t.)

Check for
Updates

FLIP2M: Flexible Intra-layer Parallelism
and Inter-layer Pipelining for Multi-model AR/VR Workloads

GABRIELE TOMBESI, Computer Science, Columbia University, New York, United States
JE YANG, Computer Science, Columbia University, New York, United States

JOSEPH ZUCKERMAN, Columbia University, New York, United States

DAVIDE GIRI, Computer Science, Columbia University, New York, United States
WILLIAM BAISI, Columbia University, New York, United States

LUCA CARLONI, Computer Science, Columbia University, New York, United States

Tiled accelerator architectures provide opportunities to optimize the performance of multi-model augmented
and virtual reality (AR/VR) applications through intra-layer parallelism and inter-layer pipelining. However,
balancing these two strategies is a difficult task that demands a flexible architecture to deploy models and an
optimization approach, that is, capable of selecting an optimal strategy from an enormous mapping space. This
article presents FLIP2M, a holistic solution for mapping multi-model AR/VR workloads on tiled architectures.
FLIP2M consists of (1) FLIP, an acceleration fabric that supports a wide variety of optimizations through
flexible on-chip communication, and (2) OASIS, an optimization framework based on dynamic and constraint
programming, that is, capable of selecting an efficient strategy for mapping multi-model workloads onto FLIP.
We demonstrate FLIP2M on an FPGA prototype of FLIP that features 36 accelerators and 7 DDR4 controllers.
Using OASIS-generated mappings for three different multi-model AR/VR workloads, FLIP2M achieves up to
1.94x improvement in latency, 1.37x in energy, and 2.59x in energy-delay product relative to a FLIP baseline
without intra-layer resource allocation flexibility and inter-layer pipelining.

CCS Concepts: « Computer systems organization — System on a chip; Embedded hardware; Interconnection
architectures; Heterogeneous (hybrid) systems; « Computing methodologies — Mixed/augmented reality;
Virtual reality;

Additional Key Words and Phrases: Hardware accelerators, tiled architectures, neural networks, intra-layer
parallelism, inter-layer pipelining, AR/VR workloads, FPGA prototyping, design space exploration

ACM Reference Format:

Gabriele Tombesi, Je Yang, Joseph Zuckerman, Davide Giri, William Baisi, and Luca Carloni. 2025. FLIP2M:
Flexible Intra-layer Parallelism and Inter-layer Pipelining for Multi-model AR/VR Workloads. ACM Trans.
Embedd. Comput. Syst. 24, 5s, Article 85 (September 2025), 27 pages. https://doi.org/10.1145/3762656

This work is partially supported by a DOE award (A#: DESC0024458) and a Columbia Center of Artificial Intelligence
Technology (CAIT) Award.

Authors’ Contact Information: Gabriele Tombesi, Computer Science, Columbia University, New York, NY, USA;
e-mail: gtombesi@cs.columbia.edu; Je Yang, Computer Science, Columbia University, New York, NY, USA; e-mail:
je.yang@cs.columbia.edu; Joseph Zuckerman, Columbia University, New York, NY, USA; e-mail: jzuck@cs.columbia.edu;
Davide Giri, Computer Science, Columbia University, New York, NY, USA; e-mail: davide.giri@columbia.edu; William
Baisi, Columbia University, New York, NY, USA; e-mail: wb2426@columbia.edu; Luca Carloni, Computer Science, Columbia
University, New York, NY, USA; e-mail: luca@cs.columbia.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 1539-9087/2025/09-ART85

https://doi.org/10.1145/3762656

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://www.acm.org/publications/policies/artifact-review-and-badging-current#reproduced
https://orcid.org/0000-0003-2590-0235
https://orcid.org/0009-0003-2024-6542
https://orcid.org/0000-0003-3081-1077
https://orcid.org/0000-0003-4101-4516
https://orcid.org/0009-0009-8161-0444
https://orcid.org/0000-0001-5600-8931
https://doi.org/10.1145/3762656
mailto:permissions@acm.org
https://doi.org/10.1145/3762656
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3762656&domain=pdf&date_stamp=2025-09-26

85:2 G. Tombesi et al.

1 Introduction

Machine Learning (ML) techniques have been rapidly adopted in applications that run on a broad
spectrum of computing platforms, from edge devices to data centers. To meet performance and
efficiency targets, ML models are increasingly deployed on specialized hardware accelerators.

In Augmented and Virtual Reality (AR/VR) applications, multiple Deep Neural Network
(DNN) tasks—such as object detection for obstacle avoidance, hand tracking and hand-pose esti-
mation for intuitive user inputs—are executed concurrently to enhance the user experience [29, 48].

These multi-model workloads exhibit substantial heterogeneity not only across concurrently
executing models but also within individual models; models are composed of a diverse set of
layers, each characterized by distinct computational intensity, dataflow patterns, and memory
footprint. Moreover, as models continue to evolve, they may require the addition of specialized
operators. This pronounced intra-model and inter-model heterogeneity demands flexible hardware
architectures that can dynamically allocate resources to efficiently handle the diverse computational
demands.

A widely adopted approach to addressing these challenges is to exploit intra-layer parallelism
through tiled architectures, in which multiple accelerator cores—connected via a network-on-chip
(NoC)—cooperate to process each layer [14, 15]. These architectures can adapt to layers with
varying sizes and complexities, thereby reducing idle periods for smaller layers and mitigating
data-movement overheads for larger ones. In multi-model AR/VR workloads, intra-layer parallelism
enables dynamic resource allocation, such that the number of accelerators can be tailored to
the computational intensity of each layer and different dataflow strategies can be leveraged to
accommodate the diverse layer types [41, 42].

However, many existing multi-model solutions still process a single layer at a time per model
using all available resources, thus overlooking potential gains from inter-layer pipelining. By
allowing multiple accelerators to process consecutive layers simultaneously, inter-layer pipelining
can significantly reduce costly off-chip memory accesses, which become increasingly expensive
as more models are executed concurrently.

Implementing both intra-layer parallelism and inter-layer pipelining requires advanced
architectural support. Specifically, groups of accelerators must be flexibly allocated to exploit
intra-layer parallelism, while simultaneously fusing consecutive layers into segments to enable
inter-layer pipelining. We define a segment as a sequence of adjacent layers that are executed
concurrently by separate accelerator groups. This approach requires a robust on-chip interconnect
capable of managing complex communication patterns. Moreover, mapping multiple models, each
with different sequences of layers, onto such a system introduces a challenging optimization problem
that involves determining how to partition each model into segments and how to allocate hardware
resources in a manner that maintains high-performance and efficient concurrent execution.

While many existing works exclusively focus on either intra-layer parallelism [16, 21, 24, 25, 28,
50, 53, 55] or inter-layer pipelining [17, 22, 44], only a few consider the integration of these different
execution strategies [3, 15, 35]. No prior work offers a holistic solution that uniformly supports
arbitrarily sized accelerator groups and segments, while effectively exploring the vast mapping space
inherent to multi-model settings. Without a systematic method to explore this space, suboptimal
mappings can lead to underutilization of resources, increased latency, and inefficient use of power.

To fill this void, we developed FLIP2M (Figure 1) as a holistic solution that integrates:

— FLIP — a tiled acceleration fabric that provides flexibility in the allocation of computational re-
sources and off-chip memory bandwidth, both across concurrently executed layers of different
models and along pipelined layers of the same model; FLIP efficiently supports diverse commu-
nication patterns through integratedPeer-to-Peer (P2P) and multicast mechanisms on a NoC.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:3

p
. Segment1 Segment2
Multi-Model Modelt Networks Segmentation g 7

AR/VR Workloads Mappings (NSMs) Mem-Ctri] [Mem-Ctrl] Workload Mapping

o O
T o

Dynamic programming Accelerator Configuration
Constrained programming is_peer =
- Flow src_acc =

num_dst_acc =

FLIP Patterns

00000000
00000
000000

- Ordering N . DMA P2P M-Cast
HW Model 1 Configuration
Cost Model - Resource Model 2 Configuration FLIP Components
© OASIS Framework ® FLIP Acceleration Fabric

Fig. 1. Anoverview of FLIP2M, combining the FLIP acceleration fabric with the OASIS optimization framework.

— OASIS — an optimization framework, based on dynamic and constraint programming (CP),
that determines how to optimally segment DNNs and map them onto a FLIP instance; OASIS
explores the vast space of possible mappings when combining intra-layer and inter-layer
execution strategies in multi-model AR/VR workloads.

To evaluate FLIP2M, we realized an FPGA-based prototype of FLIP that features 36 accelerators.
We used the FLIP prototype to comprehensively evaluate how different OASIS-generated mappings
perform under FLIP’s flexible resource-allocation schemes when executing three different
multi-model workloads for AR/VR from the XRBench benchmark suite [29]. By providing
architectural flexibility to combine intra-layer parallelism with inter-layer pipelining, along with
an optimization framework to navigate the complex mapping space this flexibility enables, FLIP2M
offers a unified and efficient platform capable of meeting the diverse and concurrent demands of
modern multi-model AR/VR workloads. Altogether, our experiments show FLIP2M’s ability to
significantly improve latency (1.94x), energy (1.37x), and energy-delay product (EDP) (2.59x)
when running real multi-model AR/VR workloads.

2 Background
2.1 Heterogeneity of Multi-Model AR/VR Workloads

Modern ML workloads exhibit significant heterogeneity both within individual models and across
multiple different models [14, 15, 53]. This diversity reflects varied design goals, such as maximizing
accuracy in classification tasks, providing pixel-level segmentation, or supporting robust detection
and tracking. Many classification and object-detection networks progressively reduce the spatial
dimensions of feature maps (e.g., via pooling or strided convolutions) while increasing the number of
channels [14]. Segmentation networks like Unet, in contrast, must eventually restore high-resolution
outputs through upsampling or transposed convolutions [15]. Transformer-based models introduce
additional heterogeneity, relying on attention mechanisms and feed-forward blocks with large
matrix multiplications, layer normalization, and other operators that differ markedly from traditional
convolutions [12].

Table 1 summarizes the heterogeneity in both layer configurations and operation requirements
of DNN models. The ratio between the activation and weight sizes for a given layer is one way to
characterize its shape; for MobileNet-v2, the largest such ratio is ~ 137,000 times larger than the
smallest. In addition to standard 2D convolution and matrix-matrix multiplication, these DNNs
rely on depth-wise and up-scale convolutions. This pronounced heterogeneity poses significant
efficiency challenges in terms of both latency and energy consumption, as prior accelerator solutions
are often over-specialized for specific sets of DNN layers.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

Face Recognition

Vgg16 [40]

Min: 0.043, Median: 1.36, and Max: 87.111

85:4 G. Tombesi et al.
Table 1. Heterogeneity in DNN Models Used in AR/VR Workloads [48]
Task Model Per-Layer Activation-Weight Size Ratio Layer Operations
Object Detection MobileNet-v2 [39] | Min: 0.0057, Median: 2.04, and Max: 784 | Conv2D, PW-Conv, DW-Conv, and Residual
Object Classification | ResNet-50 [19] Min: 0.0106, Median: 0.68, and Max: 49 Conv2D, FullyConnected, and Residual

Conv2D, FullyConnected

Keyword Spotting SqueezeNet [20] Min: 0.073, Median: 2.64, and Max: 189.06 | Conv2D, FullyConnected, and Residual
Hand Tracking Unet [38] Min: 0.13, Median: 8.88, and Max: 568 Conv2D, FullyConnected, UpConv, and Concat
QuestionAnswering | MobileBert [43] Min: 0.125, Median: 0.5, and Max: 8 Matrix-matrix multiplication, and Residual

Layer operations include 2D convolution (Conv2D), point-wise 2D convolution (PW-Conv), depth-wise convolution
(DW-Conv), residual block (residual), up-scale convolution (UpConv) and concatenation (Concat).

