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ABSTRACT
We present SoCProbe, a novel debug unit that enables composi-
tional post-silicon validation of heterogeneous SoCs, particularly
those featuring tiles connected by a NoC. SoCProbe, which is in-
stantiated between each NoC router and its corresponding tile, is
connected directly to the test environment with a lightweight 4-pin
interface. It supports two test modes, which provide complemen-
tary capabilities for different types of faults, and has a companion
flow for automatically collecting test vectors for any component
through full-system RTL simulation. We demonstrate SoCProbe’s
effectiveness in post-silicon validation and low area overhead by
integrating it in a complex SoC prototype fabricated in 12nm.

1 INTRODUCTION
Heterogeneous system-on-chip (SoC) architectures combine
general-purpose CPU cores with GPUs, hardware accelerators,
DSPs, sensors and I/O peripherals to provide a specialized solution
for a target application domain [5, 16]. These SoC architectures in-
creasingly rely on the scalability of a network-on-chip (NoC) [3] to
connect a growing variety of intellectual property (IP) components.

However, heterogeneity raises design complexity [12], which
inherently increases the likelihood of faults in a chip design. Increas-
ing heterogeneity brings more lines of RTL code, more interactions
among components of different natures, and more physical design
runs. The required verification effort to ensure a bug-free chip also
increases. In turn, this increases the likelihood of a fault, particu-
larly when verification hours are limited due to small team sizes.
Moreover, faults in certain portions of the design, such as host
processors, primary I/O interfaces, or interconnect, can make it
impossible to validate other components. Yet, even in the presence
of faults, it is desirable to understand which portions of the chip
are functional.

Industry-standard design-for-testing methods such as Boundary
Scan, combined with complex Automatic Test Pattern Generator
(ATPG) algorithms, provide fine-grained structural testability of
manufactured chips by allowing access to each scan register. In
this work, we address the complementary need for coarse-grained
functional validation of particular SoC components, when there are
faults present in other portions of the chip that would otherwise
render this type of validation impossible. In doing so, we target a
solution that is broadly capable of validating any kind of component,
addressing the needs dictated by heterogeneity

We develop SoCProbe, a low-area debug unit for heterogeneous
SoCs with tiled, NoC-based architectures. In fact, the SoCProbe
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Figure 1: A 3x3 tiled SoC with heterogeneous processing
elements connected by a network-on-chip.

approach relies on the regularity of a NoC architecture as well
as on the decoupling between communication and computation
that it provides. SoCProbe is instantiated between each NoC router
and its corresponding tile and is connected directly to the test
environment with a lightweight 4-pin interface that helps meet the
tight I/O constraints imposed by large designs.

SoCProbe features two complementary test modes. Tile-test mode
provides direct access to the tile from the test environment and
enables validation of its contents independently from the rest of
the system. NoC-test mode instead enables injections to the router
directly from the test environment, which can be used to replace
a faulty tile’s responses or evaluate the impact of a faulty tile on
other SoC components.

To support SoCProbe, we made two additional contributions: (1)
an automated flow for collecting test vectors for any test application,
which can then be used by SoCProbe to stimulate the tile or its
associated router, and (2) an FPGA-based test infrastructure that can
stimulate each SoCProbe unit in a fabricated chip with these vectors.
We demonstrated the effectiveness in post-silicon validation and
low-area overhead of SoCProbe by integrating it in a complex SoC
prototype that we designed and fabricated in a 12nm technology
process.

2 MOTIVATION
Figure 1 shows an example of a heterogeneous, tiled SoC with a 2D-
mesh NoC connecting 9 tiles: two CPU tiles for running software,
including possibly an operating system, one DSP tile, two accelera-
tor tiles, one GPU tile, two DDR tiles for accessing external DRAM,
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and one I/O tile. This SoC might rely on a multi-plane NoC, which
instantiates multiple physical networks that operate independently.
This approach is alternative to a NoC architecture based on virtual
channels, as the multiple planes can be used to both prevent proto-
col deadlock and improve on-chip communication bandwidth [18].
Even this relatively simple system highlights the added complex-
ity heterogeneity brings. Seven different tiles must be designed or
integrated, verified, and carried through physical implementation.
To further motivate our work, we outline several possible design
faults and how they can impact post-silicon validation. We classify
faults into three main categories.

