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Abstract—Modern systems-on-chip (SoCs) increasingly rely on
high-bandwidth networks-on-chip (NoCs) to support communi-
cation among their many heterogeneous components. Meanwhile,
as technology nodes advance, physical design (PD) has a growing
impact on NoC performance, particularly for high-bandwidth
NoCs. However, few published works focus on NoC optimization
from a PD perspective. In this work, we study the problem
of optimizing the PD of 2D-mesh NoCs by focusing on two
prominent techniques: wire pipelining and channel parallelism.
Our study is based on experimental results obtained from
multiple tape-in NoC designs in a 12nm technology process. We
develop models to approximate the power and area effects of
different NoC design approaches and analyze the underlying
trends. Our findings show that pipelining does not affect die
area but increases NoC power consumption by 1.6× compared
to increasing parallelism. In contrast, increasing parallelism can
result in a NoC area up to 2× larger than one achieving the same
bandwidth through pipelining. Building on these insights, we
formulate a mathematical optimization problem, which could be
solved by optimization solvers to balance the trade-offs between
these two techniques. Our study provides a general framework
for analyzing NoC physical design trade-offs and optimizing NoC
configurations.

Index Terms—system-on-chip, network-on-chip, physical de-
sign, case study, analysis and optimization.

I. INTRODUCTION

With the ever-increasing complexity of system-on-chip
(SoC) designs, the network-on-chip (NoC) has become the
primary architecture employed for on-chip communication.
The inherent scalability of NoCs, combined with the ability to
decouple computation and communication, maps well to SoC
designs with tens to hundreds of components [1]. Meanwhile,
the rise of compute-intensive applications, such as deep learn-
ing, and increasingly performant I/O interfaces, such as high-
bandwidth memory, are driving NoC architectures to deliver
maximum bandwidth under stringent SoC resource constraints.

Prior work on increasing NoC bandwidth mostly focuses on
optimizing the NoC architecture itself (topology and protocols
for routing and flow-control) and its key elements (primarily
the router micro-architecture). Few research papers, however,
have presented the physical design (PD) implications of NoC
design choices, despite the recent rise in academic SoC tape-
out efforts targeting machine learning applications [2]–[5].
Among various SoC designs, whether at the tape-in or tape-
out stage, NoC architectures with 2D-mesh are widely adopted
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Fig. 1. 2D-mesh NoC: channel parallelism vs. wire pipelining.

by SoC designers in both industry [6] and academia [2]–
[4], [7], [8]. Considering a 2D-mesh NoC for a tile-based
SoC architecture, as shown in Fig. 1, channels are created
between tile implementations, wherein the NoC (i.e., routers
and wire connections) can be implemented. This approach
decouples the implementation of the tiles from the NoC,
which is advantageous for several reasons: 1) bugs in tile
implementations are less likely to affect the entire chip; 2)
the implementation and optimization of the NoC and tiles can
proceed in parallel; and 3) PD tasks and strategies, such as
clocking and power delivery, are easier to implement.

In a 2D-mesh NoC architecture, we identify two optimiza-
tion techniques to increase bandwidth. First, the number of
wires between routers, which we denote as channel paral-
lelism, can be increased. Although this is a relatively simple
architectural change, the communication interfaces of tiles and
routers need to be modified accordingly. Besides, increasing
the number of wires can reshape the entire physical resource
allocation strategy on an SoC. Moreover, this method has
limitations in advanced technology nodes. While transistor
performance continues to improve, the impact of interconnect
RC delays grows with technology scaling [9]. As a result,
the wire delay of long router-to-router links in NoC PD im-
plementations has increasingly become the determining factor
of a NoC’s maximum frequency, necessitating link buffering
techniques to compensate. Wire pipelining can be used to
increase the operating clock frequency of the NoC. Pipeline
stages, however, must comply with the NoC’s flow control



protocol, adding additional complexity to the pipelining flip-
flop designs. Moreover, the introduction of extra standard cells
can increase the overall cost of SoC physical implementation,
further restricting the applicability of this approach.

