
Enabling Heterogeneous, Multicore SoC Research
with RISC-V and ESP

Joseph Zuckerman, Paolo Mantovani∗, Davide Giri, and Luca P. Carloni
{jzuck,paolo,davide_giri,luca}@cs.columbia.edu

Department of Computer Science
Columbia University

New York, New York, USA

ABSTRACT
Heterogeneous, multicore SoC architectures are a critical compo-
nent of today’s computing landscape. However, supporting both
increasing heterogeneity and multicore execution are significant de-
sign challenges. Meanwhile, the growing RISC-V and open-source
hardware (OSH) movements have resulted in an increased number
of open-source RISC-V processor implementations; however, there
are fewer open-source SoC design platforms that integrate these
processor cores. We present modifications to ESP, an open-source
SoC design platform, to enable multicore execution with the RISC-V
CVA6 processor. Our implementation is modular and based on stan-
dardized interfaces. These properties simplify the integration of
new cores. Our modifications enable RISC-V-based SoCs designed
with ESP for FPGA to boot Linux SMP and execute multithreaded
applications. Coupled with ESP’s emphasis on accelerator-centric
architectures, our contributions enable the seamless design of a
wide range of heterogeneous, multicore SoCs.

CCS CONCEPTS
•Computer systems organization→Multicore architectures;
System on a chip; Heterogeneous (hybrid) systems.

1 INTRODUCTION
Modern computing systems increasingly rely on heterogeneous
system-on-chip (SoC) architectures, which combine general-purpose
processors with specialized hardware accelerators [13, 16, 37]. This
shift toward heterogeneity, however, comes with new challenges,
as the required engineering effort scales with increasing hetero-
geneity [28]. The open source hardware (OSH) movement, largely
enabled by the RISC-V community, can mitigate these rising non-
recurring engineering costs by promoting collaborative engineering
and design reuse [5, 24].

The diminishing returns of performance scaling by exploiting
parallelism with multicore architectures is one of the primary rea-
sons for the rise of heterogeneous architectures. Still, featuring
multiple coherent processor cores remains a key property for most
SoCs. Utilizing multiple cores, however, adds significant complex-
ity to SoC design because maintaining coherence and enforcing
synchronization among cores are challenging tasks. To enable fu-
ture generations of heterogeneous, multicore SoC architectures, we
propose a platform that allows for seamless design of multicore
SoCs containing heterogeneous intellectual property (IP) blocks.

This paper presents modifications to ESP, an open-source plat-
form for heterogeneous SoC design, to enable SoCs with up to 4

*Paolo Mantovani is now with Google Research.

RISC-V CVA6 cores that can boot Linux SMP and execute multi-
threaded applications. ESP is an open-source research platform
for heterogeneous SoC design that combines a scalable tile-based
architecture and a flexible system-level design methodology [32].
The architecture simplifies the integration of heterogeneous compo-
nents developed by different teams, and the methodology embraces
the use of various design flows for component development [10].
ESP enables rapid FPGA-based prototyping of SoC architectures
[31] and provides the foundation for the agile design, optimization,
and tapeout of SoCs [26]. Prior to this work, ESP supported multi-
core SPARC-based SoCs and single core RISC-V-based SoCs. The
support for multiple RISC-V cores was implemented in a standard-
ized manner that can simplify the integration of new cores that are
AXI-compliant. When this is coupled with ESP’s scalable architec-
ture, agile methodology, and multiple design flows for hardware
accelerators, ESP can drastically increase design productivity for
a wide range of heterogeneous, multicore SoCs. All of the contri-
butions described in this paper are included in the open-source
release of ESP [12].

The rest of the paper is organized as follows. We first give some
background on ESP (Section 2), and then highlight the changes
required to enable multiple RISC-V cores (Section 3). Then, we
present some experimental results from running a multithreaded
benchmark suite on top of ESP (Section 4). Finally, we discuss the
differences between ESP and other multicore RISC-V platforms
(Section 5) and conclude (Section 6).

2 THE ESP ARCHITECTURE
The ESP architecture is structured as a heterogeneous tile grid, as
shown in Figure 1 [10, 32]. At SoC design time, users can specify an
ESP instance by selecting the dimensions of the grid and the type of
each tile with assistance from the ESP graphical user interface. To
facilitate scalability, the tiles are interconnected by a multi-plane
network-on-chip (NoC). A key feature of the ESP architecture is the
modular socket, which interfaces each tile to the NoC. The socket
decouples the design of the tile from the rest of the SoC and greatly
simplifies IP integration, following the principles of communication-
based system-level design [9]. The socket also implements several
platform services, such as dynamic voltage frequency scaling (DVFS)
and performance monitors, that “come for free” with the addition
of a new IP. There are 4 main types of tiles.

Processor Tile. Each processor tile contains a CPU from one of
several options, including the 32-bit SPARC Leon3 core [17], the

To appear in the Sixth Workshop on Computer Architecture Research with RISC-V
(CARRV 2022)

1

ar
X

iv
:2

20
6.

