SoCProbe: Compositional Post-Silicon Validation of Heterogeneous NoC-Based SoCs

Gabriele Tombesi¹, Joseph Zuckerman¹, Paolo Mantovani¹, Davide Giri¹, Maico Cassel dos Santos¹, Tianyu Jia², David Brooks², Gu-Yeon Wei², and Luca P. Carloni¹

Columbia University¹, Harvard University²

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Background

Paradigm shift from multicore to heterogeneous computing inherently increases design complexity

- ✤ More lines of the RTL code
- Complex interactions among components of different nature
- ✤ More physical design runs
- Increased verification effort

Increased likelihood of faults in the manufactured chips

Motivation

- Industry promoted and enhanced DFT methods (boundary scan and ATPG) to provide fine-grained structural testability
- This work addresses the need for coarse-grained functional validation of:
 - SoC components in the case of interconnect faults
 - Entire system in the case of faults in particular • components.
- Three main categories of faults can affect post-silicon validation of NoC-based SoCs:
 - Tile faults •
 - I/O faults •
 - **On-chip communications faults** •

https://www.corelis.com/education/tutorials/jtag-tutorial/jtag-technical-primer/

Tile

The SoCProbe approach

- □ SoCProbe serves as a debug unit that sits between an individual *tile* and its NoC routers
- Three key requirements inform our design choices:
 - > Bypassable
 - > Latency-insensitive
 - > Low I/O requirements

SoCProbe microarchitecture

- 4-pin IO interface to meet scalability requirements:
 SPI: shift-in reqs
 SPO: shift-out reqs
 SPM: toggle op. mode
 SCLK: provide clock domain
- Deserialization/serializ ation layer to convert between serial IO and NoC bitwidth
- Multi-plane orchestration layer to manage the communication between SoCProbe and the EUT:
 - Async-fifos
 - Mux/demux logic
 - Control FSM 6

SoCProbe Operating modes

- Standard tile-to-router connection
- SoCProbe logic inactive

- The router is disconnected
- SoCProbe provides test access to the tile under test
- The tile is disconnected
- SoCProbe provides test access to the router under test ⁷

SoCProbe Validation Flow

For a given application, collect flits at the NoC–tile boundary in full-system RTL simulation and SoCProbe in normal mode.

An FPGA test bed is used to stimulate the fabricated chip by using extracted NoC flits as a test vector.

SoC integration

Target SoC for SoCProbe's validation:

- Tile-based architecture
- NoC-based interconnects

- ✓ 2-D-mesh NoC with 6 physical planes
- Heterogeneous tiles:
 CPU, accelerator, I/O, and memory.
- ✓ Modular socket with:
 - Platform services for DMA, cache coherence, monitors and interrupts
 - Latency-insensitive channels to NoC

https://esp.cs.columbia.edu

SoC integration

Different strategies to connect multiple SoCProbe units depending on the tradeoff between design complexity and I/O utilization:

a) ScalableScomplex top-level

Simple

(~)

b)

Fabricated chip

- ➢ 12-nm process.
- 16 tiles composed of six different types
- multiple open-source processors and accelerators
- ➢ 4x4 2-D mesh NoC

- Ariane tile area:374,44 μm²
- SoCProbe area (in red): 3,370 μm₂,
 => 0.9%

Test Cases and results

Test Case	Test Name	Test Mode	Tile Under Test	Total Flits	Reqs.	Resps.	Norm. Time (μ s)	Test Time (μ s)	Planes
1	CSR write	Tile	any	6	6	0	2.13×10^{1}	5.3	1
2	PC read	Tile	any	7	5	2	2.14×10^{1}	9.8×10^{1}	1
3	NoC intercept	Tile	IO	60	0	60	3.64×10^{2}	1.9×10^{3}	1
4	CPU in isolation	Tile	CPU	5842	2938	2904	4.45×10^{2}	7.97×10^4	3
5	ACC in isolation	Tile	ACC	682	536	146	1.21×10^{3}	9.88×10^{3}	3
6	MEM resp.	NoC	MEM	753	484	269	4.45×10^{2}	3.13×10^{4}	3
7	SYS orch.	NoC	CPU	22721	12151	10570	1.21×10^{3}	8.14×10^{5}	4

- 1) Writing a configuration register
- 2) Reading performance counters
- 3) Intercepting NoC messages.
- 4/5) Functional validation of tiles in isolation.
- 6) Issuing memory responses.
- 7) Orchestrating full-system tests.

Conclusions

SoCProbe: solution for *compositional validation* of tiled SoC architectures connected by an NoC.

The **SoCProbe approach** permits:

- Direct access to individual tiles for validation
- Diagnostic
- Debugging
- **Reusable** across the different tiles of a heterogeneous SoC
- Supports a Seamless flow for collecting test vectors for a variety of applications.
- Integration in ESP and evaluation of its efficacy and overhead in a 12-nm chip prototype.
- ✓ We have released SoCProbe's implementation, test-flow scripts, and FPGA test-bed design available as open-source artifacts.