Both channel parallelism and wire pipelining come with
associated power, performance, and area (PPA) trade-offs.
The two techniques can also be combined to take advantage
of their benefits while compensating for their drawbacks. In
this work, we perform an extensive analysis of the trade-
offs between these two techniques and, in particular, their
implications on PD. Adopting a latency-insensitive (LI) design
approach to NoC optimization [10], [11], we insert relay
stations (RSs) between NoC routers to pipeline wires, while
complying with the principles of LI design. We carry out
multiple NoC tape-ins in a 12nm technology, ensuring they
are placed, routed, and design-rule-check (DRC) clean, while
varying both channel parallelism and the number of RSs
(i.e., pipeline stages) inserted. We analyze key parameters
including power, timing closure, and channel size, and develop
estimation functions accordingly. Based on these observations,
we propose an optimization formulation and present a case
study demonstrating how balancing these factors can improve
NoC performance. Our main contributions are as follows:

1) We conducted a comprehensive PPA analysis on many
2D-mesh NoC designs with RSs through tape-in results
in a 12nm technology node.

2) We modeled the trends of area and power overhead
associated with both techniques based on the collected
data, demonstrating the effectiveness of our models.

3) Based on the insights and models we derived, we for-
mulate and solve an optimization problem to determine
the optimal NoC configuration, considering both power
and area constraints for chip designers.

To the best of our knowledge, this is the first analysis of the
various trade-offs involved in optimizing the performance of
2D-mesh NoC from a PD perspective that is supported by real
tape-in results with a commercial electronc design automation
(EDA) flow.

II. BACKGROUND

2D-Mesh NoC. For several reasons, the 2D-mesh NoC is a
highly-appealing topology. Its regularity and simple geometry
make it well-suited for SoC design and implementation, as
discussed in Section I. When combined with turn restriction
routing [12], the 2D-mesh architecture is guaranteed to be free
from routing deadlock. This means that NoC routers do not
need to implement any kind of deadlock avoidance, detection,
or recovery mechanisms. Because of these nice properties, the
2D-mesh topology is widely adopted, including in SoC design
platforms [7], [8], [13] and silicon prototypes [2]–[4].

Multiple Channels. For many applications, NoCs must
employ multiple channels to avoid protocol deadlock. These
channels can be either virtual or physical (implemented as
separate planes). For example, in a classic MESI coherence
protocol, requests, responses, and forwards must use sepa-
rate channels [14]. Virtual channels enable multiple virtual

Fig. 2. Relay station for LID: block diagram [15].

networks within a single physical NoC by using distinct
input queues and managing them based on message types.
Alternatively, multiple physical NoC planes form independent
networks with simpler routers [11]. The number of NoC
planes required depends on the SoC architecture. For example,
Celerity [2] employs a single plane to efficiently support
its large mesh of simple cores for parallel programming.
FlooNoC [8] utilizes a three-plane NoC to handle AXI traffic.
Both OpenPiton [7] and ESP [3] adopt three planes for their
cache-coherence protocols; additionally, ESP allocates two
more planes for accelerator DMA and one for miscellaneous
functions, totaling six planes. In our experiments, we consider
NoC designs with 1, 2, 3, and 6 planes to cover this range.

Latency-Insensitive Design. As predicted by Matzke [16],
technology scaling has resulted in a smaller portion of
chips being reachable within a single clock cycle. Latency-
insensitive design (LID) was introduced to cope with in-
creasing communication delays in the synchronous design of
integrated circuits [10]. To handle arbitrary delays between
components, stallable modules can be wrapped with a LI
shell that handles inter-module communication and stalls the
execution of a module at each clock cycle when a complete
set of valid data is not available at its input ports. Shells are
connected by LI channels that carry, along with the data, a
void and a stop signal to indicate when an upstream module
has not produced valid data and when a downstream module
is not ready to receive data, respectively. RSs can be used to
pipeline LI channels, while maintaining the correctness of the
control protocol. Fig. 2 shows the design of the RS, which
consists of a finite state machine that controls whether data
should be latched in main or auxiliary flip-flops and correctly
propagates the void and stop signals [15]. While the number
of flip-flops of a RS must be equal to two times the data width,
the control logic and void-signal flip-flop remain constant.

III. PHYSICAL DESIGN ANALYSIS

Experimental Setup. The experimental results presented in
this paper are based on multiple tape-in designs that have suc-
cessfully undergone place-and-route (P&R) and have passed
DRC verification. To carry out these experiments, we used
state-of-the-art commercial EDA tools with a 12nm FinFET
technology process. The experiments were based on a tile-



(a) Routing congestion in the router section.