Tile Faults are bugs that affect individual tiles. It is possible
that this type of fault only affects the ability to validate the tile
that contains the fault. However, if the fault affects a critical tile,
it could render the other tiles or even the whole system unusable.
For instance, accelerators that cannot execute software typically
must be invoked from a host processor; if a fault affected the CPU
tiles in the SoC in Figure 1, ACC1 and ACC2 could be unusable.

I/O Faults can prevent communication with the test environ-
ment. Interfaces like PCIe and DDR are highly complex and po-
tentially come as third-party IPs from external vendors. A non-
functional DDR controller would prevent processing elements from
being able to access off-chip data; host processors and accelerators
would be unable to fetch their programs and data, respectively,
from memory. Test-chips typically utilize a debug interface to run
tests, diagnose issues, and gather performance data; faults in this
type of interface could lead to a completely untestable chip.

On-Chip Communication Faults can potentially be the most
severe of the three, and NoC-based architectures are more prone to
these than bus-based architectures due to their added complexity. A
logical bug in the NoC can entirely disrupt on-chip communication,
while physical design bugs may only affect communication between
a subset of tiles. In these cases, it is desirable to have the ability to
test tiles entirely in isolation. This was the primary motivation for
developing SoCProbe, although its utility extends to the other two
fault categories.

3 SOCPROBE
SoCProbe serves as a Debug Unit which sits between an individual
tile and its NoC routers, enabling direct access to both the tile
and the NoC in case of the faults described above. Here we define
a tile to be the combination of all logic that is serviced by a set
of corresponding routers across multiple physical planes1; a tile
can potentially consist of one or more IPs or processing elements.
SoCProbe can be configured to work in NoC-test mode or tile-
test mode, which isolate the NoC router or the tile, respectively,
from the surrounding logic to directly exchange flits with the test
environment. For convenience, we shall henceforth refer to the
target component that is connected to the test environment as the
element under test (EUT).

Three key requirements inform our design choices:
(1) Bypassable: when disabled, SoCProbe should not impact the
SoC’s operation; communication between the NoC and the tile
must pass through unaffected and with no added latency.
(2) Latency-Insensitivity: SoCProbe must cope with any sequence

1Each physical plane contributes one router per tile.

of communication from the EUT with arbitrary delays. By lever-
aging the paradigm of latency-insensitive design [6], SoCProbe is
designed to be independent from both the NoC and tile implementa-
tions, thereby increasing its reusability across heterogeneous tiles.
(3) Low I/O Requirements: SoCProbe must not require more than a
few pins to the external test environment, and this value should be
constant with respect to the number of physical planes or channels
in the NoC architecture.

3.1 Interface
A first design decision is to leverage a lightweight 4-pin interface for
SoCProbe’s I/O in order to better meet the scalability requirements
of large, tiled SoCs. The SPI pin serially shifts in requests to the EUT.
The SPM pin toggles SoCProbe between normal mode, in which the
standard communication is established between the NoC and the
tile, and one of the supported test modes, in which SoCProbe is used
to stimulate the EUT. This satisfies Requirement 1. The SPO pin is
used to serially shift out requests from the EUT. Finally, since we
do not require high performance in test mode, we utilize the SCLK
pin to provide SoCProbe with its own slower clock, thus relaxing
timing constraints.

3.2 Microarchitecture
Maintaining latency-insensitivity (Requirement 2) and reducing the
communication bandwidth from the potentially hundreds of pins
of a multi-plane NoC design to the 4-pin interface (Requirement 3)
are the key properties of our design of SoCProbe. Figure 2 shows
SoCProbe’s microarchitecture. It consists of two layers of logic that
serve distinct purposes: the Serialization/Deserialization Layer and
the Multi-plane Orchestration Layer. The figure abstracts these two
layers for a three-plane NoC architecture and highlights the logic
involved in the management of a single NoC plane. The design can
be extended to accommodate an arbitrary number of planes.