01
90

1v
1 

 [
cs

.A
R

] 
 4

 J
un

 2
02

2



J. Zuckerman, P. Mantovani, D. Giri, and L.P. Carloni

Figure 1: A 4x4 ESP tile grid with 2 processor, 2 memory, 11
accelerator, and 1 auxiliary tile. The figure shows how the
various tiles interface to the 6 physical NoC planes.

64-bit RISC-V CVA6 (formerly known as Ariane) [38], and the 32-bit
RISC-V Ibex (formerly known as Zero-riscy). Only one processor
type can be used per SoC, and prior to this work, an SoC could in-
stantiate multiple processor tiles only if the Leon3 core was selected.
The CPU in the processor tile serves as the host of the system and
can boot an operating system in the case of Leon3 and CVA6. The
processors are instantiated with their own private L1 cache. If the
ESP cache hierarchy is enabled – as required for multicore SoCs –
the processor tile also instantiates an ESP L2 cache. The L2 cache
allows the CPU to transparently participate in the ESP coherence
protocol, which is described in Section 2.1.

Memory Tile. Each memory tile instantiates a channel to ex-
ternal DRAM. The memory tile also includes a slice of the last-level
cache when the cache hierarchy is enabled. To improve off-chip
bandwidth, multiple memory tiles can be instantiated. When mul-
tiple memory tiles are used, the global address space is split, and
each memory tile services a discrete partition of the address space.
All logic to handle the partitioned address space is automatically
generated and is completely transparent to software.

Accelerator Tile. The accelerator tile instantiates a loosely-
coupled accelerator, which executes a coarse-grained task [15].
There are two main types of accelerators: accelerators designed
with ESP and accelerators designed by a third-party. For accelerators
designed with ESP, the socket provides several services that lower
the design effort, such as configuration registers, DMA, and virtual
memory. ESP supports several different flows for accelerator design,
which feature a high degree of automation in all cases. The main
classes of design flows are 1) Verilog/VHDL, 2) C, C++, or SystemC
with Stratus, Catapult, or Vivado HLS, and 3) directly frommachine-
learning models in Keras, TensorFlow, PyTorch, or ONNX with
HLS4ML [18]. For accelerators that are designed independently of

ESP, a third-party flow exists to seamlessly integrate accelerators
that comply with a standard bus protocol, like AXI, such as the
NVIDIA Deep Learning Accelerator (NVDLA) [19, 34].

An invocation of a loosely-coupled accelerator begins with con-
figuration from software (using a device driver if an OS is running)
via memory-mapped registers. After it is started, the accelerator
issues DMA requests, which are sent to the ESP memory hierarchy
using one of four cache-coherence modes. The different cache-
coherence modes operate completely transparently to the accel-
erator and can be selected at runtime based on the needs of the
accelerator and the overall status of the system [23, 40]. When
the accelerator completes, it sends an interrupt that resumes the
execution of the software thread that invoked it.

Auxiliary Tile. The auxiliary tile handles non-memory I/O,
like Ethernet and UART. It also includes several miscellaneous
components like the interrupt controller, boot ROM, and frame
buffer. The Ethernet connection both enables remote connection
via SSH and the ESPLink debug application, which allows a host
machine to access any memory-mapped regions of the SoC and
load program binaries into on-chip and off-chip memory.

Network-on-Chip. The ESP NoC has a packet-switched 2D-
mesh architecture with lookahead routing. Each tile contains a
single NoC router, and every hop between adjacent tiles takes a
single cycle. The NoC comprises six physical planes to provide
ample bandwidth and prevent deadlock. Three planes are for coher-
ence messages, two for DMA, and one for memory-mapped register
access and interrupts.

Each tile instantiates a local bus, which enables communication
between components of the same tile. ESP uses a set of proxies
that convert bus requests to NoC messages, and vice versa, for
communication between components in different tiles. Thanks to
the proxies, remote components can issue transactions to each other
as if they were connected to the same bus.

2.1 The ESP Coherence Protocol
ESP’s coherence protocol is an extension of a standardMESI directory-
based protocol [33]. The protocol is adapted to both work over a
NoC and support last-level cache coherent accelerators [22]. The
L2 and LLC caches implement the coherence protocol and were
originally designed to support multicore execution for the SPARC
Leon3 core.

Last-Level Cache. The LLC sits in the memory tile and is the
final layer of on-chip storage before DRAM. The LLC includes the
directory controller, which stores metadata about every cache line.
In addition to the four standard MESI states, the LLC adds a Valid
(V) state. The Valid state indicates that there are neither any active
sharers nor an owner of the cache line, but the data in the cache line
is valid. Accessing a cache line in the Valid state does not require
a request to main memory, which would normally occur from the
Invalid state.

In addition to the standard coherence messages (request, re-
sponse, forward), the LLC can also receive DMA transactions to
support LLC-coherent accelerators. DMA bursts are accepted as one
cache request, but are handled on a cache-line granularity. After
accelerators read and write data, the cache lines they access are left
in the Valid state. To ensure functional correctness, accelerators

2



Enabling Heterogeneous, Multicore SoC Research
with RISC-V and ESP

must have mutual exclusivity over their data while they operate.
While the LLC-coherent mode offers benefits, sometimes a non-
coherent access mode is more appropriate, particularly in the case
of large datasets that don’t fit on chip [21]. Before a non-coherent
accelerator execution, the last-level cache must be flushed to ensure
all processor writes are reflected in main memory. The accelera-
tor’s device driver actuates the flush of the LLC by writing to a
memory-mapped register in the socket of the memory tile (or to
multiple such registers when the LLC is distributed across multiple
memory tiles).