(b) Routing congestion due to channel parallelism.

Fig. 3. Examples of wiring congestion in different regions.

based SoC design with a tile size of 2mm × 2mm. Liberty
views were extracted during the tile-level physical design and
used for the top-level SoC physical design.

Methodology. To evaluate the PPA trade-offs, we focus
on two key parameters: the minimum channel size of the
NoC and the maximum operating frequency achievable through
wire pipelining. To determine the minimum channel size,
we reduce its size during the floorplanning phase until the
routing EDA tool cannot handle congestion, thus causing
unacceptably long runtimes and poor quality of results.1 In
our evaluation, we deem the design failed during P&R if the
tool’s runtime exceeds twice its typical duration. To identify
the maximum frequency, we adjust the clock frequency in
the constraint files and run the complete PD flow. If timing
violations are limited to a few picoseconds of setup time, we
consider the implementation still valid since these violations
can be resolved by reducing the clock frequency. As frequency
increases, the implementation can suffer from an excessively
long tool runtime or a significant amount of hold violations. In
this scenario, we define that P&R fails when the tool runtime
doubles or when the design presents hold timing violations.

A. The Impact of Channel Parallelism

An increase in channel parallelism expands the channel size
of an SoC. In our experiments, we discovered and defined
two types of channel size constraints: router constraint and
channel-parallelism constraint. The router constraint ensures

1In this paper we use the term “router” for the hardware component of the
NoC, while we use the term “routing” to refer to the action of the router EDA
tool. Also, we use the term “congestion” to denote limited available resources
to the router EDA tool, not for traffic in the NoC’s runtime operation.
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Fig. 4. Symbols and equations for the router constraint.

that the router region has sufficient area to accommodate the
router’s standard cells and wires. Fig. 3a shows an example
of a violation of this constraint, where the router area is
congested, as shown by the red marks in the channel region.
The channel-parallelism constraint, on the other hand, ensures
there are enough routing resources inside channels for the wire
connections between routers. Fig. 3b illustrates the violation of
this constraint where the wires from the north and local ports
are squeezed together in the channel and cause congestion.

Fig. 4 shows the router region in yellow and tiles in green.
The router topology extends into the channels, forming a cross-
shaped configuration. The main advantage of this topology is
to allow narrower channels compared to a square-shape router.
Because of the inter-dependency of the channel size and the
router region, it is critical to estimate the minimum size of
a channel size that respects router constraints. Equation (1)
calculates the stretching factor S of the router by taking
the ratio of the router extension Sd and the channel size
Cr. Equation (2) calculates the area occupied by each tiles’
corner, where R is the total length of the router. Equation (3)
calculates the router region area which is equal to dividing the
router’s standard cell area A by a density factor D. Finally,
Equation (4) expresses the Cr as a function of A, D, and R.

A large stretching factor combined with high cell density
can lead to long wiring detours, resulting in P&R failures.
In our experiments, a stretching factor larger than 1.2 and a
pre-placement estimation of the standard cell density larger
than 0.7 cause routing detours leading to congestion and time
degradation. Hence, we used 1.2 and 0.7 as empirical values
for S and D, respectively. By replacing these two values in (1)
and (4) and isolating R and C, respectively, we reach the
following lower bound for the channel size:

Cr >

√
A

0.7 · 5.8 =
√
k1 · data width, (5)

where k1 is a constant, as the router’s standard cell area is
positively correlated with the data width.

The channel-parallelism constraint can be modeled as a
linear function of the data width due to the linear relationship
of the available routing tracks with the channel size:

Cc = k2 · data width. (6)

Fig. 5 illustrates how (5) and (6), represented by the
blue and green lines respectively, follow the actual lower
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Fig. 5. Channel size model and validated results.

Fig. 6. RSs do not contribute to congestion.

bound obtained from our experiments (red dots) on NoCs
with various data widths. The router constraint grows sub-
linearly, as increasing channel size makes the router region
grow quadratically. On the other hand, the channel-parallelism
constraint grows linearly with respect to the number of wires
inside the channel. Values obtained from our experimental
analysis closely follow the greater of these two constraints,
showing the accuracy of the estimation function.

