
RECONFORMER: A Multi-Level Run-Time Reconfigurable
System-on-Chip for Accelerating Transformers

Je Yang, Gabriele Tombesi, Joseph Zuckerman and Luca P. Carloni
{je.yang, gtombesi, jzuck, luca} @ cs.columbia.edu

Department of Computer Science · Columbia University in the City of New York, New York, NY, 10027

Abstract—Recent advances in neural network design have
emphasized attention-based Transformer models, which deliver
state-of-the-art accuracy across applications in natural language
processing and computer vision. However, the computational
demands of Transformers pose significant challenges for deploy-
ment in latency-sensitive scenarios and resource-constrained de-
vices, resulting from Transformers’ quadratic scaling to sequence
length in attention mechanism and extensive data movement.
Many works have tried to alleviate these limitations while failing
to give comprehensive solutions that consider the heterogeneous
characteristics within Transformers.

In this paper, we propose RECONFORMER, a system-on-chip
that accelerates Transformers through multi-level reconfigura-
bility. At component level, RECONFORMER introduces recon-
figurable processing elements by incorporating range-based ap-
proximations for non-linear functions, resulting in 21% reduced
logic usage per accelerator. At the system level, RECONFORMER
has a run-time coarse-grained reconfigurability, which provides
adaptive parallelism strategies and dynamic cache-coherence
mode to address diverse kernel requirements. As a result,
RECONFORMER achieves up to 5.54× speedup in multi-head
attention and 3.61× in end-to-end performance improvement
over a static system. RECONFORMER attains remarkable per-
formance compared to other platforms, resulting in 13.03× and
5.30× higher efficiency than edge and server CPUs, respectively.
Even compared to an edge GPU, RECONFORMER achieves
1.79× improvement in efficiency, highlighting our system as a
compelling alternative for edge deployment.

Index Terms—Natural Language Processing; Attention;
Domain-Specific Accelerator; Reconfigurable Accelerator;
System-on-Chip; FPGA;

I. INTRODUCTION

Natural language processing has seen rapid advancements
in recent years, driven by attention-based models such as
Transformer [1], BERT [2], and GPT [3]. These models have
demonstrated substantial performance improvements com-
pared to traditional approaches relying on convolutional and
recurrent neural networks, with BERT even surpassing human-
level accuracy in challenging sentence-classification tasks.
Unfortunately, the enhanced accuracy of Transformers comes
at a significant cost in computational efficiency. The attention
mechanism in Transformers is inherently complex, exhibiting
quadratic scaling with input sequence length and requiring
substantial data movement, resulting in low arithmetic inten-
sity. In practical terms, these complexities manifest themselves
with a GPT-2 model taking 370 milliseconds to generate a
30-word sentence on a NVIDIA TITAN GPU - approximately
two orders of magnitude slower than the 6-millisecond image
classification of MobileNet-V2 [4]. Such inefficiencies hinder

the deployment of Transformers on embedded devices, where
computational power, memory, and bandwidth are limited.

Given these constraints, a comprehensive understanding
of the design choices for Transformers on edge devices
is paramount. Previous works optimizing Transformers with
algorithmic approaches, such as quantization, compression,
and approximation techniques, often sacrifice model accuracy
[5, 6]. Architectural solutions like distributed parallel com-
puting have been proposed to reduce memory bottlenecks
while requiring heavy synchronization across devices [7, 8].
Other works have focused on fusing multiple operations in
the attention module to minimize external memory accesses to
intermediate values [9, 10]. Unfortunately, these efforts often
target specific aspects of the efficiency challenge, missing
the broader need for adaptability in heterogeneous workloads
across diverse kernel types.

Transformers involve complex computational patterns –
from matrix-matrix operations to non-linear/element-wise
computations – requiring careful orchestration of parallelism
and operation fusion to reach ideal performance. Furthermore,
a dedicated cache-management approach is critical to opti-
mize system-level data reuse because memory-access patterns
vary heavily in Transformers. In BERT, for example, as the
sequence length increases from 128 to 512, the portion of
memory operations for vector-matrix multiplication is nearly
halved, while each memory and computation operation of
matrix-matrix multiplication increases by 2.8× and 3.3×,
respectively [11]. Thus, a robust solution must address these
diverse needs, particularly for applications on embedded plat-
forms where maximizing the capabilities of limited resources
is critical.