L2 Cache. The L2 cache is a private cache that can be instan-
tiated in processor and accelerator tiles. When an accelerator is
equipped with a private cache, it can use the fully-coherent access
mode, in which it participates in the system’s coherence protocol
just like a processor core. Due to race conditions that can arise
over the different NoC planes, several transient states are needed
to guarantee correct operation. A small set of miss-status handling
registers (MSHR) keep track of the status of ongoing transactions.
Incoming requests and forwards messages can be stalled if they
conflict with an ongoing transaction, depending on the state of the
corresponding cache line.

Supporting invalidation of the L1 cache and atomic instructions
are two key features of the L2 cache that enable multicore execution.
The Leon3 core sits on an AHB bus, which also interfaces with the
L2 cache. To invalidate the L1, a fake write is issued on the AHB
bus from the L2. The Leon3 core, which supports snooping on
the AHB bus, sees the write and invalidates the corresponding
entry in its L1. For the SPARC instruction set, the L2 handles the
test-and-set and compare-and-swap atomic instructions. For these
instructions, the processor issues one or more loads to a cache line,
potentially followed by one store to the same cache line. A special
transient state is used to indicate that a cache line has been accessed
by an atomic read, but not by the atomic write that completes
the instruction. During this period, the core executing the atomic
instruction is the owner of this cache line, and any forward requests
for the same cache line are stalled to guarantee atomicity. The next
section will discuss how L1 invalidation and atomic instructions
are implemented for the RISC-V CVA6 core. These were the two
key challenges that we had to address in order to support multicore
execution.

3 ENABLING MULTICORE RISC-V
Prior work, which first integrated the CVA6 (at the time, Ariane)
core with ESP, only enabled single core execution [20]. As shown
in Figure 2 , the main changes to ESP to support multicore execu-
tion with the RISC-V CVA6 core include 1) modifying the core to
accept invalidations of its L1 cache using the AXI Coherency Ex-
tensions, and 2) supporting RISC-V atomic and LR/SC instructions
with changes to the L2 and AXI interconnect.

Since this work revolves around the ESP cache hierarchy, it is
worth briefly discussing how prior work integrated the CVA6 core
with the ESP caches. With the SPARC Leon3 core, the processor tile
instantiates anAHB bus, towhich the processor attaches. Awrapper
around the L2 cache converts AHB transactions to cache requests,
and vice versa, for cache responses. Since the CVA6 core uses an
AXI interface, the processor tile instantiates an AXI crossbar instead

Figure 2: Modifications to the ESP processor tile and CVA6
L1 cache to enable multicore execution.

of the AHB bus when the CVA6 core is selected. Hence, a new L2
wrapper was developed to interface the cache with the AXI protocol.
The only other change to the L2 cache was modifying the write
logic to support both little-endian and big-endian architectures,
since CVA6 is little-endian, while Leon3 is big-endian. The last-
level cache did not change at all, since it is completely decoupled
from the implementation of the processor by the L2.

3.1 L1 Invalidation of CVA6
The CVA6 is not natively multicore, as it does not accept invali-
dations of its L1 through the primary AXI interface. Prior work,
however, integrated CVA6 into the OpenPiton architecture to en-
able multicore execution [6, 8]. CVA6 connects to OpenPiton’s L1.5
cache through a custom interface. The L1 accepts invalidations
from the L1.5 by receiving both the address and way in the L1 set to
invalidate. This means that the L1.5 must store the corresponding
L1 way of each cache line to send invalidations. Because of this
extra area overhead and to support a more standard interface, we
choose to use the AXI Coherency Extensions (ACE) to send invali-
dations from the ESP L2 and modify the CVA6 core in a minimal
manner to receive them in this fashion.

ACE adds three channels – Snoop Address (AC), Snoop Response
(CR), and Snoop Data (CD) – to the original five of AXI to enable
coherence between different components in broader systems [3].
Because invalidation requires neither responses nor data, we only
instantiate the AC channel in the processor tile and modify the
interface of the core to receive messages on this channel. Upon
an invalidation, the L2 cache drives the snoop address bus with a
MakeInvalid transaction and the address of the line to invalidate.
The L2 also sends the permission bits of the cache line to the core
in order to easily route the invalidations to either the L1 data cache

3



J. Zuckerman, P. Mantovani, D. Giri, and L.P. Carloni

or L1 instruction cache; this was previously not necessary for the
Leon3 core.

