
FLIP2M: Flexible Intra-layer Parallelism and
Inter-layer Pipelining for Multi-model
AR/VR Workloads
Gabriele Tombesi
Je Yang
Joseph Zuckerman
Davide Giri
William Baisi
Luca Carloni

CASES'25 1

Background – AR/VR Workloads

CASES'25 2

• AR/VR applications require multiple concurrent DNNs running
on the same SoC:

CASES'25

• AR/VR applications require multiple concurrent DNNs running
on the same SoC:

• Object Detection, Hand Tracking, Segmentation, etc

Eye
Tracking

Object
Detection

Object
Classification

Facial
Recognition

Speech
Processing

Background – AR/VR Workloads

2

CASES'25

• AR/VR applications require multiple concurrent DNNs running
on the same SoC:

• Object Detection, Hand Tracking, Segmentation, etc

• Complex intra- and inter-task dependencies (both
static/dynamic)

Eye
Tracking

Object
Detection

Object
Classification

Facial
Recognition

Speech
Processing

Background – AR/VR Workloads

2

CASES'25 2

• AR/VR applications require multiple concurrent DNNs running
on the same SoC:

• Object Detection, Hand Tracking, Segmentation, etc

• Complex intra- and inter-task dependencies (both
static/dynamic)

• Often coming with tight real-time constraints

Eye
Tracking

Object
Detection

Object
Classification

Facial
Recognition

Speech
Processing

Background – AR/VR Workloads

CASES'25 2

• AR/VR applications require multiple concurrent DNNs running
on the same SoC:

• Object Detection, Hand Tracking, Segmentation, etc

• Complex intra- and inter-task dependencies (both
static/dynamic)

• Often coming with tight real-time constraints

Eye
Tracking

Object
Detection

Object
Classification

Facial
Recognition

Speech
Processing

• Main Execution Challenge →

High heterogeneity in:

Background – AR/VR Workloads

CASES'25 2

• AR/VR applications require multiple concurrent DNNs running
on the same SoC:

• Object Detection, Hand Tracking, Segmentation, etc

• Complex intra- and inter-task dependencies (both
static/dynamic)

• Often coming with tight real-time constraints

Eye
Tracking

Object
Detection

Object
Classification

Facial
Recognition

Speech
Processing

• Main Execution Challenge →

High heterogeneity in:

• Layer shapes / operations

Background – AR/VR Workloads

Background

CASES'25 2

• AR/VR applications require multiple concurrent DNNs running
on the same SoC:

• Object Detection, Hand Tracking, Segmentation, etc

• Complex intra- and inter-task dependencies (both
static/dynamic)

• Often coming with tight real-time constraints

Eye
Tracking

Object
Detection

Object
Classification

Facial
Recognition

Speech
Processing

• Main Execution Challenge →

High heterogeneity in:

• Layer shapes / operations

• Intra-model /

Background – AR/VR Workloads

Background

CASES'25 2

• AR/VR applications require multiple concurrent DNNs running
on the same SoC:

• Object Detection, Hand Tracking, Segmentation, etc

• Complex intra- and inter-task dependencies (both
static/dynamic)

• Often coming with tight real-time constraints

Eye
Tracking

Object
Detection

Object
Classification

Facial
Recognition

Speech
Processing

• Main Execution Challenge →

High heterogeneity in:

• Layer shapes / operations

• Intra-model / Inter-model

Background – AR/VR Workloads

Background

CASES'25 3

AR/VR Heterogeneity →

• Over-specialized hardware: latency/energy

inefficiency across diverse DNN layers.

• Model concurrency: amplified range of

operational requirements / resource demands.

Background – Tiled Architectures

CASES'25 3

AR/VR Heterogeneity →

• Over-specialized hardware: latency/energy

inefficiency across diverse DNN layers.

• Model concurrency: amplified range of

operational requirements / resource demands.