In this paper, we propose the RECONFORMER system-on-
chip (SoC), which accelerates Transformer-based models by
dynamically exploiting both component-level and system-level
reconfigurability. Our SoC addresses the diverse computational
and memory demands of Transformer models through:

• Component Reconfigurability. We introduce reconfig-
urable processing elements (RPE), which are designed by
decomposing the non-linear functions to general element-
wise operations through our range-based approxima-
tion. With reusable operation units and reconfigurable
dataflows for each operation type, RECONFORMER re-
duces logic requirements by 21% per accelerator, thus
supporting high scalability.



Fig. 1. Transformer encoder structure for sentence-classification task, with
an example of N=3, D=8, and H=2.

• System Reconfigurability. RECONFORMER delivers run-
time coarse-grained system reconfigurability by providing
adaptive parallelism and dynamic cache management.
This is the first work that leverages accelerator cache-
coherence modes for Transformers, yielding up to 5.54×
speedup for multi-head attention and 3.61× for end-to-
end performance compared to the static system.

For BERT benchmark applications, the RECONFORMER
SoC achieves 730.18× and 1.67× higher throughput, as well
as 13.03× and 5.30× higher efficiency, compared to edge-
class CPU and server-class CPU platforms, respectively. Even
compared to an edge GPU, we attain 1.79× higher efficiency,
highlighting our SoC as a promising solution for edge deploy-
ments of Transformers.

II. BACKGROUND

A. Attention-Based Language Models

The Transformer architecture has become the foundation
for various natural language processing tasks. Fig. 1 shows
how the Transformer encoder performs sentence-classification
tasks, including a multi-head attention (MHA) module and
a feed-forward network (FFN) module, each followed by a
layer normalization operation and a residual connection. First,
the input sentences are converted into vector representations
(N × D) through token embedding and positional encoding,
where N and D represent the input sequence length and model
dimension, respectively. Then, the MHA module performs
linear projection of this embedded vector by multiplying it
with three different weight matrices (Wquery,Wkey,Wvalue)

Fig. 2. Per-Layer FLOPs and MOPs for the BERT-Base with sequence lengths
of 128, 512, and 4096. In our analysis, we ignore the maximum sequence
length 512 for the standard BERT model.

and yields three different matrices (query, key, and value).
Then, these three matrices are split head-wise into H chunks,
with each chunk having a dimension of N×D/H . For each of
H different attention heads, matrix multiplication and softmax
operations are performed to find similarities within a given
sentence. Then, all matrices from the attention heads are
concatenated and projected with Wout to compute the final
attention output. While the MHA module consists of four
vector-matrix operations (Wquery,Wkey,Wvalue and Wout)
and two matrix-matrix operations (query×keyT and attention
score×value), the FFN module is a relatively simple block,
involving two fully-connected layers with larger dimensions
and a Gaussian Error Linear Unit (GELU) activation. The
operations within an encoder block are repeated L times,
where L indicates the number of encoder blocks.

B. Heterogeneity of Transformer

To identify performance bottlenecks in Transformer models,
we profile the number of floating-point operations (FLOPs)
and the total number of memory operations (MOPs) that are
required when executing the Transformer architecture. We
conduct our characterization study using BERT-Base on a
single NVIDIA GPU by employing PyTorch 2.3.1. Fig. 2
presents the per-layer breakdown of FLOPs and MOPs ac-
cording to the sequence length for the BERT-Base encoder. For
shorter sequences, vector-matrix operations in MHA and FFN
dominate FLOPs and MOPs. However, with longer sequences,
matrix-matrix multiplications become the primary source of
FLOPs, while element-wise operations contribute most to
MOPs. This variation across layers and sequence lengths
highlights the need for adaptable hardware architectures. To
address these heterogeneous computational demands, RECON-
FORMER incorporates (1) reconfigurable processing elements
as accelerators that efficiently handle both matrix and non-
linear/element-wise operations and (2) run-time coarse-grained
reconfigurability for system strategies like adaptive parallelism
and dynamic cache-coherence mode. By adopting a multi-
level reconfigurability, RECONFORMER provides a flexible
and scalable solution to optimize performance and energy
efficiency in accelerating Transformer-based workloads.

III. RECONFORMER SYSTEM-ON-CHIP

We designed our RECONFORMER system as a tile-based
heterogeneous system-on-chip (SoC). Fig. 3 shows a 3×3-



Fig. 3. An example of 3×3 tiled RECONFORMER system-on-chip with multi-
level reconfigurability.

tile instance of the RECONFORMER SoC with 4 instances of
RECONFORMER accelerators.