To execute the invalidation, we make slight modifications to only
the L1 cache of CVA6; the core’s pipeline remains unchanged. We
create a new data cache invalidate unit (wt_dcache_inval) that
snoops for MakeInvalid commands on the AC channel. Upon re-
ceiving an invalidation, the invalidate unit performs a lookup in
the data cache memory through a new dedicated port to check for
the requested address. If the address lookup results in a hit, then
the cache line is invalidated; else, the invalidate request is ignored.
While we currently route instruction invalidations to the L1 in-
struction cache, we choose not to modify the instruction cache to
support invalidations, since instruction memory is currently never
modified in ESP. Since the instruction cache’s memory only has
one port, enabling its invalidation would require modifying the
instruction cache’s state machine, as opposed to the less-invasive
addition of a new unit for the data cache. However, the state ma-
chine is relatively simple, and the required changes would not be
extensive.

When an ESP accelerator runs in a LLC-coherent or non-coherent
manner, the L2 is flushed via a memory-mapped register write from
software. When this happens, the entire L1 must be invalidated or
flushed. In the case of the Leon3 core, a SPARC flush instruction
is used to trigger an L1 flush before signaling for the L2 to flush.
Since the RISC-V instruction set supported by the CVA6 core does
not have a flush instruction, we choose to expose the CVA6’s L1
flush signal at the interface of the core. The same signal that trig-
gers the L2 flush is connected to this port of the core, and the L2
waits for the L1 to finish flushing using an additional flush_done
signal at the interface. It would be possible to use the new ACE
bus to invalidate one line of the L1 at a time from the L2 and avoid
additional modifications to the core’s interface, but this would be
far less efficient.

3.2 Handling RISC-V Atomics and LR/SC
RISC-V atomic memory operations (AMOs) are handled by instan-
tiating an AXI Adapter for RISC-V Atomics from the Pulp Platform
[36]. The adapter is placed on the AXI bus between the L1 and L2
caches. AMO requests exit the core as a single transaction on the
address write (AW) channel. The adapter converts this AMO re-
quest into separate read and write transactions on the downstream
AR and AW channels, respectively. After the adapter receives the
read response from the L2, a small ALU performs the computation
indicated by the instruction, and it issues the write to the L2 with
the result. We make a slight modification to the adapter to set the
lock field on both channels to signal to the L2 that the read and
write are part of an atomic operation.

The atomicity of AMOs is enforced by the L2. After receiving
an atomic read request, the L2 issues a GetModified request to the
LLC if it does not already have the corresponding cache line in a
modified state. The line then transitions to the transient XMW state,
indicating that an atomic operation has started and the write is
pending. While in this state, the L2 will stall all forward requests
to this line, such that no other core can read or write to this line
during the atomic operation. All of this logic leverages the prior

Figure 3: The evaluation SoC with 4 CVA6 processor tiles, 2
memory tiles, and the auxiliary tile.

implementation of SPARC atomics for the Leon3 core. However, be-
cause RISC-V atomics contain exactly one read and one write, while
SPARC atomics consist of one or more reads potentially followed
by a write, some minor modifications are needed to appropriately
determine when AMOs are completed.

We utilize the infrastructure for handling AMOs to also han-
dle the RISC-V load-reserved (LR) and store-conditional (SC) in-
structions, but with several modifications. First, because the SC
instruction may not succeed, we modify the L2 to provide the write
response (bresp) on the AXI bus; the code is EXOKAY in case of suc-
cess and OKAY in the case of failure. The AXI RISC-V AMOs adapter
is also slightly modified to forward this response to the core, in-
stead of replying with EXOKAY by default. Second, forward requests
to the same cache line are served between LR and SC operations.
However, after they are served, the atomic operation is marked as
completed. Then, if the SC operation arrives at the L2, the write
does not take place, and the cache replies with OKAY, designating
failure. Finally, for SPARC atomics, any non-atomic read or write
that follows a read atomic is assumed to end the ongoing atomic
operation. This is also the case for any reads or writes to data that
follow an LR for RISC-V, because the ISA prohibits loads and stores
between LR and SC instructions. However, instruction fetches must
be served between the LR and SC pairs. This requires the most sig-
nificant modifications to the L2, which was not previously designed
to handle any memory accesses during ongoing atomic operations.
Certain cases that previously triggered stalls, such as an instruction
fetch that maps the same cache set as an ongoing atomic, must be
overridden.

The lock field on the AXI channels is also used to signify the
LR and SC operations as atomic. To distinguish between an LR/SC
pair and an AMO, we use the atop field, which is zero for LR/SC
and non-zero for AMOs. However, since the read arrives first and
there is no atop field on the AR bus, we make use of the user field
to send this information.

4 EXPERIMENTAL RESULTS
Implementing the changes for the CVA6 invalidation and RISC-V
atomic instructions in ESP took a fewweeks each. Shortly thereafter,

4



Enabling Heterogeneous, Multicore SoC Research
with RISC-V and ESP

0.00

0.25

0.50

0.75

1.00

apsp bc bfs cd cc dfs pr sssp tc tsp geomean
benchmark

n
o

rm
a

liz
e

d
 e

xe
cu

tio
n

 t
im

e

1 core 2 cores 4 cores

Figure 4: Execution time of the CRONO benchmark suite on 1, 2, and 4 CVA6 cores in ESP.

we ran the first multicore RISC-V baremetal programs in ESP. In
a matter of days from this point, we also booted Linux SMP on 4
RISC-V cores for the first time. Roughly an additional 2 months
were spent debugging minor issues to be able to consistently boot
Linux SMP and run intensive multithreaded applications on 4 CVA6
cores.