Serialization/Deserialization Layer. This layer converts be-
tween the serial I/O interface of SoCProbe and the bitwidth used at
the tile-NoC interface. The basic unit of exchange over a NoC link
is a flit. Multiple flits compose a packet, which contains a complete
message between two components (e.g. a write request or read re-
sponse). SoCProbe operates at the granularity of flits; each NoC flit
from the test vector is shifted in serially through the SPI pin from
the test environment and stored in a serial-in-parallel-out (SIPO)
register.

Figure 2 illustrates a detailed view of a test flit injected to
SoCProbe from the testing environment; the NoC flit is highlighted
in green and matches the bitwidth of the NoC. The test flit also
comprises a test-type bit (tt), which determines if SoCProbe is oper-
ating in NoC-test mode or tile-test mode. The flit also contains some
metadata, shown in blue, required by SoCProbe to appropriately
handle it: one bit identifies the flit message type (ft), and another
set of bits identifies the index of the physical plane to which the
flit corresponds. The flit type can be:

• A request for injection: a message to send the EUT as part of
the input test vector recorded in simulation.

• A response for extraction: the golden response expected from
the EUT as a result of the sequence of requests previously
injected, to be compared with the actual response obtained.
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Figure 2: SoCProbe is inserted between the NoC and tile. Its design consists of a serialization layer, to convert between the
width of the test interface and the width of the NoC, and a multi-plane orchestration layer, which manages control across the
independent NoC planes. In normal mode, the tile and the routers are connected for normal operation; in test mode, it provides
test access point to the EUT.

Demultiplexing logic steers the incoming flit to the SIPO register
for the corresponding plane, where it stays until it is read by the
orchestration layer. A dedicated register for each NoC plane allows
for its independent control. In the opposite direction, multiplexing
logic selects the response to extract from SoCProbe, including bits
identifying the NoC plane and the test result, through a parallel-in-
serial-out (PISO) register, whose contents are then sent out serially
through the SPO pin to the test environment. Since the control
logic of the orchestration layer delivers one response at a time, a
single register is sufficient to shift out the response while keeping
independent control over the NoC planes. The SIPO/PISO register
operations and the multiplexing/demultiplexing logic are managed
by control logic in the orchestration layer.

Multi-Plane Orchestration Layer. This layer manages the
communication of SoCProbe with the EUT. There are three main
components:

• Two asynchronous FIFOs for each plane of the NoC: one for
request injections and one for response extractions. These

convert the signals from the clock domain of SoCProbe to
that of the EUT.

• Multiplexing and Demultiplexing logic for each plane of the
NoC to establish connection between SoCProbe and the EUT
in test mode and to restore the router-tile connection in
normal mode.

• Control logic that implements SoCProbe’s finite-state ma-
chine (FSM).

The lower section of Figure 2 shows the multiplexing logic of
the orchestration layer for the three supported operating modes:
When normal-mode is enabled (SPM=0), the multiplexers and de-
multiplexers steer the messages from the NoC directly to the tile
and vice versa, without involving the rest of SoCProbe logic. On the
other hand, in test-mode (SPM=1), the test-type bit of the current
flit is used to program the mux/demux logic to either disconnect
the router and connect the tile to SoCProbe (tile-test mode) or
disconnect the tile and connect the router to SoCProbe (NoC-test
mode).
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The control FSM implements round-robin arbitration across the
NoC planes, servicing one plane at a time, to execute the correct
routing of input requests and output responses. In the IDLE (ID)
state, the type of instruction stored in the SIPO register of the cur-
rent plane is checked. The register could have either a valid flit
or an invalid flit. If the flit is invalid, the FSM moves to states for
managing the next plane. If the flit is valid and the register contains
a request for injection, then it is routed to the EUT through the cor-
responding asynchronous FIFO in the WRITE (WR) state. Instead,
if it is a response for extraction, the controller attempts to read a
response from the corresponding asynchronous FIFO in the READ
(RD) state, compares it with the golden response value, and stores
it in the PISO register, together with a bit encoding the comparison
result and bits encoding the physical plane of the response result.
The test response is then shifted out through the SPO pin in the
EXTRACT (EX) state. In both cases, once the operation is executed,
SoCProbe sends out a new flit request in the REQ_INSTR (RI) state
(specifying the plane for which a new flit is required), shifts in the
new flit in the INJECT (IN) state, and goes back to the IDLE state
once the transfer is completed.