A. Coarse-Grained Reconfigurable System-on-Chip

The RECONFORMER SoC integrates multiple accelerator
and memory tiles along with a host processor tile and an
auxiliary tile through a 2D-mesh network-on-chip. Multiple
accelerator and memory tiles can be dynamically configured
as an accelerator group, depending on the network traffic
of each kernel in a Transformer. RECONFORMER leverages the
cache hierarchy to reduce the energy and latency associated
with external memory accesses. For each kernel, we dynami-
cally select one of three accelerator coherence mode, as classi-
fied in the literature [12]. Non-coherent accelerators access
DRAM via direct memory access (DMA), bypassing the cache
hierarchy. LLC-coherent accelerators route DMA requests to
the last-level cache (LLC), where hits are returned directly to
the accelerator; since the accelerator is only coherent with the
LLC, software must flush private caches before its execution
begins. Coherent accelerators also send their requests to
the LLC, but full hardware coherence is maintained, and the
LLC may need to recall or invalidate data in private caches.
The accelerators are designed based on a loosely-coupled
accelerator approach to execute coarse-grain computational
kernels by operating on large amount of data [13]. They
are invoked by software applications through a device driver,
which writes run-time system parameters, such as operation
type, operation dimension, cache-coherence mode, number
of accelerators, etc., for each coarse-grained kernel. Fig. 3
characterizes the design flexibility of the RECONFORMER SoC
by summarizing the architecture component-level and system-
level parameters.

B. Accelerator Design

Fig. 4 illustrates the microarchitecture of the RECON-
FORMER accelerator. We designed and optimized it using
SystemC and high-level synthesis (HLS) with the Catapult
HLS tool. The design includes four main SystemC processes
that communicate through a highly customized, multi-bank,

Fig. 4. Microarchitecture of the RECONFORMER accelerator.

multi-port private local memory (PLM) [14]. The first of
these processes, Configure, sets up the accelerator’s pipeline
through memory-mapped registers, allowing a high degree of
configurability for each invocation. Next, the LoadKernel

sends DMA read requests to an external DMA engine, storing
the fetched data in the PLM. It employs double-buffering to
pipeline the load operations with subsequent compute and
store operations. Once the required chunk of kernel data is
fetched, the ComputeKernel process reads data from the
PLMs for each operand, and performs the target computations
using a vector unit that has a customized reconfigurable dat-
apath. Finally, the StoreKernel issues DMA write requests
to the external DMA engine, transferring the computed data
by reading from the result PLM.

The ComputeKernel process is responsible for the main
operation of the Transformer. First, ConfigTiling calculates
the required iteration for memory and computation tiling
based on the dimension of each kernel, vector length, and
PLM capacity. Then, a 1-dimensional vector of reconfigurable
processing elements (RPEs) performs the main workload,
vector/matrix-matrix multiplication or element-wise operation,
with fixed-point precision. Considering the relatively low
operation intensity of the Transformer, we set the number of
PLM banks equal to the vector length to hide data feeding
latency. At design time, both the number of RPEs and the size
of the PLM are configurable. In Section IV-B, we explore a
design space where the number of RPEs is either 16 or 32,
and the size of a single PLM is either 16,384 words (64 KB)
or 32,768 words (128 KB), respectively.

C. Range-Based Approximation for Non-linear Functions

Exponential functions and Gaussian Error Linear Units
(GELU) are two types of non-linear element-wise operations
commonly used in Transformer. To address the resource-
intensive nature of these operations, we propose a range-based
approximation approach and integrate this approximation tech-
nique into the RPE’s datapath.

Fig. 5 illustrates the input data distribution for both the
exponential functions in MHA and the GELU function in
the FFN across BERT-Base’s encoder layers. The heat maps



Fig. 5. Input distribution and results of proposed range-based approximation.

TABLE I
END-TO-END ACCURACY FOR BERT WITH PROPOSED ACCURACY.

BLEU SCORE IS USED FOR THE MEASUREMENT.

Baseline Range-based Approximation

BERT-Base 89.10% 89.07%

BERT-Large 72.87% 72.95%

show the input frequency for each range of tensor values,
with red indicating higher frequency and blue indicating lower
frequency. We observe that the input value of each function
lies primarily within specific ranges, such as from -4 to 0 for
the GELU function. Based on this insight, we designed range-
specific approximation strategies for these non-linear functions
to achieve both accuracy and resource efficiency.

