
VENTTI: a Vertically Integrated Framework for
Simulation and Optimization of Networks-On-Chip

Young Jin Yoon, Nicola Concer, and Luca Carloni

Department of Computer Science, Columbia University
{youngjin, concer, luca}@cs.columbia.edu

Abstract—Networks-on-chip have been proposed to enable
the integration of heterogeneous SoCs in a power-efficient and
scalable way. We present VENTTI, a design and simulation envi-
ronment that combines a virtualized platform, a NoC synthesis
tool, and a library of NoC building blocks characterized at
different abstraction levels. By efficiently simulating complex
application scenarios running on top of Linux, VENTTI enables
the evaluation of alternative NoC architectures and the derivation
of a final RTL implementation that meets the communication
requirements while optimizing power dissipation.

Experimental results demonstrate the features of VENTTI and
illustrate the trade-offs in terms of simulation time and power-
estimation accuracy.

I. INTRODUCTION

The computing platforms for embedded systems are increas-
ingly based on Systems-on-Chip (SoC), which are composed
by many general-purpose processors, memories, and a growing
variety of accelerators subsystems. The general-purpose cores
run an operating system as well as the software of multiple
applications for which the SoC does not provide specific
hardware support. The accelerators execute critical computa-
tional tasks with better performance and energy efficiency than
the software. The on-chip memory supports the execution of
multiple parallel applications and the data exchanges among
cores and accelerators [1], [2].

For many SoCs, power dissipation is increasingly the main
factor that drives the whole design process. The design of
power-efficient SoCs is made more challenging by the growing
number of IP blocks being integrated on the chip. Meanwhile,
the interconnect naturally comes to play a central role because
it is in charge of supporting the communications between the
multiple cores, the memory, and the accelerator subsystems.

Networks-on-Chip (NoCs) are now considered the most
promising solution to overcome the limitations of traditional
bus-based architectures and satisfy the communication require-
ments of future SoCs while guaranteeing both scalability and
power-efficiency [3], [4]. As NoCs depend on the physical
placement and computational properties of each IP block,
their implementation is usually tailored to meet the specific
requirements of the target SoC. This peculiar characteristic
makes the NoC a particularly critical component to design
and test. Additionally, the NoC implementation is open to
a large set of possible design choices including: network
topology, routing algorithm, flow-control protocol, end-to-end
communication protocol, presence of virtual channels, as well
as the specifics of the router micro-architecture (with such
properties as the size of the buffering queues and the port
parallelism, or flit width). Each one of these design points has
an impact on the final performance and power dissipation of
the NoC.

Fig. 1. The proposed VENTTI framework.

To assist engineers in the exploration of this rich and
complex design space we introduce VENTTI, a vertically
integrated framework for simulation and validation of NoCs.
Our goal is to provide the research community with a design
environment for NoCs that supports fast performance analysis,
early power estimation, and efficient NoC synthesis based
on the execution of real software application scenarios. In
particular, VENTTI: i) facilitates the decision-making process
regarding the design of the interconnect for a SoC by offering
early estimation of the NoC power dissipation; ii) simplifies
the specification of the communication requirements for NoC
synthesis; and iii) enables the validation of the NoC design
through simulations with realistic applications. Fig. I shows
the main components of the proposed framework: VENTTI
includes a virtual platform that models the target SoC and
enables the simulations of various user scenarios with the
actual applications software running on top of a complex
operating system such as Linux; VENTTI also integrates an
open-source synthesis tool to automatically derive the main
properties of an optimal NoC. Then, it uses a library of
pre-designed and pre-characterized NoC building blocks to
build an NoC implementation that is represented at three,
increasingly detailed but consistent, levels of abstraction. The
NoC implementation and the applications running on the SoC
can be simulated and validated at these different levels of
abstractions by trading off accuracy for simulation speed, all
within the same virtual environment.