To stress test our implementation and also evaluate its perfor-
mance, we use the CRONO benchmark suite for multithreaded
graph algorithms [1], which contains the following algorithms:
• Path planning: Single Source Shortest Path (SSSP), All Pairs Short-
est Path (APSP), Betweenness Centrality (BC).
• Search: Breadth First Search (BFS), Depth First Search (DFS), Trav-
eling Salesman Problem (TSP).
• Graph Processing: Connected Components (CC), Triangle Count-
ing (TC), PageRank (PR), Community Detection (CD).

The CRONO suite was useful in revealing the (hopefully) last
few implementation bugs. The successful execution of all of its
applications gives us further confidence in our design.

Using the ESP SoC generation GUI, we prepared an evaluation
SoC, as shown in Figure 3. The SoC contains 4 instances of the
CVA6 processor, 2 memory tiles, and the auxiliary tile. Each mem-
ory tile has a 512KB LLC slice, for a 1MB aggregate LLC. The L2
cache in each processor tile is 64KB. We note that this is just one
possible ESP SoC with 4 CVA6 cores, and the SoC could be seam-
lessly altered to change any of the following parameters: number
of memory tiles, presence of accelerator(s), NoC dimensions, cache
sizes, and positions of each tile. This SoC is generated for a proF-
PGA quad Virtex Ultrascale Prototyping System, which mounts
Xilinx XCVU440 FPGAs. ESP runs at 78 MHz on this FPGA.

The applications run on top of Linux SMP with a configurable
number of threads. We evaluate all of the benchmarks on 1, 2, and
4 cores, using the same number of threads as cores. We make no
modifications to the implementation of the algorithms and cross
compile them for 64-bit RISC-V.

Figure 4 shows the execution time of each benchmark on 1, 2,
and 4 cores, normalized to the performance of 1 core. For 2 cores,
the execution time ranges from 53% to 70% of the single core perfor-
mance, with a geometric mean of 58%. For 4 cores, the range is from
26% to 42%, with a geometric mean of 34%. These figures roughly
match the performance of the CRONO benchmark performed by
its authors on a multicore simulator [1]. These results confirm

the scalability of the ESP architecture for running multithreaded
applications on multiple processors.

5 RELATEDWORK
Here, we discuss a few other open-source SoC platforms that offer
multicore RISC-V execution, and then discuss the key distinguishing
features of ESP.

OpenPiton is a manycore research framework, designed to en-
able academic research of manycore systems [8]. Like ESP, Open-
Piton has a tile-based architecture on top of a multi-plane NoC.
OpenPiton was originally developed with support for the Open-
SPARC T1 core. Each OpenPiton tile contains a private L1.5 cache
and a slice of the distributed L2 cache. A chipset in an OpenPiton
chip provides access to external DRAM and other I/O, as well as
a connection to other OpenPiton chips; the chipset is decoupled
from the NoC via a chip bridge.

More recently, OpenPiton has also added support for the RISC-V
CVA6 (64-bit) and PicoRV32 (32-bit) cores, as well as the x86 ao486
core [7]. These cores, along with the OpenSPARC T1, can coexist in
the same OpenPiton system, thanks to a new Transaction-Response
Interface (TRI). As previously mentioned, the CVA6 connects to
OpenPiton’s L1.5 through a custom interface. The L1.5 sends inval-
idations to the L1 by sending the correct cache way to invalidate,
which requires extra storage in the L1.5. The PicoRV32 core does
have an L1 cache and is not Linux capable, while invalidation of the
ao486 was still underway at the time of the writing of [7]; hence,
both cores must be used in a singlecore mode. OpenPiton also sup-
ports the NVIDIA Deep Learning Accelerator and the MIAOWGPU
by connecting these accelerators to the crossbar in the chipset.

Black Parrot is a Linux-capable RISC-V multicore, which aims
to be a host for accelerator SoCs [35]. The BlackParrot system is
built around the BlackParrot core, which aims to be “Tiny, Modular,
and Friendly”, and achieves impressive CoreMark scores compared
to other academic and industry RISC-V processors [35]. The Black-
Parrot system architecture is also tile-based with multiple NoCs.
Coherence is enforced with the BedRock implementation, which
consists of local-cache engines (LCEs) connected to the private
cache of processing elements and cache-coherence engines (CCEs),
which collectively implement the system’s coherence directory and
controller. BlackParrot supports both coherent accelerators, which
utilize an LCE, and streaming accelerators, which do not have a

5



J. Zuckerman, P. Mantovani, D. Giri, and L.P. Carloni

backing cache. BlackParrot does not rely on standard bus protocols,
like AXI and AHB, but does provide a set of adapters for these
protocols.