Implementing SoCProbe with a latency-insensitive approach
automatically tolerates cases where the status of the FIFO queues
prevents the current action from completing. When the input FIFOs
are full, the EUT cannot currently receive additional messages on
this plane and exerts backpressure on SoCProbe, which reacts by
blocking subsequent write operations until there is space in the
FIFO. Instead, if the output FIFOs are empty, the EUT has not yet
produced a response on this plane, which blocks subsequent reads
until there is a valid flit in the FIFO. If an operation is blocked in
either case, the FSM moves to the next NoC plane to avoid idle
cycles.

3.3 Validation Flow and Infrastructure
Together with the design of SoCProbe, we develop an automated
flow for collecting test vectors from RTL simulation, as well as an
FPGA-based test infrastructure that can be used to stimulate a chip
with these vectors. Figure 3 illustrates our validation flow.

SoCProbe expects a list of NoC flits, including both the input
requests and the expected golden responses, with which to test the
EUT. Because SoCProbe connects directly to the EUT, it is possible
to merely collect flits at the NoC-tile boundary for any applica-
tion, while ignoring what is happening in the rest of the system.
We leverage full-system RTL simulation, with SoCProbe in normal
mode (SPM=0), and record traces of the signals at the NoC-tile
boundary. This approach simplifies the development of tests, which
can be written as programs running on the host core. We also devel-
oped scripts for automated post-processing of the simulation traces
into a time-ordered list of NoC flits, including information about
the target NoC plane, the instruction type (injection or extraction)
and the EUT type, which are needed by SoCProbe to appropriately
handle each flit.

Additionally, we developed an FPGA test-bed that can be used
to stimulate the fabricated chip by using extracted NoC flits as a
test vector; industrial automated test equipment could also be used
for this purpose. The FPGA communicates with a host PC via an
Ethernet connection. The Ethernet connection is used to load the
test vector into a set of FIFO queues in the FPGA design, which

Figure 3: Our validation flow, consisting of (a) recording sim-
ulation traces in RTL simulation in normal mode and (b)
stimulating the chip with the recorded vectors through an
FPGA testbed in test mode.

then sends the flits serially over SoCProbe’s interface to the chip.
The chip’s serial response to the FPGA is reconstructed into flits,
which are buffered into another set of FIFO queues, where they
can be read back by the host through Ethernet for validation. We
provide scripts to automate this whole procedure for a given test
vector.

In order to make SoCProbe robust to communication delays from
the host, it is designed to initiate transfers by requesting flits on
a certain plane in the REQ_INSTR state illustrated above. If the
test-bed does not yet have any flits for that plane, it sends an invalid
flit to the chip that informs SoCProbe to move to the next plane.

The functionality of the SoCProbe debug unit itself can be exten-
sively verified at different design stages before a tape-out. For any
given application, a test vector can be obtained by simply running
an RTL simulation of the whole SoC with all potential EUTs in
normal mode (SPM=0). At this point, the proposed validation flow
allows verifying SoCProbe’s functionality both in RTL simulation
and through FPGA emulation, by simply enabling test-mode for the
target EUT through the testbench or the FPGA-testbed, as explained
in Section 3.2.
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4 SYSTEM-ON-CHIP INTEGRATION
Integrating SoCProbe in a complete SoC implementation is critical
to evaluate its functionality, efficacy, and overhead. In this work,
we conduct a case study on ESP [13], an open-source SoC design
platform with a tiled, NoC-based SoC architecture. We note that
ESP is one of several platforms [2, 14] with these characteristics and
in which SoCProbe could be integrated. ESP features heterogeneous
tiles and a 2D-mesh NoCwith multiple physical planes, which make
it a particularly suitable evaluation platform for SoCProbe.