II. THE VENTTI INTEGRATED FRAMEWORK

VENTTI tackles the complexity in the design and analysis
of NoC by adopting a layered approach where at each layer
different design points can be efficiently analyzed and tested.
As shown in Tab. I, each model provides a different accuracy
degree in terms of delay and power estimation, thus enabling
the analysis of the NoC properties by trading-off accuracy vs.
simulation time.

171978-1-4673-1295-0/12/$31.00 ©2012 IEEE

TABLE I
TYPE OF ANALYSIS PERFORMED AT EACH LEVEL OF ABSTRACTION.

Type of Analysis Models Relative
SW HW Latency Bandwidth Power Sim. Time

TVM debug − constant infinite − 1×
HNM debug clock frequency, topology and routing algorithm selection zero-load ideal no contentions ∼ 2.5×
FNM validation queue sizing, num VCs selection, flit width zero-load+ contentions saturation with contentions ∼ 4.3×
PCM − synthesis − − pin-accurate ∼ 350×

The Transaction-Verification Model (TVM) is the most ab-
stract model of the SoC interconnect: the cores, memory and
accelerators are modeled in a virtual platform and linked with
“ideal” point-to-point channels offering a constant traversal
delay per packet. This enables extremely fast simulations and
is optimal for the testing and debugging of the embedded
software. It offers, however, limited details regarding the
performance of the interconnects.

The Hop-count-based Network Model (HNM) is a fast
network model that maximizes the simulation speed by ab-
stracting away most of the micro-architectural details of a
NoC. In particular, HNM uses a look-up table storing just
topological information (e.g. path length between any source
and destination) and channel flit-width of the NoC to quickly
estimate the delay taken by a packet to reach its destination.
This layer allows the testing of the applications running on the
virtual platform with a more realistic communication delay, a
first estimation of the power dissipation (see Section III), as
well as a rapid evaluation of basic NoC design choices such
as topology, flit width and achievable clock frequency.

The Flit-based Network Model (FNM) adds more details
to the router design, including the finite size of the buffering
queues and the actual routing algorithm. Data transfers are
simulated with multiple flits injected into the NoC where they
can experience contentions that generate delays. Hence, the
correctness and performance of the hardware and software can
be validated with an SoC model that is much closer to the final
implementation. With FNM, the power and communication
latency estimation can be very accurate and allows designers
to perform a detailed analysis of the SoC.

Finally, the Pin-and-Cycle-accurate Model (PCM) is a
register-transfer level (RTL) model that can be used as the
input for a logic synthesis tool to derive the final gate-level
implementation of that NoC which has emerged as the best
choice from the previous steps of the design process. At this
level designers can also run further simulations to derive ac-
curate power-estimations. Specifically, we support SYSTEMC-
RTL co-simulations by recording the communication activity
traces from the FNM model. These traces can be used to
drive the RTL simulation. They accurately reproduce the
communication activity generated by the SoC modules while
avoiding the additional complexity of running the software
applications and the operating system.

In VENTTI we guarantee the consistency among the four
different levels of abstractions by using a single tool to gen-
erate the network models. As shown in Fig. I, given a virtual
platform implementing an SoC and the applications running
on top of it, VENTTI synthesizes an optimal NoC by either
extracting or taking a Communication-Task Graph (CTG) as

input parameter1. In case the CTG is not provided, VENTTI
derives it automatically by analyzing the communication traces
obtained with the TVM simulation of the applications and
the SoC. VENTTI uses the maximum point-to-point commu-
nication bandwidth to annotate each CTG edge. We leave as
future work the further refinement of such technique (e.g. the
automatic differentiation of the message classes).

VENTTI leverages two open-source tools: COSI, a NoC
synthesis tool [5], [6] and RABBITS, an SoC virtual plat-
form [7]. We chose COSI as it is a public-domain tool that
is based on the principles of platform-based design [8] and
is capable of synthesizing an optimal NoC given a CTG
and a library of components (such as routers and network
interfaces) and a desired synthesis algorithm from a library of
available ones [5], [9]. As discussed in Section III, in VENTTI
we extended the library of components to generate three of
the proposed models, namely: HNM, FNM and PCM, and
implemented a set of back-end code generators to produce a
representation of the synthesized network.