By combining (5) and (6), we obtain the following equation
to determine a channel size that satisfies both router and
channel constraints:

C = max(Cr, Cc). (7)

The router constraint is primarily determined by the area
of the standard cells. Changes to the router type or micro-
architecture can result in scaling variations. The channel-
parallelism constraint, on the other hand, can be affected
by the reduction of routing-track resources due to area-reuse
techniques. For example, if an over-the-cell routing technique
is applied, the channel-parallelism constraint curve will exhibit
a steeper slope compared to the original curve.

B. The Impact of Wire Pipelining

In our experiments, we adopted a channel-dedicated NoC
architecture that reserves channel resources specifically for the
NoC, as this approach remains mainstream in SoC NoC design
[2], [3], [7], [17]. With this architecture, RSs do not contribute
to routing congestion during PD implementation, as they
effectively reutilize the space within the channel that is already
allocated for routers and inter-router wiring. Throughout our
experiments, wire pipelining did not result in any increase in
channel size, as illustrated in Fig. 6.

Another architecture, over-the-cell NoCs [8], repurposes the
channel area in channel-dedicated NoC designs to expand the
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Fig. 7. NoC operating frequencies after RS insertion
TABLE I

POWER SPLIT (MW) OF ROUTERS AND RELAY STATIONS UNDER
DIFFERENT NOC CONFIGURATIONS.

0 RS 1 RS 2 RS 3 RS

Router RS Router RS Router RS Router RS

32 Bits 4.87 0 8.02/87.4% 1.16/12.6% 9.59/78.1% 2.69/21.9% 10.76/70.5% 4.50/29.5%

64 Bits 10.19 0 14.30/86.6% 2.22/13.4% 17.92/77.0% 5.36/23.0% 21.00/70.0% 9.09/30.0%

96 Bits 11.64 0 20.07/86.3% 3.18/13.7% 21.86/76.3% 6.80/23.7% 24.43/68.3% 11.33/31.7%

128 Bits 15.85 0 28.57/87.5% 4.08/12.5% 30.86/76.6% 9.43/23.4% 32.61/68.2% 15.20/31.8%

tile region, thereby reducing the available space for RS place-
ment. However, the standard cell area of RSs is significantly
smaller than that of the channel, rendering the impact on
area utilization negligible. In all of our experiments, the area
occupied by RSs averaged less than 2% of the channels. As
a result, RSs can still be easily embedded within the tile area
originally designated for channels in a channel-dedicated NoC.
Moreover, over-the-cell NoC architectures impose stricter rout-
ing constraints, potentially leading to greater wiring overhead
compared to the negligible cost of standard-cell RS placement.

Fig. 7 illustrates the trend of the maximum operating
frequency across different NoC configurations, varying in
data width and number of planes, along with an approximate
function. In an ideal scenario, the delay between components
is proportional to their physical distance after optimal buffer
insertion. When wire delays have been optimized but the
NoC still fails to achieve the desired frequency, RSs can be
introduced to reduce the effective communication distance by
pipelining data transmission. Although RS insertion improves
timing by shortening wire segments, it does not lead to a
strictly linear delay reduction due to the additional wiring logic
associated with each RS. This effect can be modeled by the
equation F = (αR+1)Fbase, where Fbase is the original NoC
operating frequency before RS insertion, and α represents the
degradation factor. We also observe that the positive impact of
RS insertion on the timing closure of a NoC comes with dimin-
ish returns: each newly inserted RS is less effective than the
previous one. Therefore, a correction factor β is introduced,
resulting in the revised formula F = (α(1−βR)R+1)Fbase.
We solve the Least Squares Problem to estimate the parameters
α and β, which define our approximation function.

The performance gain achieved by inserting RSs introduces
additional power consumption, as reported in TABLE I. The
power consumption of both the routers and the RSs increase
after RS insertion due to dynamic power consumption, which



0.0 0.5 1.0 1.5 2.0 2.5 3.0
Number of RSs Inserted

0

2

4

6

8

10

12

14

Po
w

er
 (

m
W

)

Power Consumption of Different NoC Configurations
32 bits
64 bits
96 bits
128 bits

(a) Power consumption of RSs.