Each of the 4 main ESP tile types – CPU, Accelerator, I/O, and
Memory – is encapsulated in a modular socket, which connects
to the NoC through latency-insensitive channels. These latency-
insensitive channels greatly simplify the instantiation of SoCProbe
inside each tile wrapper, which contains the tile itself along with
its corresponding set of NoC routers. The connections between
the routers and the tile are made through the SoCProbe instance,
instead of directly.

The implementation of SoCProbe is tailored to match the con-
figurable number of physical planes of the ESP NoC. The default
configuration of ESP uses a six-plane NoC, where five planes are
64-bit wide and one is 32-bit wide. Accounting for input and output
data and control signals, the NoC interface to the tile is in total 728
bits; SoCProbe can manage this complexity with only its 4 pins.

4.1 Chip Implementation
SoCProbe was first designed and validated leveraging RTL simu-
lation and FPGA emulation. Then, we included it as an integral
feature of an SoC we designed in a 12nm process. The fabricated
chip has 16 tiles composed of 6 different types, including multiple
open-source processors and accelerators, connected by a 4x4 2D
mesh NoC [11]. Figure 4 shows the implementation of a RISC-V
CPU tile in the chip design; SoCProbe is highlighted in red. In a
12nm process, SoCProbe occupies 3370𝜇𝑚2, i.e. 0.9% of the tile’s
area. We note that the taped-out version of SoCProbe only fea-
tures the tile-test mode. Based on our experience testing this chip,
we provided SoCProbe with the additional NoC-test mode feature
and tested its functionality leveraging the FPGA emulation setup
described in Section 3.3.

Adding the NoC-test mode results in negligible additional area
overhead because it only requires additional (de-)multiplexers, as
highlighted in orange in the NoC-Test Mode portion of Figure 2.

There are several options for how to connect the SoCProbe units,
potentially instantiated in each tile of the SoC, to the chip I/O; these
options present a tradeoff between design complexity and I/O uti-
lization. A first option is to use one 4-pin interface for all SoCProbe
units. This would require a centralized SoCProbe controller with
some additional logic that selects the correct tile’s SoCProbe unit
to interact with. The target tile could be selected through a se-
quence of bits sent on the SPI signal. However, in a hierarchical
physical design approach, tiles are implemented separately, and
NoC connections between adjacent tiles are made during top-level
chip integration. Adding a dedicated controller would break the
regularity of the tile-based floorplan and result in long wires at the
top-level that potentially span the entire chip.

Figure 4: Implementation of a RISC-V CPU tile as part of the
SoC that we designed and fabricated in a 12nm process. The
SoCProbe unit is highlighted in red.

A less scalable option in terms of I/O utilization is to use a
dedicated 4-pin I/O interface for each SoCProbe unit. For small
designs, this might result in an acceptable amount of pins.

A third option, which sits in between the first two, consists in
sharing common SPM and SCLK pins across all SoCProbe units,
but using separate SPI and SPO pins for each unit.

The main trade-off of these strategies is between pin counts
and wiring at the top level. Area is only marginally affected by
the chosen strategy since it is mostly dominated by the amount
of instantiated SocProbe instances, which is invariant across the
different options described above. For our chip, we selected the
third option. Two pins per tile was an acceptable I/O utilization
that removed the need for any additional top-level logic and wires,
thus mitigating risk. However, we acknowledge that the scalability
of the first approach would be a better choice for larger chips. We
discuss scalability further in Section 6.

