL or Serial}
5 int mode = PARALLEL;
6

7 //check how many tiles are modified in the current iteration
8 modified_tiles = compare_configs(new_config, old_config);
9

10 //if no tile is modified, exit
11 if(modified_tiles == 0)
12 return 0;
13

14 //check if the SoC configuration is modified
15 if(is_static_modified(new_config, old_config) {
16 goto: run_full_flow(mode);
17 }
18 else {
19 //synthesize newly modified tiles
20 synth_modified_acc_tiles(new_config, mode);
21 }
22

23 //extract resource consumption of tiles from vivado report
24 parse_resource_consumption(new_config, old_config);
25

26 //check if the modified accelerators require more resource
27 //than their predecessors; if so, floorplanning again
28 for(int i = 0; i < modified_tiles; i++) {
29 if(!chk_resource_util(new_config, old_config, i)){
30 floorplan();
31 goto: implement_all_acc_tiles(mode);
32 }
33 }
34 goto: implement_only_modified_acc_tiles(mode);

a parallel OoC synthesis of all the modified reconfigurable

accelerators (line 20).

After the synthesis is complete, the resource consumption of

the new accelerators is extracted (line 24) and is compared to

the resources that are already allocated to the reconfigurable tile

where the new accelerators are to be placed (line 29). If enough

resources are available in the host tiles, then partial bitstreams

are generated only for the modified accelerators by using an

already placed and routed design checkpoint, which contains

the unmodified part of the SoC (line 34). In the worst case, i.e.,

one or more of the newly modified accelerators consume more

resources than what is available in the reconfigurable tiles, a

new floorplanning design step is executed and partial bitstreams

are generated both for the modified and unmodified accelerators

(line 29 - line 31). Note that, even in this worst case, the

algorithm in the incremental flow avoids re-synthesizing the

static part of the design, which usually is the second most time

consuming step after P&R. Our flow uses an open-source DPR

floorplanning tool [6]. Besides its flexibility, the incremental

flow offers an opportunity to save valuable synthesis and

implementation time that would have otherwise been wasted in

re-implementing the full SoC, even for minor changes during

an iterative design.

III. EXPERIMENTAL EVALUATION

To evaluate our incremental flow, we generated three SoC

design instances, with 3x4, 3x5 and 4x5 tile configurations,

respectively. In the SoCs, all the reconfigurable tiles were

instantiated with MAC accelerators from the ESP accelerator

suite. At each design iteration, an incremental percentage of

0 20 40 60 80 100
0

20

40

60

80

100

Modified tiles [%]

D
es

ig
n

ru
n

ti
m

e
[m

in
]

3x4 tile serial

3x4 tile parallel

3x5 tile serial

3x5 tile parallel

4x5 tile serial

4x5 tile parallel

Fig. 1. Total design runtime to generate partial bitstreams for designs with
incremental changes per iteration.

the reconfigurable tiles was modified and the design runtime

to regenerate the new partial bitstreams was recorded. To

guarantee enough resources for the new accelerators in each

tile and to reduce the design sensitivity to resource variations,

the floorplan pblocks were generated with a 10% resources

margin. The experiment was performed in two modes. In the

first mode, the parallel compilation was disabled (denoted as

serial in Fig. 1) and all modified tiles were recompiled using

a single Vivado instance. This demonstrates the net speedup

from our incremental compilation flow without any boost from

parallel P&R. In the second mode, instead, the incremental flow

was executed by also exploiting the CAD-level parallelism.
Fig. 1 reports the results of this experiment. Note that,

without incremental compilation, the design must always be

recompiled fully even for minor modifications. As expected,

the design runs that were executed without parallelism take

longer to complete as more and more tiles are modified. But

even without parallelism, the incremental compilation keeps the

design runtime to a minimum. In addition to this, enabling par-

allel implementation within the incremental flow significantly

reduces the design runtime.
Acknowledgments. This work was supported in part by DARPA (C#:

FA8650-18-2-7862) and in part by the NSF (A#: 1764000). The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or endorsements,
either expressed or implied, of Air Force Research Laboratory and DARPA or
the U.S. Government.

REFERENCES

[1] A. Amid et al. Chipyard: Integrated design, simulation, and implementation
framework for custom SoCs. IEEE Micro, 40(4):10–21, 2020.

[2] L. P. Carloni. From latency-insensitive design to communication-based
system-level design. Proc. of the IEEE, 103(11):2133–2151, 2015.

[3] L. P. Carloni. The case for embedded scalable platforms. In Proc. of the
Design Automation Conf. (DAC), pages 1–6, 2016.

[4] C. Heinz et al. The TaPaSCo open-source toolflow. Journal of Signal
Processing Systems, 93(5):545–563, 2021.

[5] P. Mantovani et al. Agile SoC development with Open ESP. In Proc. of
the Intl. Conf. on Computer-Aided Design (ICCAD), 2020.

[6] B. B. Seyoum et al. FLORA: floorplan optimizer for reconfigurable areas
in FPGAs. ACM Trans. Embed. Comput. Syst., 18(5s), Oct. 2019.

26

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 25,2023 at 12:44:58 UTC from IEEE Xplore. Restrictions apply.