Chipyard is an SoC-generation framework that combines sev-
eral projects for agile hardware design [2]. Chipyard is primar-
ily built around Rocket Chip, a Chisel-based SoC generator [4].
Rocket Chip generates RTL for a full SoC, including the processor
cores, tightly-coupled accelerators (Rocket Custom Coprocessor or
ROCC), loosely-coupled accelerators (MMIO accelerators), periph-
erals, and the system interconnect, which implements the TileLink
protocol [14]. Chipyard adds additional components to the IP li-
brary, including the CVA6 core, out-of-order cores (BOOM), vec-
tor processors, and deep learning accelerators. Chipyard supports
FPGA-accelerated cycle-accurate simulation through the FireSim
platform [27] and also has an agile VLSI flow (Hammer). Centrifuge
[25] leverages FireSim to evaluate SoCs that utilize HLS-generated
accelerators.

HERO combines a Linux-capable host with a programmable
manycore accelerator (PMCA). The first version of HERO [29] uses
an ARM Cortex-A multicore processor as the host; the PMCA con-
sists of clusters of RISC-V PEs with shared memory that connect
to the host via the system interconnect. Hence, the entire system
uses multiple ISAs. HEROv2 [30] improves upon the first version
by enabling 64-bit hosts to coexist with the the 32-bit PEs in the
PMCA. HEROv2 also adds the CVA6 core as a host option, but
only supports a single core option in this case. HEROv2 features a
complete heterogeneous compiler based on LLVM that can support
OpenMP applications.

MEG is a full system emulation infrastructure for evaluating
software and hardware designs in systems utilizing high-bandwidth
memory (HBM) [39]. MEG uses the BOOM core and TileLink inter-
connect generated from Chipyard to create a Linux-capable mul-
ticore infrastructure on FPGA. MEG also facilitates the hardware
and software integration of AXI-compliant hardware accelerators,
which connect to the IOMMU in the system. A custom performance
monitoring system allows studying the impacts of HBM on various
aspects of the system.

ESP has the following three key characteristics, which, together,
distinguish it from the other mentioned platforms:
1) By using standardized bus protocols and adapters, ESP’s archi-
tecture is decoupled from any particular core. Furthermore, this
simplifies the integration of new cores that utilize the same stan-
dardized protocols. For example, the T-head (founded by Alibaba)
Xuantie C910 core makes use of AXI and the AXI Coherency Ex-
tensions [11].
2) ESP is designed with a system-centric mindset rather than a
processor-centric one. Loosely-coupled accelerators are given an
equal importance in the SoC architecture as processor cores. They
occupy their own tile connected to the NoC, rather than being
attached to the I/O bus. Furthermore, ESP provides several design
flows to create new, custom hardware accelerators, which can work
seamlessly with any processor core that is integrated in ESP.
3) ESP’s scalable architecture allows the design of large SoCs. The
NoC can support large grids of processing elements that would
not be feasible in bus- or crossbar-based systems. Furthermore, the

distributed memory hierarchy can support multiple channels to off-
chip memory in order to satisfy increased bandwidth requirements
of large designs.

6 CONCLUSION
We augmented the open-source ESP project to enable multicore
execution with the RISC-V CVA6 processor core. In doing so, we
provided the CVA6 processor with mechanisms to invalidate its
L1 cache and enabled the ESP cache hierarchy to support RISC-
V atomic instructions. We implemented these mechanisms in a
modular way by relying on standard bus protocols. Hence, our
implementation could be reused to simplify the integration of other
processor cores that are AXI-compliant. We verified the correctness
and performance of our implementation by booting Linux SMP and
running multithreaded graph applications on an SoC with 4 CVA6
cores on FPGA. All of this work is included in the open-source
release of ESP.

ACKNOWLEDGMENTS
This work was supported in part by DARPA (C#:HR001118C0122),
the ARO (G#:W911NF-19-1-0476), and the NSF Graduate Research
Fellowship Program. The views and conclusions expressed are those
of the authors and should not be interpreted as representing the of-
ficial views or policies of the Army Research Office, the Department
of Defense, or the U.S. Government.

REFERENCES
[1] Masab Ahmad, Farrukh Hijaz, Qingchuan Shi, and Omer Khan. 2015. CRONO: A

Benchmark Suite for Multithreaded Graph Algorithms Executing on Futuristic
Multicores. In 2015 IEEE International Symposium on Workload Characterization.
44–55. https://doi.org/10.1109/IISWC.2015.11

[2] Alon Amid, David Biancolin, AbrahamGonzalez, Daniel Grubb, Sagar Karandikar,
Harrison Liew, Albert Magyar, Howard Mao, Albert Ou, Nathan Pemberton,
Paul Rigge, Colin Schmidt, John Wright, Jerry Zhao, Yakun Sophia Shao, Krste
Asanović, and Borivoje Nikolić. 2020. Chipyard: Integrated Design, Simulation,
and Implementation Framework for Custom SoCs. IEEE Micro 40, 4 (2020), 10–21.
https://doi.org/10.1109/MM.2020.2996616

[3] ARM. 2020. AMBA AXI and ACE Protocol Specification. https://developer.arm.
com/documentation/ihi0022/h.