Intra-layer Parallelism Inter-layer Pipelining ¢ Inter-llr:;:;l?i’:;fining
cycle cycle cycle
acco [| AN acco] acco [][| §
acet OO0 BN acct 1 acct [1O §
acz [|1] EM N acc2 I — acc2 [(N[&
ace3 [|[][] [0 0 o acc3 D ace3 [[§

(a) Intra/Inter-layer parallelism/pipelining for DNN example of batch size = 2

Input Channel (INP) Output Channel (OUTP) Feature Map (FMP)

7 =
F
£ =0 W5 SIEE =5 07
acc0 - accl . - EI - -I \j‘ \j
fe“a'tz‘:; (b) Tensor partitioning for intra-layer parallelism - 1 layer, 2 accelerators
Maps
=] 99 & 98 &
Vas [V e B
Weight
elgnts layer 1 layer 2
acc0 - acet (c) Tensor partitioning for inter-layer pipelining - 2 layers, 2 accelerators

Fig. 2. Intra-layer parallelism and inter-layer pipelining in DNNs.

In multi-model AR/VR workloads, multiple models with distinct layer shapes and operator sets
often run simultaneously, further broadening the range of operational requirements and resource
demands. This concurrency can lead to contention for on-chip compute resources and off-chip
memory bandwidth, complicating the mapping of each layer or operator [15, 53]. Flexible resource
allocation and support for diverse operators (e.g., depth-wise convolution, batch normalization,
pooling) are thus essential for maintaining high performance and energy efficiency. In general,
accommodating both intra-model and inter-model heterogeneity requires hardware designs that
can seamlessly adapt to the varying demands of multi-model AR/VR workloads.

2.2 Execution Strategies in DNNs Acceleration

To address the above challenges, a variety of execution strategies have been adopted, each with
distinct trade-offs in performance and design complexity. Figure 2(a) illustrates these strategies
for a four-layer DNN deployed on four accelerators with a batch size of two. Intra-layer parallelism
partitions the execution of a given layer across all four accelerators, which compute separate batches
sequentially, storing intermediate features off-chip. Inter-layer pipelining, in contrast, dedicates each
accelerator to a single layer; although a single accelerator may become a bottleneck for one layer,

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:5

the computations of distinct layers and different batches can overlap by forwarding intermediate
features on-chip, thereby reducing off-chip memory accesses.

In particular, these strategies can be combined: groups of accelerators can each share the
workload of one layer while simultaneously forwarding outputs to another group assigned to
the subsequent layer. The combined example in Figure 2(a) splits the four accelerators into two
groups, each of which execute two layers, to simultaneously parallelize and pipeline the model’s
execution.

2.2.1 Intra-Layer Parallelism. Intra-layer parallelism focuses on the computational bottlenecks
within a single layer by distributing its workload among multiple accelerators. It can be implemented
using different schemes. Figure 2(b) shows a classification of parallelism schemes, as they apply to
a 2D convolution layer, although they can also be applied to other operations.

— Input Channel Parallelism (INP) : Each accelerator is responsible for a subset of input
channels and the corresponding subsets of filters, generating partial outputs that are
accumulated to form the final result.

— Output Channel Parallelism (OUTP) : Filters are distributed across accelerators, each
of which processes the full set of input channels for its assigned filters, producing complete
output feature maps for those filters.

— Feature Map Parallelism (FMP) : The spatial dimension of the input feature map is
partitioned. Each accelerator processes a distinct spatial region using all the filters; thus, each
produces a complete slice of the output feature maps.

By selecting an appropriate parallelism scheme, the accelerators can optimize utilization and
match the memory constraints of the system. Significant effort has also been devoted to exploiting
fine-grained parallelism within each accelerator through specialized dataflow strategies targeting
various forms of data reuse. Heterogeneous dataflow accelerators [28] further extend this approach
by integrating multiple, distinct dataflows within a single tiled architecture. By contrast, we
focus on combining coarse-grained intra-layer parallelism with inter-layer pipelining, rather than
specializing accelerator dataflows for fine-grained parallelism.

2.2.2 Inter-Layer Pipelining. Complementary to intra-layer parallelism, inter-layer pipelining—
often termed layer fusion—fuses sequentially dependent layers into a pipeline, which we refer to
as a segment. For a given DNN; only one segment is active at any given time, and the execution of the
layers within the segment can be pipelined by forwarding intermediate activations on-chip rather
than storing them off-chip. This can significantly reduce external memory accesses, a benefit that
can be magnified when multiple models are run simultaneously. However, the overhead of filling
and emptying the pipeline [15] and the additional capacity required in the on-chip buffers [44] can
complicate the design. Figure 2(c) shows a simplified example of a two-layer segment executing on
two accelerators in pipeline; the output features of the first accelerator are forwarded to the second
accelerator as input features. For each batch, input features are generally split into smaller feature
chunks that are processed sequentially; this reduces the size of buffers needed to store intermediate
data, but diminishes opportunities for fine-grained data reuse within each accelerator [53].

2.2.3 Parallelism/Pipelining Tradeoffs. As shown in Figure 2(a), intra-layer parallelism can be
combined with inter-layer pipelining, so that some accelerators process one layer while others
concurrently initiate the next. Although this approach can achieve high utilization, balancing these
execution strategies is nontrivial. Large layers benefit from intra-layer parallelism, but small layers
may underutilize hardware and replicating data (weights, inputs, and partial sums) across multiple
cores can increase data-movement overhead. Meanwhile, inter-layer pipelining reduces off-chip
memory accesses but inherently limits opportunities for both coarse-grained intra-layer parallelism

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

85:6 G. Tombesi et al.

(i.e., the number of accelerators dedicated to each layer) and fine-grained data-reuse (i.e, the size
of input features used by each accelerator).

3 The FLIP Acceleration Fabric

In this section, we introduce FLIP, an acceleration fabric for tiled architectures that enables flexible
intra-layer parallelism and inter-layer pipelining, specifically tailored for multi-model AR/VR
workloads. In particular, we describe the architecture of the FLIP acceleration fabric and explain
how DNN layers are mapped onto the target architecture.

3.1 The FLIP Architecture

As shown in Figure 1, the FLIP acceleration fabric has a tiled architecture with two main components:
compute engines and memory controllers. These components are connected by a NoC, which can
scale to support large instances of FLIP with many components, as detailed below.

3.1.1 FLIP Components. The FLIP architecture features two types of compute engines.

Accelerator Tiles implement the core kernels of the target DNN workloads. In the FLIP architec-
ture, these accelerators are coarse grained and execute large tasks, such as an entire layer or a signif-
icant portion of a layer. In addition to compute logic, the accelerator tiles include their own private
buffers. To fill or write back the contents of their buffers, the accelerators issue long load or store bursts
on the system interconnect, respectively. As discussed in Section 3.1.2, these loads and stores can be
served in several different ways. The accelerator tiles do not need to be implemented in a particular way
(i.e., vector lanes, systolic array) or follow a particular programming model; they just must support the
key kernels of the target DNN workloads and interface to the FLIP interconnect to support the required
communication modes. Our accelerator tiles support comprehensive key kernels listed in Table 1.

Reduction Tiles are dedicated to tensor addition, which is critical for combining partial outputs
(e.g., from multiple accelerators executing a shared layer with the INP parallelism scheme of Figure 2)
and for merging features from different branches of a residual block, where each branch is executed
by one or more accelerators. Providing a dedicated compute engine for this task avoids a costly
bottleneck of performing this step from software.

Since both accelerator and reduction tiles perform computations involved in executing portions
of a DNN, we broadly refer to them as compute tiles.

Memory Controllers. The FLIP architecture supports an arbitrary number of memory controllers,
which are used by compute tiles to access off-chip memory (DRAM). This number depends on the
constraints of the system and the target workloads. Supporting multiple memory controllers enables
scaling the memory bandwidth of the system and mitigates the bottlenecks that can occur due to
accelerator contention. Multiple memory controllers also allow for an increase in isolation between
segments, which is important for our proposed optimization approach. When multiple memory
channels are used, the global address space is discretely partitioned among them.

3.1.2 FLIP Communication Patterns. For the efficient mapping of DNN workloads onto the FLIP ac-
celeration fabric, the interconnect must support three different communication patterns. In addition to
the support for these three modes, FLIP requires the ability to dynamically switch between their usage.

Direct Memory Access. FLIP uses direct memory access (DMA) to load data from the memory
controllers into the private buffers of the accelerators. To support efficient transfers of large amounts
of data, the NoC must sustain the bandwidth provided by the memory controllers. Model weights are
always loaded with DMA, while features can also be loaded or stored with DMA when inter-layer
pipelining is not used or when a compute tile is the first or last in a pipeline.

Peer-to-Peer Communication. P2P communication is direct communication between two com-
pute tiles. This is a critical feature for inter-layer pipelining, as it avoids a round-trip to main memory

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:7

(a) Direct memory acccess (b) Peer-to-peer communication (c) Multicast

Fig. 3. Data movements for DMA, P2P communication and multicast. The consumer tiles (acc2 and acc6)
received data from the producer tile (acc1).

when one compute tile (the consumer) uses the output of another (the producer) as its input. When
using P2P, it is important that the downstream compute tile is ready to consume data, that is, sent by
the upstream compute tile; otherwise, data could remain in the NoC, which could result in deadlock.
Because of this, P2P requires synchronization for data transfers between compute tiles; this can be im-
plemented by the compute tiles themselves, the NoC, or the interface logic between the tiles and NoC.

Multicast Communication. When combining intra-layer parallelism with inter-layer pipelining,
it becomes advantageous to support simultaneous communication of data from one compute tile to
multiple other tiles. For example, when leveraging OUTP, each compute tile uses the complete set of in-
putfeatures and a partial set of weights to create a partial set of output features. When the compute tiles
that process the next layer also operate with OUTP, this partial set must be sent to each downstream
compute tile. Multicast communication allows for this with a single transaction on the NoC, avoiding
the costly serialization of transfers and the need to either buffer output data locally or store it off-chip.

Figure 3 provides an illustrative example of FLIP’s different communication patterns in a scenario
where two consumers (acc2 and acc6) process the output of a single producer (accI). When only
leveraging DMA, the producer stores the output of its computation off chip, which is then accessed
by the consumers sequentially (Figure 3(a)). P2P allows the producer’s output to be kept on chip.
However, because there are two consumers of accIl’s data, it must buffer its entire output to
sequentially perform two P2P transactions (Figure 3(b)). Finally, multicast allows the output of acc1
to be sent to both consumers in parallel (Figure 3(c)).

3.2 Workload Mapping

When mapping DNN layers onto FLIP, we can exploit intra-layer parallelism using one of the
three schemes introduced in Section 2.2.1. Each of these schemes provides a way to parallelize the
computation of a single layer across different accelerators. They can also be used to temporally split
the computation into multiple chunks executed on the same accelerator or group of accelerators. As
mentioned in Section 2.2.2, inter-layer pipelining demands reduced input feature sizes to minimize
the additional buffering required for storing intermediate features. For this reason, following
previous designs [44], we apply FMP temporally, while focusing on INP and OUTP for spatial
parallelization. This section illustrates how different on-chip communication patterns emerge when
deploying different parallelism schemes, depending on whether we execute one layer in isolation
(single-layer segment) or fuse consecutive layers into a segment (multi-layer segment).

3.2.1 Single-Layer Segment. In OUTP, each accelerator is assigned a distinct subset of weights,
thus requiring it to load the entire input feature set (via DMA reads) and its assigned weights. It
then writes the complete output channel back to memory. Since each accelerator produces a disjoint
subset of output channels, no communication is needed across accelerators of the same group.
Conversely, in INP, each accelerator processes a portion of the input features, thus generating partial

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

85:8 G. Tombesi et al.

Single-layer Segment : Two-layer Segment : Three-layer Segment
1 1
@O0 OO0 RO20;0,
1 1

Fig. 4. Possible FLIP segments with varying layer numbers and parallelization schemes (OUTP=0and INP=1).

outputs for all output channels. These partial outputs are sent to a reduction tile via P2P transfers.
The reduction tile performs round-robin accumulation of the partial outputs, and ultimately writes
the complete set of output features to external memory.

3.2.2 Multi-Layer Segment. When two or more consecutive layers are combined into a segment
using inter-layer pipelining, the accelerators responsible for a layer must retrieve data directly from
those handling the previous layer. This approach can significantly reduce both latency and off-chip
bandwidth usage, but requires more elaborate on-chip communication patterns.