To approximate the exponential function, we employ a
linear transformation followed by a biased exponentiation
method. Specifically, we map the input range into a linear
domain, apply an integer transformation using a = 1/ln(2),
and introduce two biases b, c to minimize the mean squared
error against the true exponential values. The approximation
is represented by exp(x) = 2(ax+b) + c, which can be
easily implemented by using a shifter as we exploit fixed-
point precision. For the GELU approximation, we employ
a piecewise approximation approach that uses a quadratic
polynomial fit for specific segments within the critical range
and a linear approximation for outlying values.

Table I lists the end-to-end accuracy of the BERT model
with our proposed approximation method. While showing
similar precision to the ground truth, this method requires 42K
fewer LUTs and 19K fewer registers than employing a non-
linear function provided by the Catapult HLS library when
targeting an FPGA implementation. Given that our design
consumes over 200K LUTs and 250K registers per accelerator,
these 21% savings are crucial for scaling the RECONFORMER
architecture by accommodating multiple accelerators.

D. Reconfigurable Processing Element (RPE) and Adaptive
Parallelism

Using the proposed range-based approximation approach,
we simplify resource-intensive non-linear functions into more
efficient element-wise operations. We designed an RPE that

Fig. 6. Inter-/intra-accelerator level adaptive parallelism and operation fusion.

integrates these element-wise operations with a multiply-and-
accumulate dataflow for linear computations, such as vector or
matrix multiplications. As shown in Fig. 4, the RPE adapts its
dataflow based on the operation type. The linear operations use
an output-stationary dataflow to accumulate results. The same
multipliers and adders are reused for element-wise operations,
with additional components like comparators and shifters to
support our range-based approximated non-linear functions.

Since RECONFORMER supports all operations in a single
RPE, we can employ various parallelism schemes with max-
imum hardware utilization. We strategically apply different
parallelism techniques at both inter-accelerator and intra-
accelerator levels. At the inter-accelerator level, we utilize
head parallelism for multi-head attention by performing the
matrix multiplication for each head independently. For other
operations, such as vector-matrix multiplications and element-
wise operations, we adopt sequence parallelism to maximize
cache locality for weight matrices by setting the LLC size
sufficiently large to store parameters for each kernel in Trans-
former. At the intra-accelerator level, we leverage output
parallelism among the RPEs for all operations.

Fig. 6 illustrates how we tile the data and feed it to the
RPEs by using adaptive parallelism tailored to each kernel. In
the multi-head attention layer (Fig. 6(a)), we divide multiple
heads to apply the softmax function row-wise across the full
sequence length. The query matrix (Q) is pre-partitioned along
the head dimension at the inter-accelerator level, and then the
segments of Qrow are fetched to fit within the PLM’s capacity.
Meanwhile, the transposed key matrix (KT ) is divided along
the column dimension Kcol. To compute the attention scores,
we prioritize iteration on the Kcol dimension for PLM/Kcol

times to generate the results for the entire sequence length.
After computing the multiple row-wise segments of attention
scores, we directly apply softmax and perform the final matrix-
matrix multiplication with the value matrix (V). We iterate
these outer fusion loops for PLM/Qrow times. Fusing these
two matrix multiplications and softmax without storing inter-
mediate values dramatically minimizes the cost of accessing
external memory because the intermediate attention score size
has a quadratic relationship with sequence length. For general
linear operations (Fig. 6(b)), we adopt sequence parallelism



TABLE II
RECONFORMER RESOURCE USAGE PER TILE.

ACCELERATOR TILE IS CONFIGURED (RPES, PLM WORD)

Component LUT FF BRAM DSP
(Total) (4,085,760) (195,527) (2,160) (3,840)

Accelerator (16, 16384) 176,642 195,527 161 528

Accelerator (16, 32768) 171,790 183,819 321 530

Accelerator (32, 16384) 240,422 252,090 161 748

CPU Tile 53,141 40,285 49.5 27

Memory Tile 20,525 21,557 100.5 0

IO Tile 8,935 12,032 32 0

and configure the LLC size sufficiently large to fit the weight
matrix of a single kernel. By prioritizing sequence parallelism
over output parallelism, we maximize cache locality and make
full use of the available cache capacity.