RABBITS is an open-source virtual platform for SoC sim-
ulations based on two main libraries: QEMU [10] and SYS-
TEMC [7]. QEMU is a fast instruction-set simulator capable of
executing code compiled for a guest architecture (e.g. ARM)
on top of a host machine (e.g. Intel x86). In RABBITS we can
have multiple instances of QEMU within a time-approximated
SYSTEMC model [11] of a multi-core SoC. This allows testing
of embedded applications into a virtual environment that
closely resembles the real chip being developed. We chose
RABBITS because it uses a fast time-approximate model where
time is represented by estimating the delays taken for each
computation to happen following a given event. In particular,
to estimate the duration of a sequence of instructions in a
emulated processor, RABBITS adds time-approximation con-
stants also to the micro-operations used by QEMU. In VENTTI
we modified the original source-code by implementing a
common interface between COSI and RABBITS and added the
interconnect component described in the following section.

III. VENTTI NETWORK ABSTRACTION LAYERS

We present here a more detailed description of the modeling
properties of each of the four abstraction layers of VENTTI.

Transaction Verification Model. This executable model is
built on top of the event-driven SYSTEMC simulation engine
and leverages the RABBITS virtual platform. The TVM allows
very fast simulation performance because it abstracts away
all the details of the actual transmission of a packet across
an interconnection network between two SoC modules. If

1A CTG is a direct graph G(V,E) where each vertex v ∈ V represents an
IP element while each direct edge (vi, vj) ∈ E represents a point-to-point
communication link and is annotated with performance requirements such as
the minimum required bandwidth [5].

172

A B C

s d

PA
dep = α W PB

dep = β W PC
dep = γ W

Hs,d = 3
ψs,d = (α + β + γ) / 3

(a) Example

α

β

γ

α

β

γ

α

β

γ

α

β

α

γ

β
γ

 Hs,d × ψs,d
= 3 × ψs,d

L = 5
Time

Po
w

er

(b) When Hs,d < L

α

β γ

α β
γ

Hs,d = 3

 L × ψs,d
= 2 × ψs,d

Time

Po
w

er

(c) When Hs,d > L

Fig. 2. The energy estimation method implemented in the HNM for a path of three (heterogeneous) routers: A,B and C.

expressed, these details would add a large number of Sys-
temC simulation events, which would slow down the overall
simulation. With TVM, we can simulate the booting of the
Linux OS on the target SoC in a matter of seconds. We can
then execute application software on the virtualized processing
cores and simulate SystemC models of hardware accelerators.
Further, we can analyze the communication traces among the
various SoC modules and build a CTG expressing the point-
to-point communication requirements among them in terms
of either average or worst-case bandwidth depending on the
targeted embedded-system characteristics (e.g. soft or hard
real-time). The CTG can be given as an input to COSI for the
synthesis of three different views of the NoC implementation,
each corresponding to one of the three other models.

Power Model: Due to the abstract nature of the interconnect
model, no power analysis is performed in TVM.

Hop-count-based Network Model. The HNM captures
important system-level properties of an NoC while maximizing
the simulation speed by abstracting away most of its micro-
architectural details. During an HNM simulation, a look-up
table with the topological information generated by COSI is
used to quickly estimate the transmission latency Ts,d of a
packet between a source s and a destination d as:

Ts,d = Hs,d · tr + L (1)

where Hs,d is the number of hops stored in the look-up table,
tr is the router processing latency in clock cycles and L is
the length of the packet expressed in flits [12]. Since the
instantiation of the NoC routers is not considered in HNM, the
actual values of latency and power consumption that may be
caused by packet congestion cannot be estimated. Instead, for
any given packet, the value of Eq. 1 represents a lower bound
of the actual delay that the NoC can deliver. Note, however,
that results obtained with HNM remain strictly valid from a
functional viewpoint because the NoC generated by COSI is
guaranteed to sustain the bandwidth requirements for all end-
to-end communications between pairs of SoC modules [5].