500 1000 1500 2000 2500 3000
NoC Frequency (MHz)

0

10

20

30

40

Po
w

er
 (

m
W

)

Power Consumption of Routers and RSs
Router Power
RS Power
NoC Total Power
Maximum Router Frequency

(b) NoC power distribution.

Fig. 8. Power overhead of RS insertion.
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Fig. 9. Estimation functions and real data points.

is directly proportional to the operating frequency. This effect
is analogous to increasing data parallelism: both doubling
the frequency and doubling data parallelism result in a 2×
increase in bandwidth, accompanied by a 2× increase in
power. Therefore, the real power overhead of wire pipelining
comes from the additional standard cells of the RSs. Fig. 8a
illustrates the quadratic-like trend of RS power overhead.
While not perfectly quadratic due to timing degradation in
RS, the trend is primarily driven by the simultaneous increase
in both the number of RSs and the operating frequency.

Fig. 8b details the power consumption of routers and RSs
as a function of the NoC frequency, using the 32-bit NoC
as an example. While the power consumption of the routers
scales linearly with frequency due to additional dynamic power
consumption, the power overhead from RS insertion grows
super-linearly with frequency, as more RSs need to be inserted
to achieve higher frequencies.

C. Physical Resource Estimation

The power and area impacts of channel parallelism and wire
pipelining can be analyzed as follows. For power estimation,
we observe a similar relationship for routers and RSs: their
power consumption is generally proportional to the operating
frequency F and the data width D. Therefore, their power
consumption can be approximated as const× F ×D. On the
other hand, the area estimation can be derived based on two
channel size constraints mentioned in Section III-A. For a 2D-
mesh NoC, it can be expressed as const × (2LchipC + C2),
where C denotes the channel size and Lchip is the semiperime-
ter of the chip excluding the channel region. These estimation
functions greatly reduce design space exploration time for
the NoC PD by eliminating the need to run EDA tools for
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Fig. 10. Power and area consumption of different NoCs.

each configuration. For example, completing the PD of a six-
plane NoC with a 512-bit data width can take over five days
on a server equipped with Intel Xeon Gold 6258R CPUs,
utilizing 24 cores and 196 GB of memory. Such a task
would be daunting if one aims to explore or optimize NoC
configurations extensively.

As a case study, we collected PD data from one-, two-,
and three-plane NoC configurations with varying parameters,
averaging the results to construct the estimation functions of
NoC physical resources. Fig. 9 shows the accuracy of the
estimation functions for power and area, evaluated against
data obtained from actual PD measurements. The planes in
the figure represents the estimation function, while the data
points denote the measured values. The average error between
the power estimation and the measured data is 3.6%, whereas
the average error for the area estimation is 6.4%. The size
of the 32-bit router is slightly larger than estimated due
to components that are not scalable with data width. Note
that none of the six-plane NoC data was used in deriving
these estimation functions. Despite this, the power and area
estimations show average errors of 5% and 6% respectively,
which are within tolerance. These data points highlight the
accuracy and scalability of the estimation function.

D. Trade-Offs between Power and Area

We use one-plane and six-plane NoCs as illustrative ex-
amples to highlight the trade-offs between wire pipelining
and channel parallelism, as shown in Fig. 10. The first row
illustrates the power consumption of NoC systems, while the
second row represents their area consumption. The legend
presents the NoC configurations in tuple format, where the first
value indicates the data width of the NoC, and the second value
represents the number of RSs inserted. NoC configurations
with the same data width share the same marker shape. For
example, NoCs with a 32-bit data width are represented by
triangles. Configurations with the same number of RSs inserted
are distinguished by color; for instance, all NoCs with one RS
inserted are colored blue.

For a single-plane NoC configuration, we can achieve
similar bandwidth of a 64-bit NoC by using a 32-bit data
width NoC with three RSs in each link between routers. This
configuration incurs a 63% power overhead while saving 16%



TABLE II
OPTIMIZATION PROBLEM PARAMETERS.