FLIP provides flexibility in combining parallelism schemes for segments that contain an arbitrary
number of layers. However, our observations indicate two key limitations. First, an INP-OUTP
configuration—where the first group of accelerators (producers) uses INP and the second group
(consumers) uses OUTP—introduces performance bottlenecks in the reduction tile, as it must
consolidate partial outputs from the first layer before the second layer can commence. This overhead
substantially negates the benefits of pipelining, leading us to omit the INP-OUTP scheme from
our analysis. Second, an excessive number of layers within a segment pipeline can degrade overall
system performance, mainly due to increased pipeline filling overhead and reduced parallelism
opportunities, as fewer resources are available per layer [15]. Consequently, we restrict our analysis
to segments comprising a maximum of three layers. Therefore, an invariant of the evaluation
framework and all experiments presented in this work is that, at any given time, no more than three
layers of each model are simultaneously deployed on the FLIP fabric.

With these restrictions in mind, Figure 4 shows the five types of possible segments supported by
FLIP that we consider in the remainder of this work. Specifically, two types of single-layer segments
(OUTP and INP), two types of two-layer segments (OUTP-INP and OUTP-OUTP), and one type of
three-layer segment (OUTP-OUTP-INP). The following explains how we support the two possible
combinations of serial parallelism schemes, namely OUTP-OUTP and OUTP-INP.

— OUTP-INP: The first group executes OUTP on the first layer, dividing the output channels
among themselves. Meanwhile, the second group employs INP on the second layer, each
requiring only a subset of the input channels. The left side of Figure 5(a) shows the simplest
case where the number of producers (Np) is the same as the number of consumers (Np). In
this case, each consumer can receive inputs from the same producer via P2P transfers for the
entire duration of the computation. However, if Np differs from N, then P2P load requests
must be issued differently. For example, when Npis greater than N, a single consumer must
receive multiple subsets of channels from different producers in a round-robin fashion, as
shown in the middle of Figure 5(a) Conversely, if N- exceeds Np, multiple consumers must
receive data from a single producer, as shown on the right side of Figure 5(a)

— OUTP-OUTP: In this case, both producers and consumers use OUTP to parallelize the execu-
tion of the layers to which they are assigned. Each producer generates a distinct chunk of output
channels, but every consumer requires the entire set of input channels. Consequently, mul-
ticast transfers are needed. In this case, each producer sends its outputs to all N destinations
simultaneously, and each consumer receives data from all Np producers, as shown in Figure 5(b)

3.2.3 Inter-Segment Independence Assumption. In the FLIP architecture, each segment can be
allocated to a clustered group of compute engines and memory controllers, as shown on the right

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:9

m===3 P2P ————p MULTICAST @ Varying Source Varying Destination
Np=Ng=2 Np=4>Ng=2 Np=2<Nc=4
Layer1 Layer2 Layer 1 Layer 2 Layer 1 Layer 2 Layer 1 Layer 2

(a) Communication pattern for OUTP-INP
Np=Ng=2 Np=4>Ng=2 Np=2<Nc.=4

Layer 1 Layer 2 Layer 1 Layer 2 Layer 1 Layer 2

(b) Communication pattern for OUTP-OUTP

Fig.5. FLIP communication patterns for a two-layer segment.

side of Figure 1. By confining the on-chip data movement of each segment within its assigned
cluster, the NoC-based interconnect ensures minimal interference between concurrently active
segments. This clustering strategy, combined with the modularity of tiled architectures, guarantees
the inter-segment independence assumption, which greatly simplifies the subsequent cost-modeling
process: the performance of one segment can be estimated in isolation, without exhaustively
analyzing interactions across the entire mesh interconnect. Hence, as FLIP scales to multi-model
scenarios, each segment remains independently analyzable, keeping system-wide complexity
manageable.

4 The OASIS Optimization Framework

This section presents OASIS, a versatile optimization framework that coordinates network
segmentation, resource allocation, and scheduling for multi-model AR/VR applications running on
the FLIP acceleration fabric. Section 3 describes how FLIP’s architectural features enable flexibility
in combining coarse-grained intra-layer parallelism and inter-layer pipelining opportunities. Here,
we show how OASIS leverages that flexibility to handle the inherent heterogeneity of multi-model
AR/VR workloads in terms of both intra-model and inter-model variability.

The OASIS framework aims to optimize the user-specified optimization objective in the
rich mapping space created by the flexible options provided by the FLIP accelerator fabric to
exploit parallelism and pipelining. Although we ultimately target multi-model settings, OASIS is
designed to adapt to situations where only a single model may be running at a given time *. This
contrasts with previous work, which often employs the same strategy for both single-model and
multi-model applications. In OASIS, we distinguish a simpler single-model solver from a more
sophisticated multi-model solver and dynamically select the solver according to the number of active
models.

1(1) Many production pipelines still dedicate an entire accelerator to a single DNN, so a single-model solver remains directly
useful to practitioners. (2) Even inside a multi-model graph, execution often collapses into linear chains of layers from a
single network (for example, in case of inter-model functional dependencies).

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

85:10 G. Tombesi et al.

4.1 Inputs and Mapping Space Definition

OASIS takes two primary inputs: DNN model topologies and the target FLIP prototype. For each
DNN, we assume a model described in an ONNX-style format, including per-layer shapes, operators
(e.g., 2D convolutions, depth-wise convolutions, and up-scale convolutions), and the network’s
connectivity (e.g., residual blocks, concatenations). OASIS is also able to handle static functional
dependencies across the specified input models. The user encodes any required relations directly
in the workload description fed to the solver. Once these dependencies are added, the solver’s
constraint set expands automatically and the mapping/schedule it returns is consistent with the
new topology. The FLIP prototype description includes the number of accelerator tiles, reduction
tiles, and memory controllers available on the SoC. We assume that a single reduction tile is available
for partial-output summations and residual blocks for each model.

As mentioned in Section 3, a segment is a fused stack of consecutive layers of a DNN. Although
OASIS is implemented to support any such segment, we limit our discussion to the five types of
segments of Figure 4. We formally define a segment type (ST) by two characteristics: the segment
depth (sd) —the number of layers in the segment—and the segment parallelism (sp={spy ,....sp,z})—the
list of intra-layer parallelism schemes that each layer of the segment uses. Each layer i of a DNN
can potentially be the start layer of a segment with a given ST. For some layers, the segments
originating from them can cover only a subset of all the supported segment types, depending on
the network topology (e.g., a layer in a residual branch might preclude segments with sd > 1, while
the second-to-last layer of a network cannot start segments with sd > 2).

For each segment with a given ST=(sd, sp), we define a segment resource SR = (g, =
{Nace.15 - Nace sdb Mmem), Which determines how many accelerator tiles each layer in the segment
uses and how many memory controllers the whole segment uses. Consider a FLIP instance with
R accelerator tiles and M memory controllers. Each layer in each segment can use a power-of-two
number of accelerators from {1,2,4,...,R}—provided the total number of accelerators across all layers
in all active segments does not exceed R - and each segment can choose from {1,2,..., M} memory
controllers—provided that the total number of memory controllers across active segments does not
exceed M. Given a network with N layers and a layer i of the network, we define a segment mapping
sm; as the execution of a segment originating from layer i with segment type ST, using a segment
resource SR. We define the space of segment mappings originating from layeri as :

5M(i) = (ST = (Sd’ﬁ)’ SR = (ﬁucc’nmem)l (1)

with sd €{1,2,3}; spr €{0.I}, ngec k €1{1,2,..R}, k €[1,5d]; nyer, €41,2,.., M}
Given a network y, a network mapping is a candidate solution to map the network on the available
FLIP resources and is defined as a sequence of P segment mappings that includes all layers of y:

network mapping=(sm; ,sm ,...,sm;,) € SM (i) x S M (i) xS M (ip), (2)

11

where sm, is the jth segment mapping of the sequence that starts at layer i; and has segment depth
sdj, such that the following conditions hold:

P
i =1, iy =i+sd, Y sd=N. 3)
j=1

Given a description of the input models and available hardware resources, the goal of OASIS is
to find the optimal network mapping from the space of network mappings (N M) for each model,
selecting the sequence of segment mappings that minimizes the cost across all models. This consists
of finding both the optimal partition of the input networks into segments and the optimal allocation
of accelerators, memory controllers, and parallelism schemes for each layer in each segment
mapping. The notation used throughout this section is summarized in Table 2.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:11

Table 2. Notation used in OASIS Formulation

Notation Description

N Number of layers for single-model scenario

N,, Number of layers for network y for multi-model scenario

R Total number of accelerators

M Total number of memory controllers

ST (Segment Type) ST = (sd,sp)

sd (Segment Depth) Number of layers in the segment

sp (Segment Parallelism) (spy,---spsq) = List of intra-layer parallelism scheme for each layer of the segment
SR (Segment Resource) SR = (Figeestmem)

Tace (Mace, 1--Nace,sd) = List of number of accelerators used by each layer of the segment
- Number of the DDRs used by each segment

sm; (Segment Mapping) Mapping of a segment originating from layer i

network mapping = (sml,smiz,..,smil,) Sequence of segment mappings, partitioning the entire network y

SM (i) (sm-space for layer i) (STSR) = Space of segment mappings originating from layer i

N M(y) (network mapping space for network y) | Space of network mappings for network y

Model Ul smleth e NM = SM(1) X SM(2) X SM(3) X SM(&)

//-
/ 4 H
° SM(1) 1\@/ @—'@ 1\®_.@_.®) network mapping o
S D DD ODDD
e smz (sd-1) smz is,d'z) smz_gs_d;?) ‘\, \, \, \/V NPAN <)/ NN \\\77///

sm@) | ~\\ ~~~~~ S AN NG N

smg’ £sd=1) sr/n;»(gd\:\z) smyq £sd=1) P
o SM(3) r@“) SM(4) «@\, (»
(a) (b) (c)

Fig. 6. Space of segment mappings and network mappings for a four-layer network, with fixed 5p,7 ., em-

An example of a four-layer network is shown in Figure 6(a), Figure 6(b) illustrates the space
of segment mappings (SM (i) for each layer i, and Figure 6(c) shows the corresponding space of
network mappings (N M). For simplicity, in this example, we assume fixed parallelism schemes
and resources (Sp,Mgceolmem)- However, when considering these additional knobs, both SM (i) and
N M would encompass a broader set of possible mappings than the ones presented.

4.2 Cost Model

Because OASIS’s goal is to handle the vast mapping space unleashed by FLIP’s flexibility, a robust cost
model is essential to estimate the performance of each segment mapping. Crucially, the inter-segment
independence assumption, enabled by clustering resources at the architectural level, makes the
cost model tractable for multi-model workloads. Whether using an in-house profiler or external
frameworks [27, 31, 37], OASIS users tanot ergeting FLIP benefit from this simplified perspective, as it
enables independent estimation of each segment mappings’s execution cost. This eliminates the need
to model complex cross-segment interference on the NoC, which would otherwise render the search
space prohibitively large. We refer to the target objective cost and latency for a segment mapping sm;,
as estimated by the cost model, as ¢y, and dgp, , respectively. The specific cost c that we seek to min-
imize can be chosen by the user; no matter the chosen cost, the latency is required, as Section 4.4 will
describe.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

85:12 G. Tombesi et al.

i i Example Input Model
Model @_@ _@ Candidate Network Mappings (VM)
Hardware # accelerators tiles @_@_@\\,
Description # memory tiles @ % >>>>>>> Z
(2]

sm,*(sd=1) sm, (sd 2) ;m“(sd:ﬁ)
Single

Model N LN
Pruning \@/‘ \ ,’

(3]
Dynamic
Programming

SM(Ny -1)

@ Segment
Mapping Generator

HW Cost Model
Ssiroce SM(Ny) Optimal Network Mapplng

sm;={ST(sd, $p), SR(Racc: fmem)}. Cam (®) @..@,@,. _®

segment mapping description

Fig. 7. OASIS’s single model solver.

4.3 Single-Model Solver

In this section, we describe our single-model solver, as illustrated in Figure 7, including the
mathematical formulation of its mapping space and our dynamic programming approach to find
the optimal network mapping. We extend this solver for multi-model deployments in Section 4.4.

As mentioned above, the space of possible segment mappings starting from each layer of a N-layer
network (SM (i),1 <i< N) is derived from combining multiple independent knobs (sd, sp, Tizcc» Pimerm)-
A segment mapping generator is used to generate all these configurations for a given input model
and FLIP prototype description @.