Power Model: A look-up table is also used to estimate the
power consumption of the NoC. In particular, we define two
parameters to model the power dissipation of a router: i) the
traffic-independent power P ind is dissipated constantly regard-
less of the input activity (e.g. static power and clock); ii) the
traffic-dependent power P dep is the extra power consumed
during a flit traversal. Since P ind does not depend on the
traffic activity generated by the application, we account for
it only at the end of the simulation where it is multiplied
by the SoC execution time. To populate the HNM look-up
table, users of VENTTI can choose between a power-estimation
tool like ORION [13] or back-annotated power values derived

from power analysis at the PCM layer. In particular, we
developed a COSI back-end module that derives the table by
first identifying the routing path Πs,d between each source-
destination pair and then associating to the path the “average
per-hop traffic-dependent power”:

Ψs,d =

∑
∀r∈Πs,d

P dep
r

Hs,d
(2)

where r is a router in the path. The energy consumed to
transfer a packet of size L along Πs,d is estimated as:

Es,d = Ψs,d · L ·Hs,d · tr · Tclk (3)

where Tclk is the clock period of the synchronous routers.
The example of Fig. 2(a) illustrates how in HNM we

estimate the energy spent to transfer a packet of L flits across
three routers A, B, and C from source s to destination d.
The traffic-dependent power of the three routers is set as
P dep
A = αW , P dep

B = βW , and P dep
C = γ W , and Hs,d = 3.

With these values, we can derive the average per-hop traffic
dependent power Ψs,d = (α+β+γ)/3. Notice that Eq. 3 holds
regardless of the actual packet length L. Fig. 2(b) and (c) show
the case of packet with length L = 5 and L = 3, respectively2.
The total energy consumption Es,d is represented by the area
of the box. Notice how the shaded portion in the upper-right
corner corresponds exactly to the sum of the energy consumed
by the flits remaining outside the box.

Flit-based Network Model. This executable model is based
on the SYSTEMC TLM1.0 library. Specifically, each message
transfer in the NoC (e.g. a load/store operation towards the
DRAM) leads to the injection of a sequence of flits into
the NoC. Also, the SYSTEMC SC_THREAD process shown
as Algorithm 1 is instantiated for each input port of a NoC
router. The FNM obtains a good balance of accuracy and speed
because the NoC is modeled with an approximated-time TLM
such that: i) no component in the NoC uses a synchronous
clock; ii) each router remains idle (does not add any event
to the SYSTEMC kernel) until it receives a flit; and iii) when
a flit is received a processing delay is modeled before the
forwarding of the flit. In case of contention, a router can
generate back-pressure signals and delay the delivery of the
flits until the channel becomes available. FNM leverages the
blocking properties of the tlm_fifo queues of the TLM
library and a sc_mutex SYSTEMC class that regulates the
access to a shared resource (e.g. an output port requested by
multiple input ports). In summary, FNM accurately reproduces

2Notice that the different height of the α, β and γ boxes reflect the possible
heterogeneous router design (e.g. different number of input/output ports) and
hence a different power dissipation.

173

Algorithm 1 Modeling process of router input port in FNM.
loop
F ← the flit at the head of input queue Q
Pop Q
O ← the output port of the destination in F
Lock the mutex of O
Wait for a clock period
Send F to O
while F is not a tail flit do
F ← the flit at the head of Q
Pop Q
Wait for a clock period
Send F to O

end while
Release the mutex of O

end loop

a cycle-accurate behavior of the NoC while minimizing the
number of events in the SYSTEMC simulation engine.

Power Model: the model of a router r contains traffic-
independent power P ind

r and traffic-dependent power P dep
r

values as defined in Section III; it also uses a energy-
consumption counter Edep

r that is updated upon the arrival
and departure of a flit according to the following equation:

Edep
r = Edep

r + t · f · P dep
r (4)

where t is the time elapsed since the last update of Edep
r and

f is the number of flits that traversed r during t.
Pin-and-Cycle-accurate Model. The PCM is a complete

synthesizable RTL model of the NoC, including routers,
repeaters, and network interfaces. With PCM, the application
performance can be obtained by plugging PCM directly into
RABBITS to perform RTL-SystemC co-simulation. This, how-
ever, should be used with care because it may result in a very
long simulation time.