Recent advancements in SoC design from monolithic

accelerators towards tiled architectures:

• Multiple accelerator tiles + on-chip global buffer

• Network-on-chip (NoC) based interconnect

• Multiple accelerator tiles cooperate to execute a task

ACC ACC ACC ACC

ACC ACC ACC ACC

ACC ACC ACC ACC

ACC ACC ACC ACC

G
lo

b
al

 B
u
ff
e
r

O
ff
-c

h
ip

 D
R

A
M

L
o

ca
l
B

u
ff
e
r MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

MAC MAC MAC MAC

Background – Tiled Architectures

CASES'25 4

Background – Execution Strategies in Tiled Architectures

CASES'25 4

Network : Architecture:
acc0 acc1

acc2 acc3

Background – Execution Strategies in Tiled Architectures

CASES'25 4

Network : Architecture:
acc0 acc1

acc2 acc3

Intra-Layer Parallelism

Background – Execution Strategies in Tiled Architectures

CASES'25 4

Network : Architecture:
acc0 acc1

acc2 acc3

Intra-Layer Parallelism

Input Channel (INP)

Each accelerator

processes a subset of

input channels → partial

outputs combined.

Background – Execution Strategies in Tiled Architectures

CASES'25 4

Network : Architecture:
acc0 acc1

acc2 acc3

Intra-Layer Parallelism

Input Channel (INP)

Each accelerator

processes a subset of

input channels → partial

outputs combined.

Output Channel (OUTP)

Filters split across

accelerators → each

outputs full feature

maps.

Background – Execution Strategies in Tiled Architectures

CASES'25 4

Network : Architecture:
acc0 acc1

acc2 acc3

Intra-Layer Parallelism

Input Channel (INP)

Each accelerator

processes a subset of

input channels → partial

outputs combined.

Output Channel (OUTP)

Filters split across

accelerators → each

outputs full feature

maps.

Feature Map (FMP)

Input feature map

divided spatially →

each computes a slice

of outputs.

Background – Execution Strategies in Tiled Architectures

CASES'25 4

Network : Architecture:
acc0 acc1

acc2 acc3

Intra-Layer Parallelism

Input Channel (INP)

Each accelerator

processes a subset of

input channels → partial

outputs combined.

Output Channel (OUTP)

Filters split across

accelerators → each

outputs full feature

maps.

Feature Map (FMP)

Input feature map

divided spatially →

each computes a slice

of outputs.

Inter-Layer Pipelining

Background – Execution Strategies in Tiled Architectures

CASES'25 4

Network : Architecture:
acc0 acc1

acc2 acc3

Intra-Layer Parallelism

Input Channel (INP)

Each accelerator

processes a subset of

input channels → partial

outputs combined.

Output Channel (OUTP)

Filters split across

accelerators → each

outputs full feature

maps.

Feature Map (FMP)

Input feature map

divided spatially →

each computes a slice

of outputs.

Inter-Layer Pipelining

Adjacent layer fused into segments, forwarding intermediate

activations on-chip.

• Benefits: off-chip accesses reduction

• Cost: pipeline fill/flush overhead and larger on-chip buffers.

Background – Execution Strategies in Tiled Architectures

CASES'25 4

Network : Architecture:
acc0 acc1

acc2 acc3

Intra-Layer Parallelism

Input Channel (INP)

Each accelerator

processes a subset of

input channels → partial

outputs combined.

Output Channel (OUTP)

Filters split across

accelerators → each

outputs full feature

maps.

Feature Map (FMP)

Input feature map

divided spatially →

each computes a slice

of outputs.

Inter-Layer Pipelining

Adjacent layer fused into segments, forwarding intermediate

activations on-chip.

• Benefits: off-chip accesses reduction

• Cost: pipeline fill/flush overhead and larger on-chip buffers.

Per-Layer

Resource

Allocation

Background – Execution Strategies in Tiled Architectures

CASES'25 4

Network : Architecture:
acc0 acc1

acc2 acc3

Intra-Layer Parallelism

Input Channel (INP)

Each accelerator

processes a subset of

input channels → partial

outputs combined.

Output Channel (OUTP)

Filters split across

accelerators → each

outputs full feature

maps.

Feature Map (FMP)

Input feature map

divided spatially →

each computes a slice

of outputs.