5 CASE STUDIES
To demonstrate the versatile capabilities of SoCProbe, we report its
use to carry out a variety of types of tests. Table 1 collects these test
cases and describes their main properties. For the tests that use the
tile-test mode, we use our fabricated chip; for those that feature the
newer NoC-test mode, we use RTL simulation and FPGA emulation.
We demonstrate that SoCProbe can be used for multiple types of
validation and debugging. Table 1 reports some recorded metrics
for each test, including the number of required NoC flits of each
type, the test time in normal mode (Norm. time), the test time when
leveraging SoCProbe in test mode (Test time), and the number of
physical planes of the NoC involved in the test2.
2In the tile-test mode, we keep the notation NoC physical planes to refer to the number
of planes on which flits were recorded entering the tile under test, even if the NoC
itself is not involved in the test. This value corresponds to the number of tile-NoC
interfaces used to inject the flits from SoCProbe.
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Test Case Test Name Test Mode Tile Under Test Total Flits Reqs. Resps. Norm. Time (𝜇s) Test Time (𝜇s) Planes
1 CSR write Tile any 6 6 0 2.13 × 101 5.3 1
2 PC read Tile any 7 5 2 2.14 × 101 9.8 × 101 1
3 NoC intercept Tile IO 60 0 60 3.64 × 102 1.9 × 103 1
4 CPU in isolation Tile CPU 5842 2938 2904 4.45 × 102 7.97 × 104 3
5 ACC in isolation Tile ACC 682 536 146 1.21 × 103 9.88 × 103 3
6 MEM resp. NoC MEM 753 484 269 4.45 × 102 3.13 × 104 3
7 SYS orch. NoC CPU 22721 12151 10570 1.21 × 103 8.14 × 105 4

Table 1: Qualitative and quantitative summary of the seven test cases conducted with SoCProbe.

Measurements from the chip were obtained with the tiles and
NoC running at a nominal frequency of 400MHz and SoCProbe
running at 25MHz. We run experiments at the nominal chip fre-
quency for simplicity, although various elements of the chip can
run at maximum frequencies ranging from 800 MHz to 1.5 GHz. In
normal mode, increasing the frequency of the chip will decrease the
test time. In test mode, however, the overall time will be limited by
the frequency and bandwidth of SoCProbe, so changing the main
clock’s frequency will not have an impact on the collected metrics.

For the NoC-mode tests, we report values from RTL simula-
tion with the same frequencies and further validate functionality
through FPGA emulation running at 50MHz.

SoCProbe is not meant to be a high-performance peripheral. In-
stead, it is designed to come with a scalable interface that requires
little bandwidth and a low target frequency to relax timing con-
straints. Hence, it is expected that functional validation is slower
in test mode, compared to running the same test in normal mode.
NoC flit/plane counts are provided to show the complexity of each
test, while latency is reported only to give a sense of the testing
overhead in these case studies.

Writing a Configuration Register. Tuning Configuration Sta-
tus Registers (CSRs), such as those for on-chip clock generators can
be an important first step of chip bringup. In case of I/O faults in
the primary debug interface or system-wide communication faults,
SoCProbe can be used to modify these configuration registers by
being set to operate in tile-test mode in the tile containing the tar-
get configuration registers. Test Case 1 demonstrates the ease and
simplicity of this procedure, requiring the injection of just six flits
on a single plane. We note that this test case displays a Test time
lower than the Norm. time. This is mainly because running such a
simple task from the CPU involves an overhead that is not needed
when directly writing from the NoC interface to the tile.

Reading Performance Counters. Reading performance coun-
ters can be a helpful debugging tool during chip bringup. For exam-
ple, if certain tiles are not responding to messages, it is helpful to
know if NoC packets have reached them; accessing the NoC perfor-
mance counters provides this information. In case of I/O faults in
the primary debug interface or system-wide communication faults,
SoCProbe can be used to access these performance counters by be-
ing set to operate in tile-test mode in the tile containing the target
counters. Test Case 2 shows an example of this task.