Under a single-model deployment assumption, where only one model is active at a time, each
segment, with segment type ST(sd,sp), can fully utilize all the resources of the FLIP acceleration
fabric. Although the parameters of ST and SR collectively determine the cost of executing a given
segment mapping, the segment depth itself (sd) is the only one that inherently governs how much
progress is made in the execution of the network. These observations allow us to apply a pruning
step @ across the parallelism and resource allocation knobs by choosing, for each allowed sd, the
combination of (sp, Ti¢c, Npem) that minimizes the objective cost. Consequently, each layer retains
only one optimal segment mapping for each sd, similarly to the example shown in Figure 6. This
is because the optimal sd cannot be defined a priori, but must be determined in the context of the
execution of the entire network. In our formulation, if a layer i can start segments with possible
sd = 1,2,3, this pruning process reduces SM (i) to at most three segment mappings, one for each
sd, thereby substantially shrinking the search space of the solver.

Even after pruning, the space of network mappings (N M) can remain impractical to explore.
Consider the simplified case of a DNN with layers organized with a linear dependence, i.e., without
any residual blocks. Although there are five possible ST (Figure 4) and a larger amount of possible
SR allocations, the pruning step reduces the number of possible mappings to three per layer. By
defining T(N) as the size of N M for a N-layer network with the characteristics specified above,
we can infer the following linear recurrence :

T(N)=T(N=1)+T(N-2)+T(N—3) where T(0)=1, T(1)=1, T(2)=2. @)

Solving the characteristic equation of the Tribonacci recurrence of Eequation 4 yields

T(N)=0((1 8393)N), which means that the mapping space grows exponentially with the network
depth N, at a per-layer growth factor of about 1.84. For a moderate value of N = 30, we get
T(30)=53,798,080. For N=50, the size of VW becomes prohibitively high. Thus, even after pruning,
exploring all the network mappings remains infeasible even for moderate values of N. Hence, we
introduce a dynamic-programming-based solver to efficiently find the optimal network mapping
©. We represent the network as a directed acyclic graph (DAG) where each node corresponds
to one layer. An edge from layer i to layer g represents the execution of a segment mapping sm;, and
thus is assigned a weight equal to the cost of it. For a single-layer segment from Layer 1 to Layer 2,
the weight matches the cost of the optimal sm; with sd = 1; similarly, for a three-layer segment from

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:13

Layer 2 to 5, the weight is the cost of the optimal sm, with sd = 3. Formally, we define the weight
associated with an edge from layer i to layer gas:

W(i%g):Csmi*(sd:g—Hl)' (5)

Where sm;*(sd = g—i+1) is the optimal segment mapping starting from layer i and executing up to
layer g, i.e., with sd = g—i+1. An optimal network mapping is found by minimizing the cumulative
cost across all arcs from Layer 1 up to Layer N+1:

min[W(i—>g)+C’(g)] 1<i<N,
i

C)= (6)

0, i=N+1

where C(i) is the minimal total cost from layer i onward. Solving this recurrence via dynamic
programming is equivalent to finding the shortest path in the weighted DAG shown in Figure 7. This
approach yields the minimal-cost network mapping with a complexity of O(N-E), where Nis the
number of layers in the network, and E stands for the number of edges leaving a node of the DAG,
which in our setting varies from 1 to the number of allowed segment depth values, i.e., 1< E<3.

In the following subsection, we extend this methodology to the multi-model setting, where multiple

concurrent models must share FLIP’s accelerators and off-chip DDR accesses simultaneously.

4.4 Multi-Model Solver

In a multi-model deployment scenario, multiple models compete for computational resources and
off-chip memory bandwidth. The direct consequence of this is that the assumption considered for
the single-model solver is no longer valid, and the pruning step cannot be applied: for each layer,
all possible segment mappings need to be considered when searching for an optimal solution, even
if they are suboptimal when considered in isolation. As a result, each layer may have up to hundreds
of possible segment mappings, thereby making any approach based on dynamic programming
infeasible for any network with even moderate values of N. For Y independent networks, each
composed of N layers, mapped onto a FLIP instance with R accelerator tiles and M memory
controllers, the size of the joint space of network mappings, under the simplified assumption of
independence in resource allocation across networks, follows a weighted Tribonacci recurrence,
yielding €((|log, R] |log, M] W Y) static configurations. Scheduling any fixed configuration is
a two-resource multi-mode Resource-Constrained Project Scheduling Problem (RCPSP),
that is, strongly NP-hard [45]; its feasible-schedule set already contains at least 20(NY) elements.
Consequently, the combined mapping and scheduling space scales as Q(exp(O(NY))),” i.e., it is
exponential in the problem size, which rules out exhaustive enumeration.

To extend our solver to support multiple DNNs running concurrently on a single FLIP instance,
we adopt a multi-level decision problem formulation, similar to the approach in [21, 28, 35]. We show
the overview of our proposed approach in Figure 8. After generating all possible segment mappings
for each model @, we use a Network Partition Engine @ to split each model into smaller windows
by grouping consecutive layers such that each window encompasses roughly the same number of
multiply-accumulate (MAC) operations. This first partitioning step greatly reduces the search space
by ensuring that each window is more tractable. Because the models may differ in depth and in layer-
wise MAC distribution, some of the later windows can end up holding layers from one model only.
In these cases, we simply treat these windows with the lighter single-model solver, which reaches an
optimal solution quicker for this restricted sub-problem. Otherwise, we feed the multi-model window

21011l = ((Llog, R [log,M])N22NY) = ((ABNY22NY) = (AB2%) " = Q(exp(NYIn(AB2%))) = Q(exp(O(NY)))

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

85:14 G. Tombesi et al.

2]
Network
Partition Engine

wlndow\J@ ®L
- Ce-©

Single-Model
Solver

Constrained Programming
Flow / Ordering / Resource

(0% Nk
P, Nacc’, Minem) = = (SP", Nacc’, Nimem)

% Candidate Network Mappings (VM)
Model1
SMQ) Model1 SM@) Model2

Model2 @—@—

Hardware # accelerators tiles
Description # memory tiles

© Segment
Mappings Generator
HW Cost Model

Optimal Network Mappings

segment mapping description
sm; ={ST(sd,Sp), SR(Racc:nmem)}

Camis Asmi

Fig. 8. OASIS’s multi model solver.

into a CP solver enhanced with SAT (Boolean satisfiability) solving to handle large combinatorial prob-
lems efficiently @. This hybrid method combines classical CP techniques with conflict-driven clause
learning from SAT, greatly improving efficiency on large combinatorial problems. Next, we describe
the variables and constraints for the CP-based formulation of our window optimization problem. *

Decision Variables. For each model y, each layer i in the model, and each segment mapping sm; that
can legally start at layer i, we introduce a binary selection variable x,, s, €{0,1} indicating whether
or not sm; is selected. As shown in Equation (1), each segment mapping sm; specifies: segment depth
(sd), accelerator tiles (sum of the accelerator tiles 77, used across all the layers of the segment) and
memory controllers used in the segment (7,,,,,,)- In addition, the segment mapping is associated with
a cost ¢y, g, and latency dj, s, , obtained from the cost model. When a segment mapping is chosen,
it occupies an interval in time. We assign a start time scheduling variable, t, i, €[0,H] where —-H
is a sufficiently large scheduling horizon. The segment then finishes at ¢, g, +dy’ sy

Flow Constraints per Network. We ensure that the segment mappings from each model partition the
entire network. Mathematically, if SegEnd(v) is the set of all segment mappings that finish at layer v,
we enforce for any candidate network mapping that exactly one segment mapping leaves the firstlayer
of each network and exactly one segment mapping ends at the terminal layer (Equation (7)). For each
intermediate layer v, the number of segments ending at vimust match the number of segments starting
at v; this value can either be 1 if the layer is the first layer in a segment or 0, otherwise (Equation (8)).

Z Xy smy = 1, Z Xy sm; = 1, (7) Z Xy sm; Z ysmV (8)

smy sm;€SegEnd(Ny) sm;ESegEnd(v) sm,,
Precedence Scheduling Constraints. Within each model y, the chosen segment mappings must
not overlap in time in an inconsistent order. Formally, if a segment mapping sm;, covering [layers
fromi to i+, is followed by another segment sm; ., then:

tyom +d, o <t (onlyifx, ,, =1and x, =1). 9)

yosmy; T Yy smy =Ly smyy Xy, sm; ViSmyyg

This constraint ensures that the order of the segments in each model is preserved.

Cumulative Resource Constraints. Considering a FLIP prototype with R accelerator tiles, and M
rnemory controllers, if a segment mapping sm;, starting at layer i of model y, is active in the interval
[ty smysty,sm;+d sz') and requires ry, i, accelerator tiles, then the sum of), i, across all concurrently
active segment mappings cannot exceed R (Equation (10)). Similarly, if a segment mapping sm;
demands m, i, memory controllers, the total memory usage of active segments should not exceed

3For simplicity, in this description we refer to the portion of each network allocated in each window as the totality of the network.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:15

M (Equation (11)).
vte([0,H] : Z (ry,sm,v 'xy,sml-)' l{ty,smi <t< Ly smy "'dy,sml-}S R, (10)
y.sm;
vte [O’H] : Z (my,sm,v 'xy,sml-)’ 1{ty,smi <t< ty,smi +dy,sm,} <M. (11)
y.sm;

We model these additional constraints using cumulative constraints, natively supported by our
CP-solver.

Objective function. We aim to minimize the overall cost across all models, i.e., the sum of costs
for each selected mode. If ¢, s, is the cost of the selected segment mapping sm;, starting at layer
i of network y, then:

M inimizez ch,smixy,smi' (12)

y ism;

5 FLIP Prototype

In this section, we present our prototype of the FLIP accelerator fabric, which is based on
the open-source ESP platform for system-on-chip (SoC) design [6, 32]. We first present our
implementation of the FLIP accelerator tile, and then discuss its integration into a 49-tile SoC
designed using ESP. The SoC is implemented on an FPGA, which provides the basis for developing
a cost model for OASIS and also serves as our evaluation platform for the results presented in
Section 6.

5.1 FLIP Accelerator

In this section, we describe the internal microarchitecture of the accelerator deployed in our FLIP
prototype. The accelerator was designed in SystemC using the MatchLib library [23], which is
based on latency-insensitive design [5], and synthesized using Catapult-HLS, operating with 8-bit
integer precision. To optimize data reuse for both weights and input features, we target a multi-level
dataflow strategy by extending the weight-stationary-local-output-stationary dataflow proposed
by Venkatesan et al. [46]. In our design, weight and input feature reuse are exploited at different
granularities to minimize the on-chip buffer footprint and reduce off-chip memory accesses. For
weight reuse, the accelerator loads a chunk of weights into a dedicated weight buffer and applies
them across all input feature maps (ifmaps), which are loaded in multiple chunks; once it has been
used with all ifmaps, the current weight chunk is replaced by a new one.

Figure 9 shows the detailed microarchitecture of FLIP accelerator tile. The core computational
engine is a Vector eXecution unit (VXE) composed of multiple lanes of 8 MAC units. In our
implementation, the number of lanes is fixed at four, yielding a total of 32 MAC units per accelerator.
The weight buffer is provisioned with sufficient read ports to sustain the full throughput of the
MAC array, allowing multiple weight values to be read concurrently into a weight collector, which is
tightly coupled with the VXE, thanks to the regularity of the access pattern. Accessing input features
poses a greater challenge because parallel access to ifmaps would require duplicating data across
multiple banks. To address this, a Patch EXtractor (PEX) serially reads the required elements
from the ifmap buffer into an input collector. The PEX also applies the appropriate border-handling
methods based on the specified padding configuration. To further reduce the overhead associated
with sequential ifmap accesses, our design reuses ifmaps with a finer granularity by convolving
the collected input data with the corresponding k weight values over the next k clock cycles.