Inter-Layer Pipelining

Adjacent layer fused into segments, forwarding intermediate

activations on-chip.

• Benefits: off-chip accesses reduction

• Cost: pipeline fill/flush overhead and larger on-chip buffers.

Per-Layer

Resource

Allocation

Inter-

Layer off-

chip acc.

reduction

Background – Execution Strategies in Tiled Architectures

CASES'25 4

Network : Architecture:
acc0 acc1

acc2 acc3

Intra-Layer Parallelism

Input Channel (INP)

Each accelerator

processes a subset of

input channels → partial

outputs combined.

Output Channel (OUTP)

Filters split across

accelerators → each

outputs full feature

maps.

Feature Map (FMP)

Input feature map

divided spatially →

each computes a slice

of outputs.

Inter-Layer Pipelining

→ Combination can strike the right

balance but:

• Further increases the mapping space

• Requires advanced architectural support

Adjacent layer fused into segments, forwarding intermediate

activations on-chip.

• Benefits: off-chip accesses reduction

• Cost: pipeline fill/flush overhead and larger on-chip buffers.

Per-Layer

Resource

Allocation

Inter-

Layer off-

chip acc.

reduction

Background – Execution Strategies in Tiled Architectures

• Intra/Inter - model heterogeneity (layers vary in intensity and size)

• Multi-model concurrency (contention for compute and off-chip bandwidth)

• Large mapping space and architectural challenges in tiled architectures (Intra/Inter-layer mapping)

CASES'25 5

Challenges - Summary

• Intra/Inter - model heterogeneity (layers vary in intensity and size)

• Multi-model concurrency (contention for compute and off-chip bandwidth)

• Large mapping space and architectural challenges in tiled architectures (Intra/Inter-layer mapping)

→ We propose FLIP2M: a holistic solution combining intra- and inter-layer optimization for multi-model
AR/VR workloads on tiled architecture

CASES'25 5

Challenges - Summary

• Intra/Inter - model heterogeneity (layers vary in intensity and size)

• Multi-model concurrency (contention for compute and off-chip bandwidth)

• Large mapping space and architectural challenges in tiled architectures (Intra/Inter-layer mapping)

→ We propose FLIP2M: a holistic solution combining intra- and inter-layer optimization for multi-model
AR/VR workloads on tiled architecture

CASES'25 5

Challenges - Summary

• Intra/Inter - model heterogeneity (layers vary in intensity and size)

• Multi-model concurrency (contention for compute and off-chip bandwidth)

• Large mapping space and architectural challenges in tiled architectures (Intra/Inter-layer mapping)

→ We propose FLIP2M: a holistic solution combining intra- and inter-layer optimization for multi-model
AR/VR workloads on tiled architecture

CASES'25 5

Challenges - Summary

• Intra/Inter - model heterogeneity (layers vary in intensity and size)

• Multi-model concurrency (contention for compute and off-chip bandwidth)

• Large mapping space and architectural challenges in tiled architectures (Intra/Inter-layer mapping)

→ We propose FLIP2M: a holistic solution combining intra- and inter-layer optimization for multi-model
AR/VR workloads on tiled architectures

CASES'25 5

Challenges - Summary

CASES'25 6

FLIP Architecture - Overview

• Accelerator Tiles:

• Coarse-grained engines → execute full layers or large portions.

• Include private buffers, issue long load/store bursts.

• Flexible design (vector lanes, systolic, etc.), to support DNN kernels

CASES'25 6

FLIP Architecture - Overview

• Accelerator Tiles:

• Coarse-grained engines → execute full layers or large portions.

• Include private buffers, issue long load/store bursts.

• Flexible design (vector lanes, systolic, etc.), to support DNN kernels

• Reduction Tiles:

• Specialized for tensor addition (e.g., INP partial sums, residual

merges).

• Hardware support avoids software bottlenecks.

CASES'25 6

FLIP Architecture - Overview

• Accelerator Tiles:

• Coarse-grained engines → execute full layers or large portions.

• Include private buffers, issue long load/store bursts.