Power Model: At this level we leverage standard RTL
power-estimation tools like SYNOPSYS PRIMETIME PX com-
bined with the traces generated with FNM simulation that
capture the switching activity of each router.

IV. CASE STUDY

In this section we demonstrate the capabilities of the
VENTTI environment by comparing the different network
modeling layers for a complex application scenario.

Experimental Setup. The SoC case study, shown in Fig. 3,
is similar to the one presented by Gligor et al. [14]: it consists
of four symmetric-multi-processor ARM11MP with private L1
caches, an on-chip SRAM, a frame buffer handling the display,
and an accelerator subsystems called DBF. The ARM proces-
sors support dynamic-frequency scaling that is automatically
adjusted to the application load. The valid frequencies reach a
maximum clock of 300MHz. Each core has L1 instruction and
data caches of 8 KB. The SoC contains also an 8 MB SRAM
and a memory controller that is connected to an 256MB off-
chip DRAM.

The SoC runs a full 2.6.x Linux OS and a multi-threaded
H264 soft real-time decoder application whose execution is
distributed among all four cores. Additionally, the appli-
cation exploits the DBF accelerator to execute a specific
computationally-intensive decoding task.

All SoC modules are directly connected to the NoC that is
synthesized by using COSI with the following input setting:

0	

ARM11	

1	

ARM11	

2	

ARM11	

3	

ARM11	

4	

Frame	

Buffer	

7	

SRAM	

5	

DBF	

	

	

	

	
 6	

DRAM	

Controller	

Fig. 3. The H264 SoC considered in the test-case.

a 500MHz clock frequency and 64 bits flit width. In this ex-
periment, we use two alternative algorithms that are available
in COSI to synthesize the NoC: H2 and Mesh [5]. H2 in a
heuristic that generates an ad-hoc NoC starting from an initial
solution and iterating until it reaches a fixed point: specifically,
for each point-to-point communication requirement the algo-
rithm checks if there are bandwidth violations and solves them
by adding new routers or re-routing the source-destination
paths that cause the violations. Mesh is an algorithm that
maps an application onto a given 2D mesh topology [9]: it
iteratively improves an initial mapping by placing cores that
communicate rapidly into mesh nodes that are topologically
close to one another; at each iteration, two cores are swapped
in the mapping and new paths are selected in the mesh such
that the number of hops between sources and destinations is
minimized.

While COSI generates networks that are deadlock-free by
construction, it is still necessary to address the message-
dependent deadlock that can occur in the network inter-
faces [15]. In VENTTI we address this issue by providing
sufficiently large queues in the interfaces in order to guarantee
the consumption assumption of all packets injected into the
NoC. A similar solution is adopted by the TILERA TILE64
and IBM CELL processors [16]3.

For the HNM and FNM models, we use a power-library
generated by synthesizing our PCM routers with SYNOPSYS
DESIGN COMPILER using a 45nm standard-cell library. In
particular, the traffic-independent power P ind is estimated
with SYNOPSYS PRIMETIME PX by setting the static prob-
ability and toggle rate to 0 for all input ports. For the traffic-
dependent power P dep, we first estimate the total power
dissipation PT (dependent plus independent) of a router by
setting the static probability to 0.5 and a toggle rate of 1 and
then we subtract P ind from PT . Note that this approach is
based on the conservative assumption that at every clock cycle
all pins in the active input port always switch from 0 to 1 or
1 to 0.

For the PCM power estimation, we synthesize the VHDL
network using a 45nm standard-cell library and SYNOPSYS
PRIMETIME PX.