The accelerator implements the logic required for in-place functions such as batch normalization,
ReLU activation, and pooling within a dedicated Special Function Unit (SFU). In addition, the accel-
erator is equipped with a peer communication unit, which provides an additional buffering capacity
required in P2P/multicast scenarios. This buffer retains a portion of the output data so that downstream

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

85:16 G. Tombesi et al.

clk rst conf_info acc_done dma read/write — (D voTile

@D Accelerator Tile
—m—m ’*I h m @ ion Tile

Peer @B Memory Tile
Communication Ifmap Buffer (8KB)] Weight Buffer (16KB) ! !!!,!
Unit (PCU)

read port x vector lane &

Input Collector Weight Collector
|:| Patch Extractor !! !!
[wel = i iy G Eaen
L-lane . . \
Special Functi Vector Execution
Ofmap Buffer (8KB) Eeclal (SanS)uon Engine (VXE) QQ. -.Q

FLIP Accelerator FLIP Prototype

Fig. 9. Detailed implementation of the FLIP prototype.

consumer accelerators can access their inputs as many times as necessary, according to the layer con-
figuration. Furthermore, this unit contains the logic to correctly annotate NoC requests with the source
(for a read) and number of consumers (for a write) for each transaction, ensuring compliance with
the communication protocols of the FLIP architecture. We intentionally keep all micro-architectural
hyper-parameters—such as private-buffer capacity, vector-lane width, and NoC bandwidth—fixed
because the goal of this work is not a full design-space exploration of the accelerator itself, but rather
the mapping/scheduling problem that emerges after on-chip resources are set. Freezing the hardware
lets us isolate the contribution of our solver over the three combinatorial dimensions it controls: (i)
how each layer is partitioned across accelerators (intra-layer parallelism), (ii) how deeply layers are
pipelined (inter-layer pipelining), and (iii) how resources are shared among concurrent models.*

5.2 FPGA Prototype

We integrated the FLIP accelerator into ESP and designed the FLIP prototype shown on the right
side of Figure 5.2. This specific FLIP prototype takes on the architecture provided by ESP for SoC
design; we emphasize that FLIP can take on a different implementation.

In addition to compute tiles, an ESP SoC requires a few additional tile types. First, we included
a processor tile with the CVAG6 core [52] to serve as the host of the system. We use the CVA6 core
to manage the execution of workloads across compute tiles, i.e., configuring compute tiles according
to the workload and mapping strategy. ESP SoCs are self-hosting; however, if FLIP were implemented
as a PCle-attached accelerator, for example, it would not need a processor tile. Second, an ESP SoC
requires an auxiliary tile, which has various peripherals and miscellaneous components. Third,
memory controllers in ESP are encapsulated by memory tiles; in our prototype, we included 7
memory tiles (each with a DDR4 controller), which is the maximum number supported by ESP
for our chosen FPGA board, the Xilinx XCVU19P. Since we chose a 7x7 tile architecture (based
on resource constraints of the FPGA board), our prototype can dedicate the remaining 40 tiles to
implement FLIP compute tiles: 36 accelerator tiles and 4 reduction tiles. The reduction tile is designed
and synthesized same as the accelerator tile, with internal buffer and logic for tensor accumulation.

The 49 tiles are connected by the ESP NoC, which instantiates multiple networks [51]. Two
networks are used by the compute tiles for data transfers; this is necessary to avoid protocol
deadlock. ESP natively supports P2P communication between compute tiles. The synchronization
is implemented with a consumer-initiated request. When a producer is ready to send the data, it
will wait until it receives a request from the consumer, thereby guaranteeing data consumption.

4Extending the framework with an outer design-time loop that co-optimizes buffer sizes, NoC bandwidths, or accelerator
dataflows remains a promising direction for future work and can reuse the same cost-model interface and RCPSP formulation
presented here.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:17

-
o |
]

0% 20% 40% 60% 80% 100%
NoC macceleratortiles reductiontiles mmemorytiles mcputile io tile

(a) (b)

Clocks
15%

Signals

14%

Logic
13%

I o
[

Fig. 10. (a) Resources breakdown for FLIP prototype (b) Power breakdown for FLIP prototype.

However, we needed to make several modifications to ESP to support the desired communication
patterns of FLIP. First, the existing P2P implementation requires that the producer and consumer
have the same access patterns (i.e., number of transactions and size of each transaction). Because
consecutive layers may have different attributes or be parallelized on a different number of
accelerators, consumer and producer accelerators will likely have different access patterns, which
severely limits the ability to use P2P for FLIP. We relaxed the existing constraint and allowed
accelerators to have different access patterns, as long as they agree upon the total amount of data
exchanged. Second, we extended the capabilities of the ESP NoC to support multicast communication;
multicast communication follows the same dimension-ordered routing protocol in ESP’s native NoC.
We extended the NoC packets to carry an array of destinations instead of a single one and modified the
crossbar to forward packets in multiple different directions, when necessary. Finally, ESP accelerators
could previously only have a fixed communication pattern for the entirety of a task. As mentioned
in Section 3.1.2, FLIP requires the ability to dynamically switch between its three communication
patterns and also dynamically vary the target (source or destination) of requests. We modified the
ESP DMA controller to support this capability, and the accelerator can dynamically adjust its com-
munication patterns based on the type of transfer required. For example, weights can be loaded via
DMA, while input features can be obtained with P2P, and output features can be sent with multicast
communication.

Figure 10(a) summarizes the resource utilization and floor-plan of the FLIP SoC prototype
implemented on the XCVU19P FPGA board. Overall, the prototype occupies 47.6 % of LUTs, 21.3
% of registers, 59.6 % of DSPs, and 74.4 % of BRAMs. The majority of on-chip memory is used by the
private buffers inside accelerator and reduction tiles. The use of DSPs is concentrated in accelerator
tiles, where they implement the SFU operators. LUT and registers are mainly consumed by the
accelerator tiles and the NoC logic. The modifications to ESP described earlier in this section to
support the FLIP communication patterns incur overheads of 2.2 % of LUTs and 0.2% of registers,
compared to a baseline prototype without support for inter-layer pipelining. Figure 10(b) also reports
the on-chip power breakdown obtained from post-implementation Vivado power estimates. The
largest contributors are accelerator tiles (0.1 W each), reduction tiles (0.009 W each) and the NoC
(1.96 W). The dominance of these components aligns with their central role in executing the AR/VR
inference workloads mapped onto the prototype.

5.3 FPGA Cost Model and Spatial Allocation Policy

We use our FLIP prototype to profile the space of segment mappings for the networks that are
discussed in Section 6. To guarantee the inter-segment independence assumption, we implement
a dedicated spatial allocation policy that clusters each segment’s assigned accelerators tiles and
memory controllers in contiguous regions of the SoC. First, when a segment mapping requires
a given number of memory controllers (n,,,.,,), these tiles are selected from adjacent locations

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

85:18 G. Tombesi et al.

along the SoC’s perimeter to ensure tight spatial proximity among the memory controllers. Then,
the specified number of accelerator tiles is allocated by selecting the cluster that minimizes the
combined Manhattan distance to the chosen memory tiles. By enforcing a spatial allocation strategy
that isolates segment resources, we support a single-segment cost model, that is, robust enough
to underpin both single-model and multi-model segment mapping.

We collect a dataset of 22,000 samples, covering the space of segment mappings for all the networks
in our benchmarks. Without leveraging the inter-segment independence assumption implemented
with our spatial policy, the dataset collection would require a much more extensive effort. Modeling
deployment scenarios where concurrently active segments share NoC resources to exchange data
among the accelerators is an extremely complex task, that is, beyond the scope of this work.

5.4 Compiler Support for Prototype Execution

The FLIP prototype incorporates a lightweight compiler that translates the optimal network mapping
solution generated by OASIS into executable instructions for the hardware. Starting from the high-
level parameters already embedded in each segment mapping—such as feature dimensions, channel
counts, and activation functions—the compiler augments this information with prototype-specific
details. In particular, it examines the spatial organization of accelerator tiles and memory controllers,
then binds every segment in the OASIS solution to a concrete set of those resources following the
spatial allocation policy specified in Section 5.3. Once a segment has been assigned to its physical tiles,
the compiler derives a complete set of communication descriptors: off-chip access patterns are chosen
to balance traffic across the memory controllers of the segment, while minimizing data duplication
and conforming to the model’s off-chip memory layout, and on-chip routes are defined to enable
peer-to-peer or multicast transfers that match the segment’s parallelism strategy—for example, the
round-robin multicast illustrated in Figure 5(b). Finally, the compiler combines the kernel parameters,
resource bindings, and communication descriptors into a sequence of accelerator-invocation
instructions. In our prototype, these instructions are encoded as configuration tokens, which the ESP
CVAG6 core transmits to the accelerators’ configuration interfaces; other FLIP implementations may
adopt different encoding or transport mechanisms, but the compilation flow remains unchanged.

6 Evaluation
6.1 Experimental Setup

Our experimental evaluation of FLIP2M is based on the prototype introduced in Section 5. We
first present our multi-model AR/VR benchmark, derived from XRbench [29], which encompasses
three distinct multi-model workloads. As summarized in Table 3, each scenario involves a unique
combination of models and batch sizes to reflect different processing rates across different AR/VR
tasks. We then divide our experiments into two main categories: (1) single-model deployments, where
each model is evaluated independently with the full resources of the prototype; and (2) multi-model
deployments, where multiple models are executed concurrently under varying resource constraints.

For each experiment, we collect both latency and energy metrics, and infer the EDP. We record
execution start times through performance counters instantiated in the processor tile and detect the
completion times with the same counters while monitoring the interrupts raised by each accelerator.
The energy values were derived from the Vivado power reports by integrating both static and
dynamic power over the measured execution times of our benchmark suite. We run the solver on
a desktop with an Intel i7-8700K CPU.

6.2 Single-Model Performance

We evaluate three deployment configurations for each model, progressively enabling FLIP2M’s capa-
bilities. In the Baseline, each model runs on all available accelerators (n,.. = 36), with a fixed number of

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:19

Table 3. FLIP2M’s Experimental Multi-model Workload Scenarios for AR/VR use Cases Inspired
by MLPerf [48] and XRBench [29]

AR/VR1 AR/VR2 AR/VR3
Task Model Batch size Task Model Batch size Task Model Batch size
Gaze Estimation ResNet-18 2 Hand Tracking ResNet-34 4 Eye Segmentation Vggl6 2
Keyword Detection ~ SqueezeNet 1 Plane Detection Unet 2 Depth Refinement ~ MobileNet-v2 2
. . . Speech Recognition MobileBert 1 Action Segmentation ~ ResNet-18 4
Object Detection MobileNet-v2 2
Depth Estimation ~ ResNet-50 2 Speech Recognition MobileBert 1

We use sequence length = 64 for MobileBert.

memory controllers (1., =4) and no inter-layer pipelining (sd = 1). FLIP2M-FlexIntra introduces flex-
ibility in selecting intra-layer parallelism strategies and the number of accelerator tiles and memory
controllers, thereby tailoring compute resources and memory bandwidth to each layer’s requirements,
while FLIP2M-Full further enables inter-layer pipelining. We run these three configurations on a
single batch of each benchmark network, specifying three different optimization objectives—latency,
energy, and EDP—for the OASIS single-model solver. Figure 11 summarizes the results.

For each objective search, we plot the objective metric as well as the other metrics in the same
column. Hence, Figure 11 can be analyzed by columns and rows. By column, we can observe the
behavior of three metrics when only one of them is optimized in the given search. By row, we can
observe the behavior of the same metric when it is the subject of the search versus when it is not. For the
latter, the reported values are normalized with respect to those obtained when the metric is the subject
of the search. For example, in the case of the energy metric, the plots in Figure 11(d) and Figure 11(f)
are normalized to the Baseline in Figure 11(e), which reports the value obtained for the energy search.

The results show that enabling FLIP2M features improves performance for most networks. When
minimizing latency, inter-layer pipelining yields a pronounced benefit for seven of the nine models
(Figure 11(a)), while also providing secondary energy and EDP improvements (11(d) and 11(g)), as
reduced idle cycles and fewer off-chip transfers lower the overall execution cost. On the other hand,
optimizing for energy primarily depends on careful intra-layer resource allocation. Consequently,
FLIP2M-Full and FLIP2M-FlexIntra often exhibit similar energy consumption (11(e)). For large
networks such as ResNet-50 and Vgg16, using fewer accelerators to reduce dynamic power can
increase latency, although FLIP2M-Full remains competitive with the Baseline (11(b)). Unet shows
minimal gains in latency, due to its memory-bound structure, where frequent off-chip transfers
dominate. On average, FLIP2M achieves 1.30x, 2.67x, and 2.71x improvements in latency, energy,
and EDP, respectively, when optimizing for each particular objective.