• Flexible design (vector lanes, systolic, etc.), to support DNN kernels

• Reduction Tiles:

• Specialized for tensor addition (e.g., INP partial sums, residual

merges).

• Hardware support avoids software bottlenecks.

• Memory Controllers:

• Multiple DRAM controllers scale bandwidth and reduce contention.

Partitioned address space → better isolation between segments.

CASES'25 6

FLIP Architecture - Overview

• Accelerator Tiles:

• Coarse-grained engines → execute full layers or large portions.

• Include private buffers, issue long load/store bursts.

• Flexible design (vector lanes, systolic, etc.), to support DNN kernels

• Reduction Tiles:

• Specialized for tensor addition (e.g., INP partial sums, residual

merges).

• Hardware support avoids software bottlenecks.

• Memory Controllers:

• Multiple DRAM controllers scale bandwidth and reduce contention.

Partitioned address space → better isolation between segments.

• NoC-based Interconnect supporting a variety of communication patterns

CASES'25 7

FLIP Architecture – Communication Patterns

CASES'25 7

FLIP Architecture – Communication Patterns

Direct Memory Access (DMA)

• Moves data between

DRAM and accelerator

buffers.

• Sustains high

bandwidth for large

transfers (weights,

features).

CASES'25 7

FLIP Architecture – Communication Patterns

Direct Memory Access (DMA) Peer to Peer (P2P)

• Direct transfer between

compute tiles. Key for inter-

layer pipelining → avoids

round-trip to DRAM.

• Requires synchronization

to prevent deadlock.

• Moves data between

DRAM and accelerator

buffers.

• Sustains high

bandwidth for large

transfers (weights,

features).

CASES'25 7

FLIP Architecture – Communication Patterns

Direct Memory Access (DMA) Peer to Peer (P2P) Multicast

• One tile sends

output to multiple

downstream tiles

in parallel.

• Crucial for intra +

inter-layer

optimizations

• Direct transfer between

compute tiles. Key for inter-

layer pipelining → avoids

round-trip to DRAM.

• Requires synchronization

to prevent deadlock.

• Moves data between

DRAM and accelerator

buffers.

• Sustains high

bandwidth for large

transfers (weights,

features).

CASES'25 8

FLIP Architecture – Workload Mapping
• Single-layer segments: OUTP / INP

CASES'25 8

FLIP Architecture – Workload Mapping
• Single-layer segments: OUTP / INP

• Multi-layer segments : Layers forward outputs directly to next layer’s accelerators (pipelined)

CASES'25 8

FLIP Architecture – Workload Mapping
• Single-layer segments: OUTP / INP

• Multi-layer segments : Layers forward outputs directly to next layer’s accelerators (pipelined)

• INP→OUTP bottlenecked by reduction tile → excluded.

• Too many pipelined layers increase fill/flush overhead → capped at 3.

CASES'25 8

FLIP Architecture – Workload Mapping
• Single-layer segments: OUTP / INP

• Multi-layer segments : Layers forward outputs directly to next layer’s accelerators (pipelined)

• INP→OUTP bottlenecked by reduction tile → excluded.

• Too many pipelined layers increase fill/flush overhead → capped at 3.

OUTP → INP

• Producers split output channels (OUTP).

• Consumers use INP → need only subsets

of channels.

• Communication depends on

producer/consumer ratio

CASES'25 8

FLIP Architecture – Workload Mapping
• Single-layer segments: OUTP / INP

• Multi-layer segments : Layers forward outputs directly to next layer’s accelerators (pipelined)

• INP→OUTP bottlenecked by reduction tile → excluded.

• Too many pipelined layers increase fill/flush overhead → capped at 3.

OUTP → INP

• Producers split output channels (OUTP).

• Consumers use INP → need only subsets

of channels.

• Communication depends on

producer/consumer ratio

OUTP → OUTP

• Both layers parallelized by filters (OUTP).

• Each consumer needs all input channels.

• Requires multicast: producers send to

all consumers, each consumer gathers

from all producers.