[4] Krste Asanović, Rimas Avizienis, Jonathan Bachrach, Scott Beamer, David Bian-
colin, Christopher Celio, Henry Cook, Daniel Dabbelt, John Hauser, Adam Izraele-
vitz, Sagar Karandikar, Ben Keller, Donggyu Kim, John Koenig, Yunsup Lee,
Eric Love, Martin Maas, Albert Magyar, Howard Mao, Miquel Moreto, Albert
Ou, David A. Patterson, Brian Richards, Colin Schmidt, Stephen Twigg, Huy
Vo, and Andrew Waterman. 2016. The Rocket Chip Generator. Technical Re-
port UCB/EECS-2016-17. EECS Department, University of California, Berkeley.
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

[5] Krste Asanović and David A. Patterson. 2014. Instruction Sets Should Be Free: The
Case For RISC-V. Technical Report UCB/EECS-2014-146. EECS Department, Uni-
versity of California, Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/
2014/EECS-2014-146.html

[6] Jonathan Balkind, Katie Lim, Fei Gao, Jinzheng Tu, David Wentzlaff, Michael
Schaffner, Florian Zaruba, and Luca Benini. 2019. OpenPiton+Ariane: The First
SMP Linux-booting RISC-V System Scaling FromOne toMany Cores. InWorkshop
on Computer Architecture Research with RISC-V (CARRV).

[7] Jonathan Balkind, Katie Lim, Michael Schaffner, Fei Gao, Grigory Chirkov, Ang Li,
Alexey Lavrov, Tri M. Nguyen, Yaosheng Fu, Florian Zaruba, Kunal Gulati, Luca
Benini, and David Wentzlaff. 2020. BYOC: A "Bring Your Own Core" Framework for
Heterogeneous-ISA Research. Association for Computing Machinery, New York,
NY, USA, 699–714. https://doi.org/10.1145/3373376.3378479

[8] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,
Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,
MatthewMatl, and DavidWentzlaff. 2016. OpenPiton: An Open Source Manycore
Research Framework. In Proceedings of the ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS).
217–232.

6

https://doi.org/10.1109/IISWC.2015.11
https://doi.org/10.1109/MM.2020.2996616
https://developer.arm.com/documentation/ihi0022/h
https://developer.arm.com/documentation/ihi0022/h
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-146.html
https://doi.org/10.1145/3373376.3378479


Enabling Heterogeneous, Multicore SoC Research
with RISC-V and ESP

[9] Luca P. Carloni. 2015. From Latency-Insensitive Design to Communication-Based
System-Level Design. Proc. IEEE 103, 11 (2015), 2133–2151. https://doi.org/10.
1109/JPROC.2015.2480849

[10] Luca P. Carloni. 2016. Invited: The Case for Embedded Scalable Platforms. In
2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC). 1–6. https:
//doi.org/10.1145/2897937.2905018

[11] Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo, Dongqi Liu,
Yimin Lu, Ziyi Hao, Jiahui Luo, Zhijian Chen, Chunqiang Li, Yu Pu, Jianyi Meng,
Xiaolang Yan, Yuan Xie, and Xiaoning Qi. 2020. Xuantie-910: A Commercial
Multi-Core 12-Stage Pipeline Out-of-Order 64-bit High Performance RISC-V
Processor with Vector Extension : Industrial Product. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). 52–64. https:
//doi.org/10.1109/ISCA45697.2020.00016

[12] Columbia SLD Group. 2019. ESP Release. www.esp.cs.columbia.edu.
[13] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Karthik

Gururaj, and Glenn Reinman. 2014. Accelerator-rich architectures: Opportunities
and progresses. In 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC). 1–6. https://doi.org/10.1145/2593069.2596667

[14] Henry Cook, Wesley Terpstra, and Yunsup Lee. 2017. Diplomatic Design Patterns
: A TileLink Case Study. In Proceedings of the Workshop on Computer Architecture
Research with RISC-V (CARRV).

[15] Emilio G. Cota, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni.
2015. An Analysis of Accelerator Coupling in Heterogeneous Architectures. In
Proceedings of the Design Automation Conference (DAC) (San Francisco, California)
(DAC’15). ACM, New York, NY, USA, Article 202, 6 pages. https://doi.org/10.
1145/2744769.2744794

[16] Michael Ditty, Ashish Karandikar, and David Reed. 2018. Nvidia’s Xavier SoC. In
Hot Chips: A Symposium on High Performance Chips.

[17] Cobham Gaisler. [n.d.]. LEON3 Processor. www.gaisler.com/index.php/products/
processors/leon3.

[18] Davide Giri, Kuan-Lin Chiu, Giuseppe Di Guglielmo, Paolo Mantovani, and
Luca P. Carloni. 2020. ESP4ML: Platform-Based Design of Systems-on-Chip for
Embedded Machine Learning. Proceedings of the Design, Automation and Test in
Europe Conference (DATE).