Parameter Variable type Description

C Decision variable Channel size (µm) of the chip design.
D Decision variable Data width (bits).
F Decision variable Operating frequency of the NoC (MHz).
R Decision variable Number of RSs inserted.
Au, Pu User defined variable Power and area budgets specified by users.
Breq User defined variable Target NoC bandwidth specified by users.
Lchip Constant Semiperimeter of the chip excluding the channel size.
Fbase Constant Maximum operating frequency of the NoC before RS insertion.
Frouter Constant Maximum operating frequency of the router.
α, β Constant The coefficients for RS effect on the NoC maximum frequency.
γ Constant The coefficient of the router constraint.
δ Constant The coefficient of the channel-parallelism constraint.
a, b, c Constant Adjusting factors for power consumption and area of the NoC.
k Constant Adjusting factor for the bandwidth calculation of the NoC.

in area overhead. Similarly, achieving the bandwidth of a 96-
bit NoC is possible with a 64-bit data width NoC by inserting
one RS in each link, resulting in a 26% power overhead but
avoiding a 32% area overhead associated with increasing the
NoC’s parallelism. To match the bandwidth of a 128-bit NoC,
two options are available: adding one RS to a 96-bit NoC
or inserting two RSs into a 64-bit NoC. These configurations
incur 15% and 41% additional power overhead, while saving
10% and 45% in area overhead, respectively.

Similarly, in a six-plane NoC configuration, a 32-bit NoC
can achieve the bandwidth of a 64-bit NoC by inserting three
RSs into the channel wires. This results in an additional
46% power consumption but avoids a 42% area overhead.
To achieve the bandwidth of a 96-bit NoC, we can add one
RS to a 64-bit NoC, incurring a 18% power overhead and
avoid an additional 41% area overhead. Finally, to achieve
the bandwidth of a 128-bit NoC, we can incur either a 17%
or 42% additional power overhead, depending on whether we
insert RSs into a 96-bit or 64-bit NoC, respectively, to avoid
36% and 91% additional area overhead.

In the single-plane NoC configuration, the maximum area
savings is 45%, in contrast to the 91% reduction achieved
in the six-plane configuration. This difference arises because,
unlike the six-plane configuration, where a linear relationship
between data width and channel size is observed, the channel
size in the single-plane case follows the router constraint
due to limited data parallelism. The trade-off between power
and area becomes more pronounced in NoCs with larger
bandwidth, particularly as the area increases linearly with
channel size. The power penalty of wire pipelining is slightly
higher for NoCs with fewer planes or narrower data widths.
This is in part due to other logic elements in the SoC, such
as clock trees, which do not scale with bandwidth.

IV. OPTIMIZATION OF NOC CONFIGURATIONS

Channel parallelism and wire pipelining can be applied
either as alternatives or in a complementary manner to op-
timize NoC design. In this section, we first formulate a
NoC optimization problem and then present a case study to
demonstrate the benefits of combining both techniques.

A. The Optimization Problem

In Section III-B we determine that RS insertion introduces
zero silicon area overhead. Hence, to minimize the silicon

area, we increase the channel parallelism only after inserting
as many RSs as possible. In contrast, to minimize power
consumption, maximizing channel parallelism is the preferred
strategy because the NoC achieves its highest power efficiency
when no RSs are used.

However, when architects have specific PPA requirements,
the optimization problem must be formulated to accommo-
date the constraints of the SoC design. In our formulation,
architects can define their power budget Pu and silicon
area budget Au. The non-convex Mixed-Integer Quadratically
Constrained Programming (MIQCP) problem is defined as
follows, with parameters and variables listed in TABLE II.

minimize
a×R× F ×D + b× F ×D

Pu
+

c× (2LchipC + C2)

Au
.

(8)
subject to k × F ×D ≥ Breq , (9)

(α(1− βR)R+ 1)Fbase ≤ Frouter, (10)

C2 ≥ γ ×D, (11)
C ≥ δD, (12)
C ≥ 0, D ≥ 0, R ≥ 0, F ≥ 0, (13)

c× (2LchipC + C2) ≤ Au, (aR+ b)× F ×D ≤ Pu, (14)
F ≤ (α(1− βR)R+ 1)Fbase. (15)

Decision variables. There are four decision variables
C,D, F,R in the optimization problem. D and R, which are
related to the architecture of the system, are integer variables.
C and F , which pertain to the resulting PD values, are
continuous variables. If the system requires a specific data
width setting, Special Ordered Sets of Type 1 [18] can be
introduced into the problem formulation.