Experimental Results. For each of the proposed VENTTI
abstraction layers, Fig. 4 reports the host time, i.e. the wall-
clock time necessary to simulate the H264 application with
the two different NoC implementations: H2 and Mesh. For
the case of PCM, due to the large amount of time and storage

3As future work, we plan to enrich the library of components in COSI
with new network interface designs that are capable of solving this kind of
deadlock by using virtual channels or an end-to-end flow-control protocol.

174

TVM HNM FNM PCM
(VHDL) HNM FNM PCM

(VHDL)
H2 Mesh

Host Time (sec) 1093.86 2588.63 3753.53 266502.67 2578.67 4704.86 381522.21
Normalized 1.00 2.37 3.43 243.64 2.36 4.30 348.79

1

10

100

1000

10000

100000

1000000

Ti
m

e
(s

ec
)

Fig. 4. Host time to simulate the H264 application with the H2 and Mesh
networks at the four different NoC abstraction levels.

required for the entire H264 simulation, we only consider a
subset of the traces lasting for 0.5 seconds of the guest time
(i.e. the time as seen by the emulated SoC). We then report
the host time by linearly projecting this processing period
for the entire duration of the H264 application. Note that
the reported value only includes the PCM simulation time,
without considering the time to generate the traces and to
synthesize the VHDL code for the PCM. While the fastest
simulation (TVM) takes 1093 seconds (∼18.2 minutes) to run
the full H264 application, the SYSTEMC-RTL co-simulation
with PCM takes 381522 seconds (∼106 hours). The values
reported in the second row of the table at the bottom of Fig. 4
are normalized with respect to the TVM host time.

The normalized host time of the approximated network
model for Mesh is much slower than for H2. The difference
is due to the total number of routers in the NoCs. Since FNM
and PCM simulate contentions in each router, more time is
necessary to simulate the behavior of an NoC with more
routers. In HNM, instead, the simulation is simply based on
the calculation of hop count, which can be done in constant
time regardless of the number of routers in the NoC.

To verify the accuracy of all network models, in Fig. 5 we
report the guest time, average latency, and average injection
rate per node while executing the H264 application. Since
FNM models the cycle-accurate behavior of the NoCs, the
values of this simulations can be considered as baseline values.
The HNM and FNM simulations return similar performance
results across all three metrics. For both Mesh and H2, they
give similar average latencies, which means that both networks
are not congested. Still as expected, the average latency for
FNM is higher than HNM. HNM in fact does not capture the
additional delays caused by packet contentions.

For the injection rate, TVM also shows similar injection
rates as the two other network models. The maximum differ-
ences of injection rate comes from the comparison between
HNM and FNM of Mesh, which is about 16.38%. This
difference is an expected behavior and is due to the variability
introduced by having multiple threads and an operating system
running on the emulated SoC [17].

Fig. 6 reports the power estimations with the four different
NoC models for the two NoC configurations. We consider
the power estimations of PCM as the baseline values. By
comparing HNM and/or FNM to PCM, we find noticeable
differences for both traffic-independent and -dependent power
estimations. For traffic-independent power, the main difference

comes from the optimization done by the synthesis tools:
for HNM and FNM we simply aggregate the power values
of all instantiated routers in the NoC, while for PCM the
logic synthesis of the NoC uses the flatten and uniquify
options. These options give the synthesis tools more scope
for optimizations across the NoC submodules by flattening
the hierarchy of the VHDL design. Thus, since we have more
routers in a mesh, those traffic-independent power dissipation
values differ significantly between PCM and the other two
network models.

For traffic-dependent power estimations, Mesh dissipates
more power than H2 for all NoC abstraction layers. The power
values increase as we go from HNM to PCM given the more
detailed power analysis. Specifically, as we move from HNM
to FNM, we account for the power dissipation caused by
contentions. As we move from FNM to PCM, we additionally
consider the power dissipation caused by the all flow-control
signals and data transfer.

The difference between HNM and FNM is noticeable for
H2, while it is minimal for Mesh. The reason is that the
routers in H2 experience more contentions than those in
Mesh. Since more hardware resources are used for the Mesh
implementation that the H2 one, congestion is comparatively
less likely to occur.