To validate FLIP2M’s scalability in single-model deployments, we compare FLIP2M-Full with
Tangram [15], a state-of-the-art solution to combine intra-layer parallelism and inter-layer pipelining
in tiled architectures. We perform our analysis by varying the number of accelerator tiles (1 to 16) for
ResNet-50and Vgg16, targeting latency as the primary optimization objective. Figure 12 showslatency,
energy, and off-chip memory accesses for each approach across the two networks; each group of bars
is normalized to the single-accelerator case (n,.. = 1) for that approach. Both FLIP2M and Tangram
achieve substantial speedups as more accelerators are added; however, FLIP2M demonstrates slightly
higher improvement factors (e.g., 9.75x vs. 8.96x for ResNet-50 and 16.83x vs. 14.06x for Vggl6 at n,..=
16). This advantage primarily stems from FLIP2M’s combined use of flexible per-layer resource alloca-
tion and inter-layer pipelining, which significantly reduces accelerator idle times and leverages better
data locality at higher accelerator counts. For ResNet-50, FLIP2M exhibits worse energy scaling com-
pared to Tangram due to residual blocks causing partial resource underutilization. Tangram’s on-chip
buffering optimization strategies can more effectively constrain resource usage within these blocks.
Conversely, Vgg16 can better benefit from FLIP2M’s flexible resource allocation for high accelerator

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

85:20 G. Tombesi et al.

0.2

il

5 6 7 8 2 3 4 5 6 7 8

0.8
06
04
02
o (LI
) (i)

1:ResNet-18 2:ResNet-34 3:ResNet-50 4: MobileNet-v2 5:Unet 6: SqueezeNet 7:Vggle 8: MobileBert 9: Average

11

2

Normalized EDP
o R -
. ;
I]

7 8

Latency Search Energy Search EDP Search
- 12 1.6 > 1.2
g 130k S 14 g - - -
g 1 q n 5} g 1 M Al m
k<t ¢ 12 5
o 08 =1 A - = 08
8 os S os 2 oe
T S 06]
E 04 g o £ 04
51 S 04 5]
Z 0.2 z 0.2 Zz 0.2
o 1l 0 L 0 LA VR LR
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
(a) (b) (c)
1.6 12 1.2
Bl g e B[
2 n 2 2
w 1.2 - i w
T 1 _ _ _ - 08 - 0.8
£ g E
EO.S EO.G EO.S
06
§0.4 xg 0.4 g(].tl
LD I 11001 S i
o (M1l 0 L [S
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
1.6 (d) 12 (e) 12 (f)
o 1 - a 1
Bia] & - - an
T 12 b
&7 n _ o 2 o8 S o8
T T
E 0.6 £ 06
s 5
z 0.4 Z 04
“ m]l]l
6 9 3 4 9 1 9
(h

| oBasetne mFLP2M-Flexinva mFLIP2M-Full |

Fig. 11. End-to-end performance of single-model execution. Highlighted barplots indicate the main results
(aligned optimization and evaluation metric).

ResNet-50 Vggle
8 16 8 16 g
5 5
E 12 8.96x 9.75x 438{ £ 12 14.06x 16.83x 1.824
£ =
S 08 S o8 1
=1 °
17 [nat 5 [lna | li
g o lod oo pnEm g , IoXilfla
2 1248161248161 2 4 816/1 2 4 816/1 2 4 8 16/1 2 4 8 16| 2 124816(1 2481612 4 816/1 2 4 816(1 2 4 8161 2 4 8 1§
Tangram FLIP2M Tangram FLIP2M Tangram FLIP2M Tangram FLIP2M Tangram FLIP2M Tangram FLIP2M
Latency Energy Off-chip Access Latency Energy Off-chip Access

Fig. 12. Single-model scalability comparison of FLIP2M against tangram [15].

counts, owing to its homogeneous and stacked convolutional structure. FLIP2M provides substantial
reductions in off-chip memory accesses at higher accelerator counts, achieving 4.38x and 1.88x reduc-
tions for ResNet-50 and Vgg16, respectively. A primary reason for this trend lies in FLIP2M’s flexibility
in distributing resources across layers within segments. Specifically, FLIP’s configurable interconnect
supports diverse P2P and multicast communication patterns, enabling more fine-grained resource allo-
cation and on-chip datareuse. In contrast, Tangram primarily emphasizes buffering strategies that can
help improve synchronization across accelerators assigned to different layers of the pipeline, but does
not exploit interconnect flexibility to the same extent. As a result, Tangram misses opportunities for re-
source allocation optimizations that significantly reduce intermediate off-chip data transfers. Notably,
itsnumber of off-chip accesses holds relatively steady for Vgg16 and rises sharply for ResNet-50, as the
number of accelerators increases.

6.3 Multi-Model Performance

We next evaluate FLIP2M on concurrent multi-model workloads. Figure 13 presents the performance
of each primary metric under different optimization objectives for the AR/VR1, AR/VR2, and AR/VR3
workloads, using a fixed value of partition windows (E=10). Similar to the single-model experiments,

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:21

(a) Latency (b) Energy (c) EDP

N

el
)

1.37x1.27x 1.25x 2.59x 1.91x 1.16x|

b
o o w»

Normalized Latency

Normalized Energy
Normalized EDP

Latency Search | Energy Search EDPSearch Latency Search | Energy Search EDPSearch Latency Search Energy Search EDPSearch

‘ OBaseline DO FLIP-Flexintral @FLIP-Flexintra2 B FLIP-Full

Fig. 13. End-to-end performance of multi-model execution.

we progressively enable FLIP2M’s features under four configurations. Our Baseline disables inter-
layer pipelining, and sets a maximum number of accelerator tiles and memory controllers each model
can use based on its total number of MACs. FLIP2M-FlexIntralremoves the constraint on the maximum
number of accelerator tiles that each model can use. FLIP2M-FlexIntra2 further lifts the memory-
controller limit, allowing each model flexible use of off-chip memory bandwidth. Finally, FLIP2M-Full
adds inter-layer pipelining on top of FLIP2M-FlexIntra2. We again specify the optimization objective
for the OASIS multi-model solver and report each metric normalized to its baseline.

When optimizing for latency, FLIP2M-Full yields clear gains over Baseline and the FlexIntra
variants (Figure 13(a)). Running multiple models concurrently often inflates inference time due
to contention for on-chip resources and off-chip bandwidth, yet FLIP2M-Full mitigates these
penalties by efficiently pipelining layers and allocating accelerator tiles for each active segment. For
AR/VR1 and AR/VR2, FLIP2M-Full achieves 1.94x and 1.69x speedups over the Baseline, respectively,
significantly exceeding the average 1.30x latency improvement observed in the single-model
experiments. While this improvement does come at higher energy cost (13.b), the overall EDP
(13.c) remains competitive with the corresponding Baseline, reflecting how inter-layer pipelining
effectively reduces idle accelerator time under multi-model contention.

Energy consumption across the various searches is shown in Figure 13(b) As in single-model
deployments, the main driver of energy savings is intra-layer resource allocation; thus, FLIP2M-
FlexIntra and FLIP2M-Full often achieve similar results. Under multi-model conditions, concurrency
can further amplify memory bandwidth bottlenecks, which dampens overall energy reduction
compared to the single model experiments. Nevertheless, compared to the Baseline approach, the
FlexIntra configurations demonstrate the benefits of scaling resources to each layer’s intensity.
While the maximum savings are less pronounced than the 2.67x average from single-model
energy searches, FLIP2M still shows meaningful reductions in energy of up to 1.37x. EDP results,
depicted in Figure 13(c), follow similar trends, with more significant gains derived from the reduced
execution time. The FLIP2M-FlexIntra variants typically improve substantially upon the Baseline,
with FLIP2M-Full offering modest yet consistent additional benefits when off-chip memory accesses
can be further reduced through inter-layer pipelining.

Although concurrency can limit certain gains, especially for memory-bound segments, the
multi-model results align with the single-model trends. Flexible intra-layer parallelism substantially
curtails idle compute, while inter-layer pipelining provides notable latency gains under resource
contention. In fact, FLIP2M-Full exhibits higher latency improvements for multi-model workloads
than single-model ones, confirming that dynamic resource and memory bandwidth partitioning
and careful orchestration of segment depths become even more crucial when multiple models run
concurrently. Conversely, energy scaling can be less dramatic, since concurrency often forces heavier
resource usage or leaves certain memory-bound tasks unaffected by additional parallelism. Still,
by tailoring accelerator tile and memory controller allocations layer-by-layer, the FLIP2M-FlexIntra

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

85:22 G. Tombesi et al.

LE03

N 9S-3-NY

LE02

HHH COE (AR omm

B AUPMFewol APMFewa RUPMEA |

LEO1

Runtime (s)
®) Normalized Latency

LE00

i ome Omm Opm [N

Baseline FLIP2M-Flexintral FLIP2M-Flexintra2 FLIP2M-Full ‘

LatencySearch Energy Search EDP Search LatencySearch - ARVRL
DBaseline @FUP2MFlexintral @FUP2M-Flexintra2 @FLIP2M-Ful OE=8 BE-10 BE-12

(a) (b)

Fig. 14. (a) Multi-model solver execution time (b) Ablation study for # windows (E).

variants substantially outperform the Baseline in energy and EDP. Ultimately, these findings validate
FLIP2M as a robust, holistic solution for multi-model AR/VR workloads, achieving meaningful gains
across latency, energy, and EDP, even when facing heightened resource contention.

Figure 14(a) presents the runtime of the multi-model solver across the three objective searches
and the four configurations. The execution time rises steadily as the search space expands from
the Baseline to FLIP2M-Full for all three AR/VR workloads and for every optimization objective. This
is because the FLIP2M-Full setting permits unconstrained accelerator tile and memory-controller
allocation, as well as multi-layer segments. This forces the solver to examine a much larger set
of execution modes at every decision point, which inevitably lengthens the search. Figure 14(b)
reports the latency of AR/VR1 obtained with three different numbers of windows (E), along with the
corresponding solver execution time. As expected, latency consistently improves when the number
of windows is reduced, but at the expense of alonger solver execution time. Fewer windows aggregate
more layers into each window, thereby expanding the search space and increasing the number of
states the solver must explore. Other configurations and objective searches display a similar trend.
Comparison with SET. To validate FLIP2M’s scalability in multi-model deployments, we compare
it with SET [3], the current state-of-the-art framework for exploring intra-layer parallelism and
inter-layer pipelining on tiled architectures. SET provides a rigorous mathematical formulation
of the scheduling space and searches it with simulated annealing, but it cannot spatially partition
resources: all accelerator tiles form a single pool, and layers from different models are executed
by temporally multiplexing the entire fabric. FLIP2M, in contrast, can allocate disjoint groups
of accelerator tiles and memory controllers to different segments and models, allowing several
pipelines of layers to run concurrently. For this study, we extended the public SET release to support
Vgg16 and ResNet-34 and constructed an AR/VR workload consisting of Vgg16, ResNet-50, and
ResNet-34 (batch size = 4). For both frameworks, we set the EDP as the optimization objective and
swept the number of accelerator tiles from 4 to 32 (SET cannot target n,..=1,2). Figure 15 reports
the resulting EDP, energy, and latency. FLIP2M scales better in EDP at every tile count, reaching
a10.45x reduction at 32 tiles versus 9.35x for SET. The energy trends reveal the root cause: FLIP2ZM
lowers energy as the fabric grows, by up to 1.69x at n,.. = 32. This is primarily because FLIP2M
can apply inter-layer pipelining to multiple models simultaneously and keep resources utilized
while avoiding redundant data movement. By contrast, SET processes only a single model at any
given time; when heterogeneous layers are deployed, this leads to higher resource under-utilization.
Consequently, its energy consumption rises slightly as additional tiles are added. SET displays better
scalability for latency, largely because it allows segments deeper than three layers and employs an
Eyeriss-style [7] tiled micro-architecture, that is, optimized for throughput. FLIP2M limits segment
depth to three, both to bound the solver complexity and because, as mentioned in Section 3.2.2, deeper
pipelines are demonstrated to yield diminishing returns. In addition, the design of the accelerator
tile in our FLIP prototype is tuned primarily for energy efficiency rather than minimum latency.
Nevertheless, the latency advantage of SET is offset by its higher energy consumption, so FLIP2M

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:23

I
N
In
)

1.69x

I
IS
I
~

Normalized EDP
o
@
©
DE—]
x
=
* I
Y
<
Normalized Energy
o
o
Normalized Latency
o o
IS @

o
IS
©
=
o
W
S
o
IN
o

8 16 32 4 8 16 32

WSET OFLIP2M

Fig. 15. Multi-model scalability comparison of FLIP2M against SET [3].

delivers superior EDP scalability, which is the critical metric for our edge-class multi-model AR/VR
use case.