IV. EVALUATION

A. Experimental Setup

Workload. We evaluate the efficiency of our proposed RE-
CONFORMER with the fundamental backbone of the language
model, BERT [2]. We focus on BERT-Base (L = 12, D =
768, H = 12) and BERT-Large (L = 24, D = 1024, H = 16),
which have 110M and 340M parameters, respectively.

System Implementation. We prototyped our RECON-
FORMER SoC on a proFPGA UltraScale+ XCVU19P board
by leveraging ESP [15], an open-source platform for designing
heterogeneous SoCs with tile-based architectures [16]. We
integrated four accelerator tiles, two memory tiles – each
with a LLC partition – and a single tile each for CPU and
IO. Table II summarizes the resource usage of each tile and
accelerator configuration, denoted (#RPEs, PLM Words).

B. RECONFORMER Ablation Study

Intra/Inter-Accelerator Parallelism. We evaluate how
the intra-accelerator parallelism (number of RPEs), inter-
accelerator parallelism (number of accelerators), and memory
bandwidth (number of memory tiles) impact the performance
across different kernels. For a fair comparison, we also assess
the resource utilization of each system as the percentage of
the total resources of the FPGA used by all accelerators and
memory tiles, as summarized in Table II.

Fig. 7 illustrates the latency-area trade-offs across various
degrees of both intra- and inter-accelerator parallelism for each
kernel, annotated with the dimension of the largest operand
size for each operation. We evaluated the cycle count for each
kernel using three distinct accelerator configurations by vary-
ing intra-accelerator parallelism and on-chip capacity, starting
from the baseline design (RPE 16, PLM 16384). Although
both the baseline and (RPE 32, PLM 16384) accelerators
have the same on-chip memory capacity, the latter incorporates
a greater number of PLM banks with reduced depth, providing
higher output parallelism, but with reduced data availability

Fig. 7. Latency-area trade-offs for the Transformer kernel with different
accelerator designs.

Fig. 8. Performance improvement of multi-head-attention kernel with various
memory optimization strategies.

along the reduction dimension. In particular, performance with
(RPE 32, PLM 16384) is even slower than the baseline
across all kernels, indicating that reducing transactions along
the reduction dimension is more critical than maximizing
output generation. This observation highlights the importance
of selecting a parallelism strategy tailored to the operation’s
requirements, further supporting the efficacy of our adaptive
parallelism approach by prioritizing sequence parallelism over
output parallelism.

Intra-accelerator parallelism exerts limited influence on
kernels with moderate compute and memory requirements,
such as vector-matrix multiplications in MHA. However, per-
formance varies significantly across configurations for low-
operation-intensity kernels, such as matrix multiplications in
MHA, and for larger-dimension kernels. Additionally, while
increasing the number of memory tiles generally reduces
latency across all kernels, this improvement is minimal relative
to the associated increase in resource consumption.

Operation Fusion and Cache Management. Fig. 8 shows
the impact of operation fusion and cache management on a
MHA module. We evaluate the speedup across different mem-
ory optimization strategies: Baseline (no fused operations



Fig. 9. Performance improvement of each Transformer kernel with coherence
mode.

Fig. 10. End-to-end performance improvement with RECONFORMER multi-
level reconfigurability. Each fixed system 1 and 2 consists of (RPE 16,
PLM 16384) and (RPE 32, PLM 16384) without coherence mode while
RECONFORMER consists of (RPE 16, PLM 32768) with mixed coherence
mode.

and non-coherent accelerators), Fused-Non (fused operations
non-coherent accelerators), Fused-LLC (fused operations and
LLC-coherent accelerators), and Fused-Coh (fused opera-
tions and coherence accelerators) for each accelerator-memory
configuration. Operation fusion substantially reduces external
memory access overhead for intermediate features, achieving
a speedup of 2.87× in the configuration with four accelerator
tiles and two memory tiles. Furthermore, RECONFORMER
enhances performance by switching the accelerator coherence
mode, particularly when the number of accelerators increases.
In this case, the query, key, and value matrices are partitioned
and become compact enough to fit within the LLC, which im-
proves hit rates and enhances the performance of the coherent
mode. Consequently, with the four-accelerator, fused, and co-
herent configuration, RECONFORMER is 9.99× faster than the
baseline single accelerator, which has a non-fused, and non-
coherent configuration. Even compared to a four-accelerator
setup without fusion and coherence, RECONFORMER shows a
substantial improvement, achieving a 5.54× speedup.