Figure 5 shows a simplified view of the test vector collected for
this task, which includes five injection flits (ft bit in dark blue) and
two extraction flits (ft bit in light blue) exchanged on the same

Figure 5: Simplified view of test vector for test case 2.

physical plane (Plane 5) in tile-test mode (tt=1). The requests can
be divided into two packets. The first packet (dark green) is used to
initialize the Tile ID CSR. In ESP, this happens in every tile at reset
time, so this packet is common among all tests in Table 1. The three
flits in this packet are the packet header, containing the message
type and routing information for the packet to be appropriately
steered on the NoC, the address of the target memory-mapped
register for the write operation, and the data payload. The next
packet (medium green) is a read request for the target performance
counter. It also consists of a header and address, but it only has 2 flits
because it does not carry any data. Similarly, the 2-flit read response
packet (light green) has a header followed by the requested data.

Intercepting NoC Messages. An unintended use case of
SoCProbe is being able to intercept NoC messages. If it is suspected
that messages from certain tiles might be causing problems in the
rest of the SoC, SoCProbe can be enabled in tile-test mode on these
tiles to intercept these messages and examine their contents. We
show this scenario in Test Case 3, where SoCProbe intercepts a
60-flit initialization sequence coming from the tile containing the
chip’s I/O peripherals.

Functional Validation of Tiles in Isolation. In case of tile-
level faults in host processors, I/O faults on primary debug inter-
faces, or system-wide communication faults, SoCProbe can perform
complete validation of individual components using the tile-test
mode. We perform two tests: a Hello-World program running on
the CPU (Test Case 4) and a small computational kernel executing
on a deep-learning accelerator (Test Case 5). Given the increased
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complexity of these tasks, the tests involve three NoC planes in
both cases and a significantly higher test execution time.

Issuing Memory Responses. In case of I/O faults on the inter-
face to external DRAM, SoCProbe can be used to inject expected
values into the NoC as if they were responses from DRAM, thereby
enabling the rest of the system to still execute with functional cor-
rectness. We provide a demonstration of this type of task in Test
Case 6, where we use SoCProbe in NoC-test mode to stimulate the
router of a tile that provides external memory access, running the
same test as in Test Case 4.

Orchestrating Full-System Tests. In the case of faults in the
host processor, SoCProbe can be used in its place to orchestrate a
test that involves a subset of the rest of the system, e.g. an acceler-
ator performing a computation by reading and writing data from
main memory. In this case, SoCProbe can be used to mimic a host
processor by injecting its expected requests directly into the NoC
in the NoC-test mode. A concrete example of this use case is run in
Test Case 7, where we activate NoC-test mode for a CPU tile while
running the same deep-learning kernel as in Test Case 5. While
Test Case 5 is limited by the bandwidth of SoCProbe, Test Case 7
allows the accelerator to execute with the full bandwidth of the
NoC.

6 RELATEDWORK
SoCProbe is primarily a design-for-validation solution for SoCs.
Design-for-testing (DFT) and design-for-debug (DFD) are important
complementary capabilities for chip design. Next, we discuss related
work on these topics and existing IEEE standards that can support
the adoption of the SoCProbe approach.

6.1 Design-for-Test/Debug for NoC
DFT focuses on adding mechanisms to test for and locate man-
ufacturing faults in an integrated circuit (IC). There is abundant
research on DFT in NoC-based SoCs, mostly focused on testing
of the NoC itself or using the NoC as a test access mechanism [8].
One such example is utilizing the NoC to perform concurrent online
testing, in which various components are tested throughout the
SoC’s deployment, while applications are running using other com-
ponents [4]. Amory et al. developed a DFT approach for NoC-based
architectures that consists of test wrappers for each component,
and an interface to automated test equipment that converts from
the data width of the test pins to the width of the NoC, which is
used to deliver the tests [1].

