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AR/VR Heterogeneity →

• Over-specialized hardware:  latency/energy 

inefficiency across diverse DNN layers.

• Model concurrency: amplified range of 

operational requirements / resource demands.

Recent advancements in SoC design from monolithic 

accelerators towards tiled architectures:

• Multiple accelerator tiles + on-chip global buffer

• Network-on-chip (NoC) based interconnect

• Multiple accelerator tiles cooperate to execute a task 
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• Multi-layer segments : Layers forward outputs directly to next layer’s accelerators (pipelined)

• INP→OUTP bottlenecked by reduction tile → excluded. 

• Too many pipelined layers increase fill/flush overhead → capped at 3.  

OUTP → INP 

• Producers split output channels (OUTP).

• Consumers use INP → need only subsets 

of channels.

• Communication depends on 

producer/consumer ratio

OUTP → OUTP 

• Both layers parallelized by filters (OUTP).

• Each consumer needs all input channels.

• Requires multicast: producers send to 

all consumers, each consumer gathers 

from all producers.
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Evaluation - FLIP Prototype
Platform: Built on open-source ESP:

esp.cs.columbia.edu

Implemented on Xilinx XCVU19P FPGA.

Tile architecture (7×7 grid = 49 tiles):

36 acc tiles / 4 red. Tiles / 7 memory tiles / 1 

processor tile (CVA6 host) / 1 auxiliary tile 

(peripherals).

Custom features:

• Multi-level data reuse (weights & inputs) for acc tiles.

• Dynamic communication patterns: DMA, P2P, multicast.

• Modified ESP NoC for flexible producer/consumer access 

+ multicast support.

Resource utilization: ~48% LUTs, ~21% registers, ~60% 

DSPs, ~74% BRAMs.

Power: Dominated by accelerators, reduction tiles, and 

NoC
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Evaluation – Experimental Setup

Benchmarks: Multi-model AR/VR workloads (from XRbench) → 3 scenarios combining 

different models & batch sizes:

Evaluation: 

• Single- vs. multi-model deployments

• Metrics include latency, energy, and EDP (from Vivado power + performance counters).
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Configurations:

• Baseline → fixed per-model resources, no pipelining.

• FlexIntra1/2 → flexible per-model accelerator & memory BW allocation.

• Full → + inter-layer pipelining.

Key Results:

• Latency: Up to 1.9× speedup (higher than single-model gains).

• Energy: FlexIntra variants give most savings (≤1.4×).

• EDP: Consistently improved by reduced idle cycles & better allocation

Comparison to SET [1] (state-of-the-art temporal multi-model):

• FLIP2M achieves 10.5× EDP reduction vs. 9.4× at 32 tiles.

• Better energy scaling (up to 1.7× lower).

• Advantage: concurrent pipelines via spatial partitioning.

# accs # accs

[1] J . Cai, ISCA’23
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• FLIP2M: integrates intra-layer parallelism + inter-layer pipelining → efficient multi-model AR/VR 

on tiled accelerators.

• FLIP accelerator fabric: flexible architecture enabling scalable parallelism & diverse on-chip 

communication.

• OASIS framework: navigates vast mapping space for single- & multi-model workloads.

• Prototype: 49-tile FPGA SoC on ESP platform.

• Results: up to 1.9× latency speedup, 1.4× energy reduction, 2.6× EDP improvement 

over baseline.
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In Memory of Davide Giri (1990-2021) 



Thank you!

Gabriele Tombesi
Je Yang
Joseph Zuckerman
Davide Giri
William Baisi
Luca Carloni
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