Not only does VENTTI provide performance and power
estimation with different levels of modeling abstraction, but
it also gives NoC designers the opportunity to identify the
relationship between performance and power estimation at
early stages of the design process. For example, the average
packet latency of Mesh is longer than that of H2, which means
that packets stay in the Mesh longer than in the H2. The more
a packet stays in a NoC, the more it contributes to the overall
power dissipation. Such relationship cannot be captured by
a static power analysis tool, while it requires a significant
amount of host time to be identified with a cycle-accurate-
based virtual platforms.

V. RELATED WORK

While the literature offers a large number SoC Instruction-
Set-Simulators (ISS), virtual platforms, and NoC synthesis
tools, to the best of our knowledge no public-domain tool
combines and integrates them to obtain an optimized design
of the interconnect that can be both directly tested with
a virtual platform and synthesized with commercial logic-
synthesis tools.

SOCLIB is a virtual platform with a very large library of
components targeted to the development of both SoC-based
embedded systems and the software running on top of them.
Nevertheless, SOCLIB lacks a network-synthesis tool capable
of synthesizing a power-efficient interconnect from a set of
communication requirements obtained from the execution of
complex application scenarios [18].

MPARM [19] is a multi-processor cycle-accurate architec-
tural simulator. Its main purpose is the system-level analysis
of the design trade-offs and component selection. MPARM is
based on SYSTEMC and relies on SWARM, an open-source
cycle-accurate ISS of the ARM processor and bus-based
AMBA AHB protocol [20]. Instead, VENTTI focuses on the

175

9.0267 9.2904 9.1707 9.4013 9.6513

0

2

4

6

8

10

12

TVM HNM FNM HNM FNM

H2 Mesh

Ti
m

e
(s

ec
)

(a) Guest Time

175.3283
160.3766

172.4142 179.7689

154.4671

0
20
40
60
80

100
120
140
160
180
200

TVM HNM FNM HNM FNM

H2 Mesh

In
je

ct
io

n
R

at
e

(M
bp

s/
no

de
)

(b) Injection Rate

12.2815
12.9746

14.1975 14.7685

0

2

4

6

8

10

12

14

16

HNM FNM HNM FNM

H2 Mesh

Ti
m

e
(n

s)

(c) Average Latency

Fig. 5. Performance of H264 application with H2 and Mesh network and different NoC abstraction levels.

38.1185 38.1185 34.3230

100.4520 100.4520

84.3634

0

20

40

60

80

100

120

HNM FNM PCM (VHDL) HNM FNM PCM (VHDL)

H2 Mesh

Po
w

er
 (m

W
)

(a) Traffic-Independent Power

0.1420 0.1551

0.3407

0.2476 0.2476

0.4068

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

HNM FNM PCM (VHDL) HNM FNM PCM (VHDL)

H2 Mesh

Po
w

er
 (m

W
)

(b) Traffic-Dependent Power

Fig. 6. Power estimation of H264 application with H2 and Mesh network and different NoC abstraction levels.

design-space exploration of the NoC while relying on a time-
approximate virtual-platform that allows us to quickly and
efficiently simulate the entire system at a higher abstraction
layer than cycle-accurate models.

The GEM5 simulation infrastructure provides diverse CPU
models with multiple ISAs and a detailed and flexible memory
system with multiple cache coherence protocols and intercon-
nect models. GEM5 provides two interconnect models, called
Simple and GARNET, which are similar to HNM and FNM,
respectively. While GARNET uses ORION [13] to estimate the
NoC power dissipation, there is no power model for Simple,
and GEM5 does not provide a synthesizable PCM-equivalent
network model.