DFD instead seeks to enable fine-grained control of the execution
and observability of the internal state of on-chip components. Cior-
das et al. developed a NoC analyzer that is capable of reconstructing
NoC transactions on chip at runtime for debugging purposes; it
has multiple modes for reconstructing the data at various levels of
abstractions [7]. Tang and Xu developed a complete debug platform
for NoC-based SoCs that consists of debug probes inserted between
each core-under-debug and the network interface and uses the
NoC to pass debug information throughout the system [17]. They
also develop a novel two-pass debug strategy that can synchronize
debugging across multiple cores distributed throughout the system.

Our DFV approach is orthogonal to this class of research, as we
focus on the functional validation of individual components in the

case of communication difficulties and validation of the rest of the
system in case of faults in particular components. As described in
Section 5, SoCProbe adds some debug capabilities during chip bring-
up, but at a coarser granularity than the described DFD approaches.
Most of the existing research in this field focuses on homogeneous
multicore designs. Instead, we explicitly target heterogeneous SoCs
and thus abstract the design to make it reusable for any component
and any application invoking that component.

6.2 Relationship to Existing IEEE Standards
The interface of SoCProbe is inspired by that of IEEE standard 1149.1
(JTAG) for Test Access Port (TAP) and Boundary Scan Architecture
[10]. The 4 (optionally 5) pin interface and an accompanying finite
state machine used by the TAP is a widely adopted standard for
testing SoCs. Due to the interface similarities, SoCProbe could be
integrated with a JTAG architecture by utilizing a user-defined
instruction.

More similar to SoCProbe is the IEEE standard 1500 for Embed-
ded Core Test [9]. This standard addresses testing difficulties in
the era of IP reuse by requiring that 1500-compliant components
be delivered with a test wrapper or with their test requirements
described in the Core Test Language to enable the design of such a
wrapper. Similarly to SoCProbe, the Embedded Core Test standard
enables testing of both internal and external (interconnect) logic, al-
though at a finer granularity. SoCProbe could be integrated as a part
of a 1500-standard wrapper, again controlled through user-defined
instructions.

Both of the above standards can suffer from scalability problems,
as controlling the test of multiple components from a single TAP re-
quires daisy-chaining a scan chain throughout the system. The IEEE
standard 1687 for Integrated JTAG (IJTAG) attempts to solve this
problem by defining scalable scan networks interface for accessing
and controlling embedded test instruments [15] and standardizing
their operation with a plug-and-play interface. IJTAG supports a
hierarchical structure, including a system-level TAP controller for
managing the entire IC and multiple embedded TAPs for access
to a smaller portion of the design. The IJTAG standard could be
utilized to help SoCProbe scale to larger SoCs.

In contrast to the prevailing DFT techniques, the SoCProbe ap-
proach is an innovative and cost-effective strategy for modular
post-silicon validation. Our proposed debug unit does not affect
timing closure of the rest of the system and comes with a fixed area
overhead for a given NoC architecture, irrespective of the target IP
content. While modern EDA tools facilitate boundary scan integra-
tion, doing so requires enlarged routing channels along standard
cells to accommodate scan chain signals. This can result in an area
overhead of up to 5% to 20% and a frequency reduction of up to 5%.

These IEEE standards are complementary to SoCProbe, but in-
tegration with one or more of them may be desirable in order to
combine design-for-test and coarse-grained design-for-validation
capabilities into a single infrastructure.

7 CONCLUSION
We presented a solution for compositional validation of tiled SoC
architectures connected by a network-on-chip. In the case of com-
munication difficulties, our approach permits the direct access to

7

This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2023.3310355

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 25,2023 at 12:05:09 UTC from IEEE Xplore.  Restrictions apply. 



individual tiles of the SoC for validation, diagnostic, and debug-
ging purposes. By leveraging the regularity of a NoC architecture,
SoCProbe is designed to be reused across the different tiles of a
heterogeneous SoC and supports a seamless flow for collecting test
vectors for a variety of applications. We integrated SoCProbe in ESP
and evaluated its efficacy and overhead in a 12nm chip prototype.
We plan to make the SoCProbe’s implementation, test-flow scripts,
and FPGA test-bed design available as open-source artifacts before
NOCS 2023.
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