7 Related Work

Multi-Tenancy in Accelerators. The widespread adoption of DNNs has resulted in numerous
works that address multi-model workloads in accelerator designs [2, 8, 16, 26, 28, 50]. Several
works address multi-model execution by relying on temporal partitioning, where the full set of
resources of the accelerator is allocated to one model at a time, while advanced scheduling and
pre-emption techniques are utilized to balance fairness, throughput, and service-level agreements
(SLAs). PREMA [10] introduces fine-grained pre-emptive scheduling, in which dynamic task-score
adjustment maintains both fairness and SLA compliance. AI-MT [1] proposes a load-balancing policy
that reduces resource under-utilization through a combination of memory-block prefetching and
compute-block merging. Sparse-DySta [13] couples a static scheduler—using sparsity-aware latency
estimates to derive initial priorities—with a dynamic runtime component that updates those priorities
based on observed behaviour. Layerweaver [36] further improves utilization and throughput by
deploying a greedy scheduler that heuristically estimates the cost of alternative scheduling decisions.
A second line of work augments temporal partitioning with spatial partitioning, dividing the
on-chip fabric in order to run multiple models concurrently. Planaria [16] and Dataflow-Mirroring [9]
propose different variants of dynamic architecture fission: an omni-directional systolic array paired
with a reconfigurable interconnect can be split into independent sub-arrays on demand, each assigned
to a different model or task. MOCA [26] optimizes memory bandwidth partitioning to reduce con-
tention. Additionally, heterogeneous accelerator designs such as HDA [28] and JNPU [50] incorporate
various dataflow strategies for enhanced data reuse. Li et al. [30] propose a tensor-arrangement
framework that tackles data-dimension conversion from the linear off-chip address space to the
parallel on-chip tensor execution. Their approach decouples data memory from compute through
a block-based, adaptive data layout that dynamically matches data dimensions during processing,
thereby accommodating dataflow variability. MAGMA [21] and H3M [53] propose custom genetic
algorithm-based optimization methods for the multi-model mapping problem. M2M [54] proposes
a communication-aware block mapping tool for chiplet-based accelerators using a simulated
annealing algorithm. However, these approaches have not considered inter-layer pipelining.
Inter-Layer Pipelining. Several works have explored inter-layer pipelining as an optimization tech-
nique [15, 17, 44]. DeFiNES [33] proposes a unified framework which extends the scheduling space of
existing analytical models [27, 31, 37, 49] with deep layer-fused execution, where the feature maps are
split into serialized computation nodes, to allow for intermediate on-chip feature forwarding across
different layers. STREAM [44] extends this framework to multi-accelerator platforms, while Deep-
Frack [17] primarily emphasizes efficient on-chip caching for improved data reuse. Colleman etal. [11]
extends STREAM with support for transpose and softmax layers, therefore enabling layer-fusion
for transformers. Tangram [15] proposes several optimization strategies to reduce buffering require-
ments for inter-layer pipelining. SET [3] provides a rigorous mathematical notation for describing the

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

85:24 G. Tombesi et al.

scheduling space created by inter-layer pipelining on tiled architectures and introduces a simulated-
annealing-based framework to explore that space. Gemini [4] extends the SET framework to large-
scale chiplet accelerators by augmenting the mapping engine to minimize expensive die-to-die (D2D)
traffic,and by incorporating a monetary-cost evaluator that estimates the fabrication expense of differ-
ent architectural candidates. Nevertheless, these methods lack flexibility to combine intra-layer par-
allelism and inter-layer pipelining and do not support spatial partitioning for multi-model execution.
Combined Multi-Model and Inter-Layer Pipelining. Limited research has integrated
multi-model execution with inter-layer pipelining. SCAR [35] addresses multi-model execution
in chiplet-based architectures, pipelining segments across different chiplets, but lacks flexibility
in tailoring intra-layer resource allocation while pipelining layers. In contrast, our proposed FLIP2M
uniquely combines intra-layer parallelism and inter-layer pipelining with robust multi-model
support, significantly enhancing flexibility and efficiency compared to previous approaches.
Multi-Tenancy in GPUs Contemporary GPUs support spatial resource partitioning via Multi-
Instance GPU (MIG) [34], which divides a single device into as many as seven fully isolated instances,
each with its own set of streaming multiprocessors (SMs), L2 cache banks, and HBM memory
slices—conceptually similar to FLIP’s “accelerator-tile + memory-controller” groups. MIG, however, is
available only on high-end A100/H100 data-center parts whose power and area envelopes are roughly
two orders of magnitude larger than those acceptable for edge-class AR/VR platforms. In contrast,
Jetson-class GPUs (Nano, Xavier NX, and Orin NX) offer no hardware support for partitioning the
on-chip interconnect or DRAM interface into instance-private lanes; all the compute units contend
for the same DRAM channels and share a global warp scheduler. Consequently, prior edge-GPU
work addresses multi-model execution almost exclusively through temporal multiplexing [18, 47].
Workload Dynamicity DREAM [25] demonstrates that dynamic workloads make system load
unpredictable, challenging ML accelerators that depend on deterministic latency estimates for static
schedules. To cope with variability at the task, model, and operator levels, DREAM continuously
monitors the environment request stream and system state, scores candidate layer—accelerator
mappings with pre-profiled latency/energy data, adaptively tunes its scheduling parameters, and
dynamically dispatches or drops tasks to keep all models within their real-time deadlines. OASIS
does not support dynamic inter-model dependencies, but its main contribution is orthogonal to these
run-time challenges. We focus on an accelerator architecture whose regular 2-D mesh enables a
flexible combination of intra-layer parallelism and inter-layer pipelining, not addressed by DREAM,
and on formulating mapping and scheduling as a multi-mode RCPSP solved for latency-optimal,
energy-optimal, or EDP-optimal static deployments. The resulting FLIP2M infrastructure can serve
as a foundation on which future work can build the kind of run-time monitoring and adaptive
re-scheduling pioneered by DREAM—re-using our cost model and optimization framework while
extending them to fully dynamic real-time multi-model (RTMM) settings.

8 Conclusion

Combining intra-layer parallelism and inter-layer pipelining is critical for deploying multi-model
AR/VR workloads on tiled accelerator architectures; in this article, we developed FLIP2M to address
the challenges associated with doing so. Intra-layer parallelism offers the flexibility to adapt to the
heterogeneous demands from different layers, while inter-layer pipelining alleviates the burden
of costly off-chip accesses. The FLIP accelerator fabric supports these optimizations through its
flexibility for both coarse-grained parallelism and on-chip communication patterns; its high-level
architectural approach can support different accelerator implementations. We also presented OASIS,
an optimization framework to help navigate the enormous mapping space when deploying both
single-model and multi-model workloads on the FLIP architecture. We prototyped an instance
of FLIP, implemented as a 49-tile SoC architecture, on an FPGA device using the ESP platform.

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:25

Our experimental results show that, when running real multi-model AR/VR workloads, FLIP2M
achieves up to a 1.94x improvement in latency, a 1.37x reduction in energy consumption, and a
2.59x improvement in the EDP compared to a FLIP baseline configuration. We plan to publicly
release FLIP2M, including our implementation of the FLIP prototype and the OASIS optimization
framework, as open-source artifacts to support future research on this topic.

References

[1] E.Baek, D. Kwon, and J. Kim. 2020. A multi-neural network acceleration architecture. In Proceedings of theACM/IEEE
47th Annual Intl. Symp. on Computer Architecture (ISCA). 940-953.

[2] F.G.Blanco, E. Russo, M. Palesi, D. Patti, G. Ascia, and V. Catania. 2024. A deep reinforcement learning based online
scheduling policy for deep neural network multi-tenant multi-accelerator systems. In Proceedings of the Design
Automation Conf. (DAC). 1-6.

[3] J. Cai, Y. Wei, Z. Wu, S. Peng, and K. Ma. 2023. Inter-layer scheduling space definition and exploration for tiled
accelerators. In Proceedings of the Intl. Symp. on Computer Architecture (ISCA). Article 13, 17 pages.

[4] J.Cai, Z. Wu, S. Peng, Y. Wei, Z. Tan, G. Shi, M. Gao, and K. Ma. 2024. Gemini: Mapping and architecture co-exploration
for large-scale DNN chiplet accelerators. In Proceedings of the 2024 IEEE Intl. Symp. on High-Performance Computer
Architecture (HPCA). 156-171.

[5] L.P.Carloni. 2015. From latency-insensitive design to communication-based system-level design. Proc. of the [EEE 103,
11(2015), 2133-2151.

[6] L.P. Carloni. 2016. The case for embedded scalable platforms. In Proceedings of the Design Automation Conf. (DAC).
17:1-17:6.

[7] Y. Chen, J. Emer, and V. Sze. 2016. Eyeriss: A spatial architecture for energy-efficient dataflow for convolutional neural
networks. In Proceedings of the 43rd Intl. Symp. on Computer Architecture (ISCA). 367-379.

[8] K.-LChiu, G.Eichler, C.-T.Lin, G.-D. Guglielmo, and L.-P. Carloni. 2024. WOLT: Transparent deployment of ML workloads
on lightweight many-accelerator architectures. In Proceedings of the Intl. Conf. on Computer Design (ICCD). 637-644.

[9] J.Choi, Y. Ha,]. Lee, S. Lee, J. Lee, H. Jang, and Y. Kim. 2023. Enabling fine-grained spatial multitasking on systolic-array
NPUs using dataflow mirroring. IEEE Trans. on Computers 72, 12 (2023), 3383-3398.

[10] Yujeong Choi and Minsoo Rhu. 2020. PREMA: A predictive multi-task scheduling algorithm for preemptible
neural processing units. In 2020 IEEE Intl. Symp. on High-Performance Computer Architecture (HPCA). 220-233.
DOI:https://doi.org/10.1109/HPCA47549.2020.00027

[11] Steven Colleman and others. 2024. Optimizing layer-fused scheduling of transformer networks on multi-
accelerator platforms. In 2024 25th Intl. Symp. on Quality Electronic Design (ISQED). 1-6. DOI:https:
//doi.org/10.1109/ISQED60706.2024.10528689

[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the North American Chapter of the Association for Computational Linguistics.

[13] H. Fan, S.-I. Venieris, A. Kouris, and N.-D. Lane. 2023. Sparse-DySta: Sparsity-aware dynamic and static scheduling
for sparse multi-DNN workloads. In Proceedings of the 56th Annual IEEE/ACM Intl. Symp. on Microarchitecture (MICRO).
353-366.

[14] M. Gao,].Pu, X. Yang, M. Horowitz, and C. Kozyrakis. 2017. Tetris: Scalable and efficient neural network acceleration
with 3d memory. In Proceedings of the Intl. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 751-764.

[15] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis. 2019. Tangram: Optimized coarse-grained dataflow for scalable
NN accelerators. In Proceedings of the Intl. Conf. on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 807-820.

[16] S. Ghodrati, S. Ghodratiand, B.-H. Ahn, J.-K. Kim, S. Kinzer, B.-R. Yatham, N. Alla, H. Sharma, M. Alian, E. Ebrahimi,

N.-S. Kim, C. Young, and H. Esmaeilzadeh. 2020. Planaria: Dynamic architecture fission for spatial multi-tenant

acceleration of deep neural networks. In Proceedings of the IEEE/ACM Intl. Symp. on Microarchitecture (MICRO).

681-697.

T. Glint, M. Pechimuthu, and J. Mekie. 2024. DeepFrack: A comprehensive framework for layer fusion, face tiling, and

efficient mapping in DNN hardware accelerators. In Proceedings of the Design, Automation, and Test in Europe Conf.