VI. CONCLUSIONS

We presented VENTTI, an integrated environment for the
efficient simulation and validation of NoCs. VENTTI leverages
three network models that enable the analysis of the NoC
at different levels of abstraction all within the same virtual
platform. With fast performance and power analyses, VENTTI
provides the information necessary to guide the design-space
exploration towards an optimal NoC implementation and to
evaluate its properties. By means of a case study, we showed
that the NoC abstraction layers provided in VENTTI offer
interesting trade-off points between simulation time and sim-
ulation accuracy. Further, VENTTI can be used to compare
the performance and power dissipation across alternative NoC
implementations and to understand the relationships between
performance and power at early stages of the design process.

Acknowledgements. This research is partially supported by
the National Science Foundation under Award #: 1147406, an
ONR Young Investigator Award, and the Gigascale Systems
Research Center, one of six research centers funded under
the Focus Center Research Program (FCRP), a Semiconductor
Research Corporation entity.

REFERENCES

[1] C. H. van Berkel, “Multi-core for mobile phones,” in Conf. on Design,
Automation and Test in Europe, Apr. 2009, pp. 20–24.

[2] J. Brown, S. Woodward, B. Bass, and C. Johnson, “IBM power edge
of network processor: A wire-speed system on a chip,” IEEE Micro,
vol. 31, no. 2, pp. 76 –85, Mar. 2011.

[3] W. J. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection networks,” in Proc. of the Design Autom. Conf., Jun. 2001,
pp. 684–689.

[4] L. Benini and G. D. Micheli, “Networks on chip: A new SoC paradigm,”
IEEE Computer, vol. 49, no. 2/3, pp. 70–71, Jan. 2002.

[5] A. Pinto, L. Carloni, and A. Sangiovanni-Vincentelli, “COSI: A frame-
work for the design of interconnection networks,” IEEE Design & Test
of Computers, vol. 25, no. 5, pp. 402–415, sep-oct 2008.

[6] “COSI,” http://code.google.com/p/commsynth.
[7] “TIMA research lab,” http://tima-sls.imag.fr/www/research/rabbits.
[8] A. Sangiovanni-Vincentelli, “Quo vadis SLD: Reasoning about trends

and challenges of system-level design,” Proceedings of the IEEE, vol. 95,
no. 3, pp. 467–506, March 2007.

[9] S. Murali and G. De Micheli, “Sunmap: a tool for automatic topology
selection and generation for nocs,” in Proc. of the Design Automation
Conference, ser. DAC ’04, 2004, pp. 914–919.

[10] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proc. of
the USENIX Annual Technical Conference, Apr. 2005, pp. 41–46.

[11] “SystemC Website,” http://www.systemc.org/.
[12] W. J. Dally and B. Towles, Principles and Practices of Interconnection

Networks. Morgan Kaufmann, 2004.
[13] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik, “Orion: A power-

performance simulator for interconnection networks,” in IEEE/ACM Intl.
Symp. on Microarchitecture (MICRO-35), Nov. 2002.

[14] M. Gligor et al., “Practical design space exploration of an h264 decoder
for handheld devices using a virtual platform,” in Integrated Circuit
and System Design. Power and Timing Modeling, Optimization and
Simulation, 2010, vol. 5953, pp. 206–215.

[15] Y. H. Song and T. M. Pinkston, “A progressive approach to handling
message-dependent deadlock in parallel computer systems,” IEEE Trans.
on Par. and Dist. Systems, vol. 14, no. 3, pp. 259–275, Mar. 2003.

[16] N. E. Jergerand and L.-S. Peh, On-Chip Networks:Synthesis Lectures on
Computer Architecture. Mark Hill, 2009.

[17] A. R. Alameldeen and D. A. Wood, “Addressing workload variability in
architectural simulations,” IEEE Micro, vol. 23, no. 6, pp. 94–98, nov.–
dec. 2003.

[18] “SocLiB,” http://www.soclib.fr/.
[19] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri,

“MPARM: Exploring the multi-processor SoC design space with Sys-
temC,” J. VLSI Signal Process. Syst., vol. 41, pp. 169–182, Sep. 2005.

[20] M. Dales et al., “SWARM - Software ARM,” http://www.swarm.org,
2008, [Online; accessed 7-December-2011].

176