Fig. 9 shows how dynamically choosing the accelerator
coherence mode affects the performance of each kernel in
Transformers. Notably, vector-matrix multiplication does not
demonstrate any performance improvement from cache usage
for the following reasons. First, sequence parallelism, which
is employed at the inter-accelerator level, duplicates the model
parameters. The substantial kernel size resulting from this
duplication can lead to cache thrashing and increased con-
tention among multiple accelerators. In contrast, the memory-
dominant kernels with longer sequence length, like fused
MHA and element-wise operation, attain 8.45× and 4.04×
speedup compared to a non-coherent single accelerator. These
gains eventually lead to end-to-end speedups as shown in
Fig. 10. Based on previous results, RECONFORMER selects the
coherent mode for MHA and element-wise operation kernel

TABLE III
COMPARING RECONFORMER TO OTHER PLATFORMS, B AND L OF

THROUGHPUT ROW AND EFFICIENCY ROW REPRESENT THE PERFORMANCE
OF BERT-BASE AND BERT-LARGE, RESPECTIVELY.

Edge

GPU

Edge

CPU

Server

CPU
RECONFORMER

Compute

Unit

1.2GHz @

1,024 Cores

1.7GHz @

Single Core

3GHz @

24 Cores

100MHz @

4×16 RPEs

On-chip Memory 1MB 16KB 38MB 4×1.3MB

Off-chip

Bandwidth

80 GB/s

GDDR5

22.5GB/s

DDR4

89.6GB/s

DDR4

22.5GB/s

DDR4

Power (W) Max 40 0.254 52.25 14.23

Throughput

(seq/s)

B

L

31.55

10.13

0.017

0.001

7.42

4.18

12.40

8.16

Efficiency

(seq/s/W)

B

L

1.19

0.32

0.067

0.038

0.16

0.08

0.87

0.57

while using the non-coherent mode for the remaining kernels.
This dynamic management enables the RECONFORMER SoC
to achieve up to a 3.61× speedup compared to a static
configuration using the same number of accelerators in long-
sequence scenarios.

C. System-Level Performance Evaluation

Based on the previous ablation study, we set the optimal
configuration for the RECONFORMER SoC to achieve peak
performance as follows: four accelerator tiles with 16 RPEs
and 32768 PLM words, two memory tiles each with 0.4MB of
LLC, and using the coherent mode for the fused MHA kernel
and element-wise operations. To compare the performance
and energy consumption of our optimal SoC with state-of-
the-art platforms, we evaluate the BERT model with an edge
GPU (NVIDIA Quadro T2000), an edge CPU (Ariane RISC-
V Core), and a server CPU (Intel i9-13900K). Table III lists
the specifications and performance for the above platforms.
For a fair comparison, we use a common metric normalized
throughput (sequence per second) [17]. Although our SoC has
limited compute cores and on-chip memory capacity com-
pared to other platforms, it leverages adaptive reconfiguration
mechanisms to dynamically optimize the architecture selec-
tion. As a result, for the BERT-Base benchmark applications,
RECONFORMER SoC attains major improvements of 730.18×
and 1.67× higher throughput and 13.03× and 5.30× higher
efficiency compared to edge CPU and server CPU platforms,
respectively. Especially, the 1.79 × improvement in efficiency
over the edge GPU for larger model demonstrates that our
RECONFORMER SoC can be a competitive alternative for edge
deployments of Transformers.

D. Scalability and Generalizability

Fig. 11 shows the resource utilization and layout of the
optimal configuration of the RECONFORMER SoC on FPGA.
Overall, it uses 24.5% of LUTs, 13.6% of Registers, 56.5% of
DSP, and 81% of BRAM. The balanced utilization of resources



Fig. 11. Resource utilization and layout on FPGA of RECONFORMER with
optimal SoC configuration.

Fig. 12. Power breakdown of RECONFORMER with optimal SoC configura-
tion per each tile and module.

across accelerators suggests that our SoC is well-optimized
and can scale without immediate resource contention. Fig. 12
shows the power breakdown of the SoC with optimal configu-
ration. It consumes less dynamic power both in terms of logic
power (0.61W) and BRAM power (2.23W); each accelerator
tile contributes approximately 1.3 W (19%) and the memory
tiles consume only 0.6 W each (9%). The low resource use
and power dissipation of the CPU confirm that our SoC is
designed to offload computation to accelerators, which is a
key for scalability.