Objective function (8). The objective function considers
both the power and area overhead introduced by wire pipelin-
ing and channel parallelism. As discussed in Section III-C,
the power consumption of both RSs and routers is positively
correlated to F × D, while the area overhead introduced by
the channel parallelism is positive related to 2LchipC + C2.

Bandwidth constraint (9). When designing NoCs, ar-
chitects typically define the required bandwidth to ensure
optimal performance. To meet the requirements, the achieved
bandwidth must exceed the specified requirement.

Router frequency constraint (10). In Section III-B, we
derived an approximate function for the maximum NoC oper-
ating frequencies with RS insertion.2 As the NoC maximum
operating frequency increases, it eventually becomes limited
by the maximum frequency of the routers (Frouter).

Channel constraints with respect to the data width (11),
(12). As derived in Section III-A, the channel size is con-
strained by both router and channel-parallelism constraints.

Nonnegative constraints (13). All decision variables are
nonnegative.

Budget constraints (14). The power and area consumption
of the NoC must remain within the allocated budgets.

Frequency constraint (15). The operating frequency of the
NoC is constrained by the maximum frequency limits set by

2To make the function tractable for the optimization solver, we applied
piecewise linearization to the function.



TABLE III
COMPARISON OF POWER AND AREA RESULTS FOR NOC DESIGNS UNDER DIFFERENT SCENARIOS AND APPROACHES.

Scenario Power constrained Area constrained Power and area constrained Power and area sufficient

Power and area budgets (Pu : 85, Au : 1, 920, 000) (Pu : 130, Au : 960, 000) (Pu : 100, Au : 1, 440, 000) (Pu : 160, Au : 2, 560, 000)

Channel-parallelism approach (P : 83, A : 1, 533, 190) (P : −, A : −) (P : −, A : −) (P : 83, A : 1, 533, 190)
Wire-pipelining approach (P : −, A : −) (P : 121, A : 791, 513) (P : −, A : −) (P : 121, A : 791, 513)
Hybrid approach (P : 83, A : 1, 533, 190) (P : 121, A : 791, 513) (P : 96, A : 1, 096, 200) (P : 108, A : 895, 371)

Channel-parallelism approach (P : 97.6%, A : 79.9%) (P : −, A : −) (P : −, A : −) (P : 51.9%, A : 59.9%)
Wire-pipelining approach (P : −, A : −) (P : 93.1%, A : 82.4%) (P : −, A : −) (P : 75.6%, A : 30.9%)
Hybrid approach (P : 97.6%, A : 79.9%) (P : 93.1%, A : 82.4%) (P : 96%, A : 76.1%) (P : 67.5%, A : 35.0%)

TABLE IV
OPTIMIZATION RESULTS OF NOC CONFIGURATIONS UNDER DIFFERENT SCENARIOS.

Scenario Power constrained Area constrained Power and area constrained Power and area sufficient

Channel-parallelism approach (D : 98, R : 0) (D : −, R : −) (D : −, R : −) (D : 98, R : 0)
Wire-pipelining approach (D : −, R : −) (D : 52, R : 3) (D : −, R : −) (D : 52, R : 3)
Hybrid approach (D : 98, R : 0) (D : 52, R : 3) (D : 72, R : 1) (D : 58, R : 2)

the router microarchitecture and the delays introduced by long
wiring links within the NoC.

B. Optimization Result

We demonstrate the use of this model under four different
scenarios: 1) power-constrained, 2) area-constrained, 3) bal-
anced but limited power and area budgets, and 4) balanced
with sufficient budgets. For each scenario, we compare three
approaches: 1) channel-parallelism-only, 2) wire-pipelining-
only, and 3) hybrid approach. As a case study, we consider
a six-plane NoC system, targeting a bisection bandwidth of
1300 Gbit/sec. Gurobi [19] was used to solve the optimization
problems, and the results under different power and area
constraints are presented in TABLE III and TABLE IV.

For the channel-parallelism approach, increasing the data
width is the only way to improve performance. In area-
constrained environments, the approach is restricted in achiev-
ing the target bandwidth. In contrast, wire pipelining is well-
suited for area-constrained scenarios since RS insertion does
not increase silicon area. However, the power overhead of
RSs grows approximately quadratically with operating fre-
quency. Consequently, this approach is not suited for power-
constrained scenarios.