CASES'25 9

OASIS Optimization Framework - Overview

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

• Segment depth (sd)

• Segment parallelism (sp)

• Segment resource (SR)

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

• Segment depth (sd)

• Segment parallelism (sp)

• Segment resource (SR)

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

• Segment depth (sd)

• Segment parallelism (sp)

• Segment resource (SR)

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

• Segment depth (sd)

• Segment parallelism (sp)

• Segment resource (SR)

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

• Segment depth (sd)

• Segment parallelism (sp)

• Segment resource (SR)

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

• Segment depth (sd)

• Segment parallelism (sp)

• Segment resource (SR)

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

sd=2

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

• Segment depth (sd)

• Segment parallelism (sp)

• Segment resource (SR)

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

sd=2

sp=(O, I)

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

• Segment depth (sd)

• Segment parallelism (sp)

• Segment resource (SR)

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

sd=2

sp=(O, I)

SR = ((2,1),(2,1))

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

• Segment depth (sd)

• Segment parallelism (sp)

• Segment resource (SR)

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

sd=2

SR = ((2,1),(2,1))

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

• Mapping Space:

• Segment mapping space (SM) = all

possible segments from a layer

sp=(O, I)

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

• Segment depth (sd)

• Segment parallelism (sp)

• Segment resource (SR)

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

sd=2

SR = ((2,1),(2,1))

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

• Mapping Space:

• Segment mapping space (SM) = all

possible segments from a layer

• Network mapping = sequence of

segment mappings covering all layers.

sp=(O, I)

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

• Segment depth (sd)

• Segment parallelism (sp)

• Segment resource (SR)

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

sd=2

SR = ((2,1),(2,1))

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

• Mapping Space:

• Segment mapping space (SM) = all

possible segments from a layer

• Network mapping = sequence of

segment mappings covering all layers.

• Network mapping space (NM) = all

possible network mappings

sp=(O, I)

CASES'25 10

OASIS Optimization Framework - Overview

• Goal: Optimize segmentation, resource allocation,

and scheduling for multi-model AR/VR on FLIP.

• Inputs:

• DNN topologies

• FLIP prototype

• Segment:

Execution mode from layer i:

• Segment depth (sd)

• Segment parallelism (sp)

• Segment resource (SR)

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

sd=2

SR = ((2,1),(2,1))

acc0 acc1

acc2 acc3

MCTRL1MCTRL0

• Mapping Space:

• Segment mapping space (SM) = all

possible segments from a layer

• Network mapping = sequence of

segment mappings covering all layers.

• Network mapping space (NM) = all

possible network mappings

sp=(O, I)

CASES'25 11

OASIS Solver

CASES'25 11

OASIS Solver

CASES'25 11

OASIS Solver

CASES'25 11

OASIS Solver

CASES'25 11

OASIS Solver

CASES'25 11

OASIS Solver

𝑇(𝑁) = Θ(1.84𝑁)

CASES'25 11

OASIS Solver

CASES'25 11

OASIS Solver

CASES'25 11

OASIS Solver

CASES'25 12

Evaluation - FLIP Prototype
Platform: Built on open-source ESP:

esp.cs.columbia.edu

Implemented on Xilinx XCVU19P FPGA.

Tile architecture (7×7 grid = 49 tiles):

36 acc tiles / 4 red. Tiles / 7 memory tiles / 1

processor tile (CVA6 host) / 1 auxiliary tile

(peripherals).

Custom features:

• Multi-level data reuse (weights & inputs) for acc tiles.

• Dynamic communication patterns: DMA, P2P, multicast.

• Modified ESP NoC for flexible producer/consumer access

+ multicast support.

Resource utilization: ~48% LUTs, ~21% registers, ~60%

DSPs, ~74% BRAMs.

Power: Dominated by accelerators, reduction tiles, and

NoC

CASES'25 13

Evaluation – Experimental Setup

Benchmarks: Multi-model AR/VR workloads (from XRbench) → 3 scenarios combining

different models & batch sizes:

Evaluation:

• Single- vs. multi-model deployments

• Metrics include latency, energy, and EDP (from Vivado power + performance counters).

CASES'25 14

Evaluation – Multi-Model Performance
Configurations:

• Baseline → fixed per-model resources, no pipelining.