Although our benchmarks focused mainly on discriminative
models such as BERT, we would like to emphasize that
RECONFORMER’s reconfigurability is broadly applicable to
any Transformer-based models. These models typically fea-
ture MHA and FFN modules, both of which benefit signif-
icantly from RECONFORMER’s system-level dynamic cache
management and component-level adaptive datapaths. More-

TABLE IV
COMPARING SCALABILITY OF RECONFORMER

TO OTHER MULTI-CORE ACCELERATOR FOR TRANSFORMERS.

DFX

[7]

DeTransformer

[8]
RECONFORMER

Platform Xilinx U280 Raspberry Pi UltraScale+ XCVU19P

Benchmark GPT [3] BERT [2] BERT [2]

Scalability
1.57×(2 devices)

2.23×(4 devices)
2.81×(4 devices)

1.77×(2 cores)

4.71×(4 cores)

over, generative models that involve decoding processes with
key-value caching in cross-attention are expected to benefit
even more from RECONFORMER’s dynamic cache-coherence
modes, enabling efficient reuse of intermediate results.

V. RELATED WORK

Efforts to accelerate Transformers span both algorithmic
and architectural strategies. Compression and quantization
techniques optimize the model itself to reduce size and at-
tention complexity [4, 5, 18]–[20]. To alleviate the complex-
ity with longer sequence, various approximations of non-
linear function in Transformer have been proposed [21]–[23].
FlashAttention [9] and Flat [10] have leveraged operation
fusion in MHA layers as architectural solutions. However,
these methods address only specific efficiency challenges,
often without accounting for the heterogeneous nature of the
Transformer workloads, which encompass a mix of compute-
and memory-bound operations across diverse kernel types.

Other researchers have focused on distributed parallel com-
puting to scale Transformer models [6]–[8, 11]. For instance,
DFX [7] introduces custom instructions and dataflow, effi-
ciently combining multi-device hardware with model paral-
lelism. While these approaches reduce memory bottlenecks,
they require complex synchronization across devices, making
it difficult to exploit parallelism within Transformers effec-
tively. To address synchronization challenges, DeTransformer
[8] highlights block parallelism by reconstructing Transformer
layers and retraining the model, achieving up to a 2.81×
speedup compared to standard tensor parallelism. In contrast,
our approach leverages multi-level reconfigurability without
model retraining, providing a flexible and holistic solution for
edge devices while surpassing ideal speed by achieving up to
a 4.71× improvement. Table IV summarizes the scalability
of the multi-core accelerator for Transformers, implying that
our system reconfigurability can help the accelerator attain an
ideal speedup.

VI. CONCLUSION

In this paper, we propose RECONFORMER, a multi-level re-
configurable system-on-chip designed to accelerate Transform-
ers on resource-constrained edge devices. RECONFORMER
exploits a reconfigurable processing element with a range-
based approximation approach to reuse the operation units
and reconfigure the dataflow for each operation type, thus



achieving a 21% reduction in logic usage. In addition, our
coarse-grained system-level reconfigurability, which includes
adaptive strategies for intra- and inter-accelerator parallelism
and dynamic selection of coherence modes, provides a 5.54×
speedup in multi-head attention and a 3.61× in end-to-end per-
formance improvement over a static system. Ultimately, when
accelerating BERT-Base, the RECONFORMER SoC achieves
730.18× and 1.67× higher throughput values and 13.03×
and 5.30× higher efficiency values compared to edge and
server CPUs, respectively. By reaching a 1.79× improvement
in efficiency over an edge GPU, we show that our RECON-
FORMER SoC is a promising solution for the edge deployment
of Transformers.

ACKNOWLEDGMENT

This work is partially supported by a DOE award (A#: DE-
SC0024458) and a Columbia Center of Artificial Intelligence
Technology (CAIT) Award.

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, vol. 30, 2017.

[2] J. Devlin, “Bert: Pre-training of deep bidirectional transformers for
language understanding,” arXiv preprint arXiv:1810.04805, 2018.

[3] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[4] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse attention
architecture with cascade token and head pruning,” in IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA),
pp. 97–110, IEEE, 2021.

[5] T. Yang, D. Li, Z. Song, Y. Zhao, F. Liu, Z. Wang, Z. He, and
L. Jiang, “Dtqatten: Leveraging dynamic token-based quantization for
efficient attention architecture,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 700–705, IEEE, 2022.

[6] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer
inference,” Proceedings of Machine Learning and Systems, vol. 5,
pp. 606–624, 2023.