(DATE). 1-6.

L. Han, Z. Zhou, and Z. Li. 2024. Pantheon: Preemptible multi-DNN inference on mobile edge GPUs. In Proceedings

of the 22nd Annual Intl. Conf. on Mobile Systems, Applications and Services (MobiSys). 465-478.

[19] K.He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In Proceedings of the IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR). 770-778.

(17

—

[18

—

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

https://doi.org/10.1109/HPCA47549.2020.00027
https://doi.org/10.1109/ISQED60706.2024.10528689
https://doi.org/10.1109/ISQED60706.2024.10528689

85:26 G. Tombesi et al.

[20] F.N.Iandola and others. 2016. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size.
ArXiv abs/1602.07360, (2016). Retrieved from https://api.semanticscholar.org/CorpusID:14136028

[21] S.Kao and T. Krishna. 2022. MAGMA: An optimization framework for mapping multiple DNNs on multiple accelerator
cores. In Proceedings of the IEEE Intl. Symp. on High-Performance Computer Architecture (HPCA). 814-830.

[22] S.Karl, A. Symons, N. Fasfous, and M. Verhelst. 2023. Genetic algorithm-based framework for layer-fused scheduling
of multiple DNNs on multi-core systems. In Proceedings of the Design, Automation & Test in Europe Conf. (DATE). 1-6.

[23] B.Khailany, E. Krimer, R. Venkatesan, J. Clemons, J.-S. Emer, M. Fojtik, A. Klinefelter, M. Pellauer, N. Pinckney, Y.-S. Shao,
S.Srinath, C. Torng, S.-L. Xi, Y. Zhang, and B. Zimmer. 2018. INVITED: A modular digital VLSI flow for high-productivity
soc design. In Proceedings of the Design Automation Conf. (DAC). 1-6.

[24] S. Kim, J. Zhao, K. Asanovic, B. Nikolic, and Y.-S. Shao. 2023. AuRORA: Virtualized accelerator orchestration for
multi-tenant workloads. In Proceedings of the Intl. Symp. on Microarchitecture (MICRO). 62-76.

[25] S.Kim, H. Kwon, J. Song, J. Jo, Y.-H. Chen, L. Lai, and V. Chandra. 2023. DREAM: A dynamic scheduler for dynamic
real-time multi-model ML workloads. In Proceedings of the Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS). 73-86.

[26] S. Kim, H. Genc, V.-V. Nikiforov, K. Asanovic, B. Nikolic, and Y.-S. Shao. 2023. MoCA: Memory-centric, adaptive
execution for multi-tenant deep neural networks. In Proceedings of the Intl. Symp. on High-Performance Computer
Architecture (HPCA). 828-841.

[27] H.Kwon, P. Chatarasi, V. Sarkar, T. Krishna, M. Pellauer, and A. Parashar. 2020. MAESTRO: A data-centric approach
to understand reuse, performance, and hardware cost of DNN mappings. [EEE Micro 40, 3 (2020), 20-29.

[28] H.Kwon, L. Lai, M. Pellauer, T. Krishna, Y.-H. Chen, and V. Chandra. 2021. Heterogeneous dataflow accelerators for
Multi-DNN workloads. In Proceedings of the Intl. Symp. on High-Performance Computer Architecture (HPCA). 71-83.

[29] H.Kwon, K. Nair, J. Seo, J. Yik, D. Mohapatra, D. Zhan, J. Song, P. Capak, P. Zhang, P. Vajda, C. Banbury, M. Mazumder,
L. Lai, A. Sirasao, T. Krishna, H. Khaitan, V. Chandra, and V.-]. Reddi. 2023. XRBench: An extended reality (XR) machine
learning benchmark suite for the metaverse. Proc. of Machine Learning and Systems 5 (2023), 1-20.

[30] C.Li, X. Fan, X. Wu, Z. Yang, M. Wang, M. Zhang, and S. Zhang. 2022. Memory-computing decoupling: A DNN
multitasking accelerator with adaptive data arrangement. IEEE Trans. on Computer-Aided Design of Integrated Circuits
and Systems 41, 11 (2022), 4112-4123.

[31] Linyan M., Pouya H., Vikram J., Sebastian G., and Marian V.. 2020. ZigZag: A memory-centric rapid DNN accelerator
design space exploration framework. arxiv:2007.11360. Retrieved from https://arxiv.org/abs/2007.11360 (2020).

[32] P.Mantovani, D. Giri, G.-D. Guglielmo, L. Piccolboni, J. Zuckerman, E.-G. Cota, M. Petracca, C. Pilato, and L.-P. Carloni.
2020. Agile SoC development with open ESP. In Proceedings of the Intl. Conf. on Computer-Aided Design.

[33] L. Mei, K. Goetschalckx, A. Symons, and M. Verhelst. 2023. DeFiNES: Enabling fast exploration of the depth-first
scheduling space for DNN accelerators through analytical modeling . In Proceedings of the 2023 IEEE Intl. Symp. on
High-Performance Computer Architecture (HPCA). 570-583.

[34] NVIDIA. 2022. Multi-Instance GPU User Guide. Retrieved from https://docs.nvidia.com/datacenter/tesla/mig-user-
guide/index.html. (2022).

[35] M.Odema,L.Chen, H. Kwon, and M.-A.-A. Faruque. 2024. SCAR: Scheduling multi-model Al workloads on heterogeneous
multi-chiplet module accelerators. In Proceedings of the Intl. Symp. on Microarchitecture (MICRO). 565-579.

[36] Y.Oh,S.Kim,Y.Jin,S.Son, J. Bae, J. Lee, Y. Park, D.-U. Kim, T.-J. Ham, and J.-W. Lee. 2021. Layerweaver: Maximizing
resource utilization of neural processing units via layer-wise scheduling. In Proceedings of the 2021 IEEE Intl. Symp.
on High-Performance Computer Architecture (HPCA). 584-597.

[37] A.Parashar, P. Raina, Y.-S. Shao, Y.-H. Chen, V.-A. Ying, A. Mukkara, R. Venkatesan, B. Khailany, S.-W. Keckler, and
J. Emer. 2019. Timeloop: A systematic approach to DNN accelerator evaluation. In Proceedings of the 2019 IEEE Intl.
Symp. on Performance Analysis of Systems and Software (ISPASS). 304-315.

[38] O.Ronneberger, P. Fischer, and T. Brox. 2015. U-net: Convolutional networks for biomedical image segmentation. In
Proceedings of the Intl. Conf. on Medical Image Computing and Computer-Assisted Intervention (MICCAI). 234-241.

[39] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen. 2018. MobileNetV2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR). 4510-4520.

[40] K.Simonyan and A. Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. In 3rd Intl.
Conf. on Learning Representations ICLR 2015. http://arxiv.org/abs/1409.1556

[41] L. Song, J. Mao, Y. Zhuo, X. Qian, H. Li, and Y. Chen. 2019. Hypar: Towards hybrid parallelism for deep learning
accelerator array. In Proceedings of the Intl. Symp. on High Performance Computer Architecture (HPCA). 56—68.

[42] L.Song, F. Chen, Y. Zhuo, X. Qian, H. Li, and Y. Chen. 2020. Accpar: Tensor partitioning for heterogeneous deep learning
accelerators. In Proceedings of the Intl. Symp. on High Performance Computer Architecture (HPCA). 342—-355.

[43] Z.Sun,H.Yu,X.Song,R.Liu, Y. Yang, and D. Zhou. 2020. MobileBERT: A compact task-agnostic BERT for resource-limited
devices. arXiv:2004.02984. Retrieved from https://arxiv.org/abs/2004.02984 (2020).

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

https://api.semanticscholar.org/CorpusID:14136028
https://arxiv.org/abs/2007
https://docs.nvidia.com/ datacenter/tesla/mig-user-guide/index.html
https://docs.nvidia.com/ datacenter/tesla/mig-user-guide/index.html
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/2004.02984

FLIP2M: Flexible Intra-Layer Parallelism and Inter-Layer Pipelining 85:27

[44]
(45]

[46]

(47]
(48]
(49]

[50]

(51]

[52]

(53]

A. Symons and others. 2025. Stream: Design space exploration of layer-fused DNNs on heterogeneous dataflow
accelerators. IEEE Trans. on Computers 74, 1 (2025), 237-249.

F. Brian Talbot. 1982. Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive case.
Management Science 28, 10 (1982), 1197-1210.

R. Venkatesan, Y.-S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik, B. Keller, A. Klinefelter, N. Pinckney, P. Raina, Y. Zhang,
B. Zimmer, W.-]. Dally, J. Emer, S.-W. Keckler, and B. Khailany. 2019. MAGNet: A modular accelerator generator for
neural networks. In Proceedings of the Intl. Conf. on Computer-Aided Design (ICCAD). 1-8.

K. Wang, J. Cao, Z. Zhou, and Z. Li. 2024. SwapNet: Efficient swapping for DNN inference on edge Al devices beyond
the memory budget. IEEE Trans. on Mobile Computing 23, 9 (2024), 8935-8950.

C.J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, and M. Dukhan. 2019. Machine learning at facebook: Understanding
inference at the edge. In Proceedings of the Intl. Symp. on High Performance Computer Architecture (HPCA). 331-344.

Y. Wu, J. S. Emer, and V. Sze. 2019. Accelergy: An architecture-level energy estimation methodology for accelerator
designs. In Proceedings of the 2019 IEEE/ACM Intl. Conf. on Computer-Aided Design (ICCAD). 1-8.

J. Yang, S. Lim, S. Lee, J.-Y. Kim, and J.-Y. Kim. 2023. JNPU: A 1.04 TFLOPS Joint-DNN training processor with speculative
cyclic quantization and triple heterogeneity on microarchitecture/precision/dataflow. In Proceedings of the European
Solid State Circuits Conf. (ESSERC). 349-352.

Y.J. Yoon, N. Concer, M. Petracca, and L.P. Carloni. 2013. Virtual channels and multiple physical networks: Two
alternatives to improve NoC performance. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems
32,12 (2013), 1906-1919.

F. Zaruba and L. Benini. 2019. The cost of application-class processing: Energy and performance analysis of a linux-ready
1.7-GHz 64-Bit RISC-V core in 22-nm FDSOI technology. IEEE Trans. on Very Large Scale Integration Systems 27, 11 (2019),
2629-2640.

S.Zeng, G.Dai,N. Zhang, X. Yang, H. Zhang, Z. Zhu, H. Yang, and Y. Wang. 2023. Serving multi-DNN workloads on FPGAs:
A coordinated architecture, scheduling, and mapping perspective. IEEE Trans. on Computers 72, 5 (2023), 1314-1328.

[54] J. Zhang, X. Wang, Y. Ye, D. Lyu, G. Xiong, N. Xu, Y. Lian, and G. He. 2024. M2M: A fine-grained mapping framework

[55]

to accelerate multiple DNNs on a multi-chiplet architecture. IEEE Trans. on Very Large Scale Integration (VLSI) Systems
32,10 (2024), 1864-1877.

X. Zhang, C. Hao, P. Zhou, A. Jones, and J. Hu. 2022. H2H: Heterogeneous model to heterogeneous system mapping
with computation and communication awareness. In Proceedings of the Design Automation Conf. (DAC). 601-606.

Received 12 August 2025; revised 12 August 2025; accepted 12 August 2025

ACM Trans. Embedd. Comput. Syst., Vol. 24, No. 5s, Article 85. Publication date: September 2025.

	1 Introduction
	2 Background
	2.1 Heterogeneity of Multi-Model ar/vr Workloads
	2.2 Execution Strategies in dnn Acceleration

	3 The FLIP Acceleration Fabric
	3.1 The FLIP Architecture
	3.2 Workload Mapping

	4 The OASIS Optimization Framework
	4.1 Inputs and Mapping Space Definition
	4.2 Cost Model
	4.3 Single-Model Solver
	4.4 Multi-Model Solver

	5 FLIP Prototype
	5.1 FLIP Accelerator
	5.2 FPGA Prototype
	5.3 FPGA Cost Model and Spatial Allocation Policy
	5.4 Compiler Support for Prototype Execution

	6 Evaluation
	6.1 Experimental Setup
	6.2 Single-Model Performance
	6.3 Multi-Model Performance

	7 Related Work
	8 Conclusion
	References