• FlexIntra1/2 → flexible per-model accelerator & memory BW allocation.

• Full → + inter-layer pipelining.

CASES'25 14

Evaluation – Multi-Model Performance
Configurations:

• Baseline → fixed per-model resources, no pipelining.

• FlexIntra1/2 → flexible per-model accelerator & memory BW allocation.

• Full → + inter-layer pipelining.

Key Results:

• Latency: Up to 1.9× speedup (higher than single-model gains).

• Energy: FlexIntra variants give most savings (≤1.4×).

• EDP: Consistently improved by reduced idle cycles & better allocation

CASES'25 14

Evaluation – Multi-Model Performance
Configurations:

• Baseline → fixed per-model resources, no pipelining.

• FlexIntra1/2 → flexible per-model accelerator & memory BW allocation.

• Full → + inter-layer pipelining.

Key Results:

• Latency: Up to 1.9× speedup (higher than single-model gains).

• Energy: FlexIntra variants give most savings (≤1.4×).

• EDP: Consistently improved by reduced idle cycles & better allocation

Comparison to SET [1] (state-of-the-art temporal multi-model):

• FLIP2M achieves 10.5× EDP reduction vs. 9.4× at 32 tiles.

• Better energy scaling (up to 1.7× lower).

• Advantage: concurrent pipelines via spatial partitioning.

accs # accs

[1] J . Cai, ISCA’23

CASES'25 15

Conclusions

• FLIP2M: integrates intra-layer parallelism + inter-layer pipelining → efficient multi-model AR/VR

on tiled accelerators.

CASES'25 15

Conclusions

• FLIP2M: integrates intra-layer parallelism + inter-layer pipelining → efficient multi-model AR/VR

on tiled accelerators.

• FLIP accelerator fabric: flexible architecture enabling scalable parallelism & diverse on-chip

communication.

CASES'25 15

Conclusions

• FLIP2M: integrates intra-layer parallelism + inter-layer pipelining → efficient multi-model AR/VR

on tiled accelerators.

• FLIP accelerator fabric: flexible architecture enabling scalable parallelism & diverse on-chip

communication.

• OASIS framework: navigates vast mapping space for single- & multi-model workloads.

CASES'25 15

Conclusions

• FLIP2M: integrates intra-layer parallelism + inter-layer pipelining → efficient multi-model AR/VR

on tiled accelerators.

• FLIP accelerator fabric: flexible architecture enabling scalable parallelism & diverse on-chip

communication.

• OASIS framework: navigates vast mapping space for single- & multi-model workloads.

• Prototype: 49-tile FPGA SoC on ESP platform.

CASES'25 15

Conclusions

• FLIP2M: integrates intra-layer parallelism + inter-layer pipelining → efficient multi-model AR/VR

on tiled accelerators.

• FLIP accelerator fabric: flexible architecture enabling scalable parallelism & diverse on-chip

communication.

• OASIS framework: navigates vast mapping space for single- & multi-model workloads.

• Prototype: 49-tile FPGA SoC on ESP platform.

• Results: up to 1.9× latency speedup, 1.4× energy reduction, 2.6× EDP improvement

over baseline.

CASES'25 16

In Memory of Davide Giri (1990-2021)

Thank you!

Gabriele Tombesi
Je Yang
Joseph Zuckerman
Davide Giri
William Baisi
Luca Carloni

CASES'25 17

FLIP2M: Flexible Intra-layer Parallelism and Inter-layer

Pipelining for Multi-model AR/VR Workloads

	Slide 1: FLIP2M: Flexible Intra-layer Parallelism and Inter-layer Pipelining for Multi-model AR/VR Workloads
	Slide 2: Background – AR/VR Workloads
	Slide 3: Background – AR/VR Workloads
	Slide 4: Background – AR/VR Workloads
	Slide 5: Background – AR/VR Workloads
	Slide 6: Background – AR/VR Workloads
	Slide 7: Background – AR/VR Workloads
	Slide 8: Background
	Slide 9: Background
	Slide 10: Background
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78: Thank you!