[7] S. Hong, S. Moon, J. Kim, S. Lee, M. Kim, D. Lee, and J.-Y. Kim,
“Dfx: A low-latency multi-FPGA appliance for accelerating transformer-
based text generation,” in IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 616–630, 2022.

[8] Y. Wei, S. Ye, J. Jiang, X. Chen, D. Huang, J. Du, and Y. Lu,
“Communication-efficient model parallelism for distributed in-situ trans-
former inference,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 1–6, 2024.

[9] T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast
and memory-efficient exact attention with IO-awareness,” Advances in
Neural Information Processing Systems, vol. 35, pp. 16344–16359, 2022.

[10] S.-C. Kao, S. Subramanian, G. Agrawal, A. Yazdanbakhsh, and T. Kr-
ishna, “Flat: An optimized dataflow for mitigating attention bottlenecks,”
in Proceedings of the 28th ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Volume 2, pp. 295–310, 2023.

[11] S. Kim, C. Hooper, T. Wattanawong, M. Kang, R. Yan, H. Genc,
G. Dinh, Q. Huang, K. Keutzer, M. W. Mahoney, Y. S. Shao, and
A. Gholami, “Full stack optimization of transformer inference: a survey,”
arXiv preprint arXiv:2302.14017, 2023.

[12] J. Zuckerman, D. Giri, J. Kwon, P. Mantovani, and L. P. Carloni,
“Cohmeleon: Learning-Based Orchestration of Accelerator Coherence
in Heterogeneous SoCs,” in Proceedings of the IEEE/ACM Symposium
on Microarchitecture (MICRO), 2021.

[13] E. G. Cota, P. Mantovani, G. Di Guglielmo, and L. P. Carloni, “An
analysis of accelerator coupling in heterogeneous architectures,” in
Proceedings of the Design Automation Conference (DAC), pp. 1–6, 2015.

[14] P. Mantovani, G. Di Guglielmo, and L. P. Carloni, “High-level synthesis
of accelerators in embedded scalable platforms,” in Asia and South
Pacific Design Automation Conference (ASP-DAC), pp. 204–211, 2016.

[15] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman,
E. G. Cota, M. Petracca, C. Pilato, and L. P. Carloni, “Agile SoC devel-
opment with open esp,” in Proceedings of the International Conference
On Computer Aided Design (ICCAD), pp. 1–9, 2020.

[16] L. P. Carloni, “The case for embedded scalable platforms,” in Proceed-
ings of the Design Automation Conference (DAC), pp. 17:1–17:6, June
2016.

[17] “NVIDIA Data Center Deep Learning Product Performance AI In-
ference — developer.nvidia.com.” https://developer.nvidia.com/deep-
learning-performance-training-inference/ai-inference. [Accessed 12-11-
2024].

[18] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han,
“Smoothquant: Accurate and efficient post-training quantization for large
language models,” in International Conference on Machine Learning,
pp. 38087–38099, PMLR, 2023.

[19] J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao,
X. Dang, C. Gan, and S. Han, “AWQ: Activation-aware weight quanti-
zation for on-device llm compression and acceleration,” Proceedings of
Machine Learning and Systems, vol. 6, pp. 87–100, 2024.

[20] J. Park, M. Kang, Y. Han, Y.-G. Kim, J. Shin, and L.-S. Kim, “Token-
picker: Accelerating attention in text generation with minimized mem-
ory transfer via probability estimation,” in Proceedings of the Design
Automation Conference, pp. 1–6, 2024.

[21] J. R. Stevens, R. Venkatesan, S. Dai, B. Khailany, and A. Raghunathan,
“Softermax: Hardware/software co-design of an efficient softmax for
transformers,” in Proceedings of the Design Automation Conference
(DAC), pp. 469–474, IEEE, 2021.

[22] G. Shen, J. Zhao, Q. Chen, J. Leng, C. Li, and M. Guo, “Salo: an efficient
spatial accelerator enabling hybrid sparse attention mechanisms for
long sequences,” in Proceedings of the Design Automation Conference,
pp. 571–576, 2022.

[23] J. Yu, J. Park, S. Park, M. Kim, S. Lee, D. H. Lee, and J. Choi, “NN-
LUT: neural approximation of non-linear operations for efficient trans-
former inference,” in Proceedings of the Design Automation Conference
(DAC), pp. 577–582, 2022.