In both power-constrained and area-constrained scenarios,
the hybrid approach consistently identifies the most efficient
NoC configurations, which align with those selected by the
wire-pipelining and channel-parallelism methods, as they rep-
resent the most effective means of achieving the target band-
width. When both power and area are constrained, the hybrid
approach demonstrates clear advantages by combining both
strategies to meet the bandwidth target, whereas the individual
approaches fail to do so.

Finally, when area and power budgets are sufficient, all
three approaches are capable of achieving the desired band-
width. Among them, the hybrid approach offers the advantage
of minimizing overall resource usage by jointly considering
power and area constraints. As shown in the last column of

TABLE III, all approaches meet the bandwidth target: the
channel-parallelism approach consumes approximately 51.9%
of the power budget and 59.9% of the area budget, averag-
ing 55.9% in overall resource utilization; the wire-pipelining
approach uses 75.6% of the power budget and 30.9% of the
area budget, resulting in 53.25% utilization on average. In
comparison, the hybrid approach requires 67.5% of the power
budget and 35.0% of the area budget, achieving the lowest
average resource utilization at 51.25%. These results highlight
the hybrid method’s ability to balance resources efficiently
while meeting performance requirements.

In conclusion, the hybrid approach provides the best solu-
tion with two key advantages:

1) It enables the NoC design to achieve higher bandwidth,
particularly when both power and area are constrained.

2) It enables better trade-offs between resource usage and
performance for a given power and area budget.

V. RELATED WORK

SoC physical design and optimization. In contrast to the
NoC performance studies in earlier years [20], [21], which
focus on simulation-based results, numerous works [2]–[4]
have recently been more focused on tape-out results, pri-
marily adopting 2D-mesh topologies. However, these studies
primarily focus on system implementation and optimization,
rather than exploring the trade-offs from a physical design
perspective. In contrast, our work complements these efforts
by highlighting the physical design trade-offs involved.

NoC pipelining. Pipelining data transmission is a com-
monly used technique to improve the system throughput.
Most prior research on NoC pipelining focused on router
microarchitecture pipelining to increase operating frequency.
[22]–[27]. However, in advanced technologies, the critical
path of the NoC shifts from the routers to the links between
them during the downstream physical design flow. Our work
complements these studies by focusing on wire pipelining to
achieve higher frequencies until the NoC frequency becomes



limited by the router. For link-level wire pipelining in NoCs,
Gebhardt et al. [28] proposed an optimization methodology
based on modeling and simulation techniques, with a focus
on asynchronous NoCs. In contrast, our work emphasizes the
trade-offs between wire pipelining and channel parallelism in
the physical design of synchronous latency-insensitive NoCs.

NoC channel parallelism. Increasing channel parallelism
improves NoC performance, particularly in latency-critical
scenarios such as configuration or register planes. Fischer et
al. [8] demonstrate the effectiveness of this technique. Our
work complements theirs by introducing wire pipelining as an
additional dimension for NoC throughput optimization and by
analyzing the trade-offs between the two approaches.

VI. CONCLUSION

In this work, we explored the physical design implications
of increasing bandwidth in 2D-mesh NoC implementations.
We focused on two techniques: 1) wire pipelining with RSs,
and 2) increasing channel parallelism. We implemented mul-
tiple NoC tape-in designs with varying configurations in a
commercial 12nm technology process using industry-standard
EDA tools, enabling accurate modeling and analysis of the
trade-offs of each approach. The experimental results show
that when targeting the same bandwidth, we can save up to
91% in silicon area overhead by choosing wire pipelining
over channel parallelism, while increasing power consumption
overhead by 42%. In contrast, increasing channel parallelism
can save up to 63% in power overhead compared to wire
pipelining, while increasing area overhead by 16%. To address
this trade-off, we formulate an optimization problem where
these two techniques can be strategically combined based on
user requirements. To the best of our knowledge, this is the
first paper that provides a comprehensive PPA analysis of both
techniques supported by real tape-in results and that offers
guidance on selecting the most suitable configuration based
on specific design constraints.
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