[19] Davide Giri, Kuan-Lin Chiu, Guy Eichler, Paolo Mantovani, and Luca P. Carloni.
2021. Accelerator Integration for Open-Source SoC Design. IEEE Micro (Special
Issue: FPGAs in Computing) 41, 4 (2021), 8–14. https://doi.org/10.1109/MM.2021.
3073893

[20] Davide Giri, Kuan-Lin Chiu, Guy Eichler, Paolo Mantovani, Nandhini Chan-
dramoorthy, and Luca P. Carloni. 2020. Ariane + NVDLA: Seamless Third-Party
IP Integration with ESP. Proceedings of the Workshop on Computer Architecture
Research with RISC-V (CARRV).

[21] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2018. Accelerators and
Coherence: An SoC Perspective. IEEE Micro (Special Issue: Hardware Acceleration)
38, 6 (Nov. 2018), 36–45.

[22] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2018. NoC-Based Support
of Heterogeneous Cache-Coherence Models for Accelerators. Proceedings of the
Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS).

[23] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2019. Runtime Reconfigurable
Memory Hierarchy in Embedded Scalable Platforms. Proceedings of the Asia and
South Pacific Design Automation Conference (ASPDAC).

[24] Gagan Gupta, Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam.
2017. Kickstarting Semiconductor Innovation with Open Source Hardware.
Computer 50, 6 (2017), 50–59. https://doi.org/10.1109/MC.2017.162

[25] Qijing Huang, Christopher Yarp, Sagar Karandikar, Nathan Pemberton, Ben-
jamin Brock, Liang Ma, Guohao Dai, Robert Quitt, Krste Asanovic, and
John Wawrzynek. 2019. Centrifuge: Evaluating full-system HLS-generated
heterogenous-accelerator SoCs using FPGA-Acceleration. In 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 1–8. https://doi.
org/10.1109/ICCAD45719.2019.8942048

[26] Tianyu Jia, Paolo Mantovani, Maico Cassel Dos Santos, Davide Giri, Joseph
Zuckerman, Erik Jens Loscalzo, Martin Cochet, Karthik Swaminathan, Gabriele
Tombesi, Jeff Jun Zhang, Nandhini Chandramoorthy, John-David Wellman, Kevin
Tien, Luca P. Carloni, Kenneth Shepard, David Brooks, Gu-Yeon Wei, and Pradip
Bose. 2022. A 12nm Agile-Designed SoC for Swarm-Based Perception with
Heterogeneous IP Blocks, a Reconfigurable Memory Hierarchy, and an 800MHz
Multi-Plane NoC. In 48th IEEE European Solid-State Circuits Conference (ESSCIRC).

[27] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanovic. 2018. FireSim: FPGA-Accelerated Cycle-Exact Scale-Out System
Simulation in the Public Cloud. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA). 29–42. https://doi.org/10.1109/
ISCA.2018.00014

[28] Brucek Khailany, Evgeni Khmer, Rangharajan Venkatesan, Jason Clemons, Joel S.
Emer, Matthew Fojtik, Alicia Klinefelter, Michael Pellauer, Nathaniel Pinckney,

Yakun Sophia Shao, Shreesha Srinath, Christopher Torng, Sam (Likun) Xi, Yan-
qing Zhang, and Brian Zimmer. 2018. A Modular Digital VLSI Flow for High-
Productivity SoC Design. In Proceedings of the 55th Annual Design Automation
Conference (San Francisco, California) (DAC ’18). Association for Computing
Machinery, New York, NY, USA, Article 72, 6 pages. https://doi.org/10.1145/
3195970.3199846

[29] Andreas Kurth, Alessandro Capotondi, Pirmin Vogel, Luca Benini, and Andrea
Marongiu. 2018. HERO: An Open-Source Research Platform for HW/SW Explo-
ration of Heterogeneous Manycore Systems. In Proceedings of the 2nd Workshop
on AutotuniNg and ADaptivity AppRoaches for Energy Efficient HPC Systems (Li-
massol, Cyprus) (ANDARE ’18). Association for Computing Machinery, New York,
NY, USA, Article 5, 6 pages. https://doi.org/10.1145/3295816.3295821

[30] Andreas Kurth, Björn Forsberg, and Luca Benini. 2022. HEROv2: Full-Stack Open-
Source Research Platform for Heterogeneous Computing. CoRR abs/2201.03861
(2022). arXiv:2201.03861 https://arxiv.org/abs/2201.03861

[31] Paolo Mantovani, Emilio G. Cota, Kevin Tien, Christian Pilato, Giuseppe
Di Guglielmo, Ken Shepard, and Luca P. Carloni. 2016. An FPGA-based In-
frastructure for Fine-grained DVFS Analysis in High-performance Embedded
Systems. In Proceedings of the Design Automation Conference (DAC). 157:1–157:6.

[32] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni, Joseph
Zuckerman, Emilio G. Cota, Michele Petracca, Christian Pilato, and Luca P. Car-
loni. 2020. Agile SoCDevelopment with Open ESP. Proceedings of the International
Conference on Computer-Aided Design (ICCAD).

[33] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood. 2020. A Primer on Memory
Consistency and Cache Coherence: Second Edition. Morgan & Claypool.

[34] NVIDIA. 2017. NVIDIA Deep Learning Accelerator (NVDLA). www.nvdla.org.
[35] Daniel Petrisko, Farzam Gilani, Mark Wyse, Dai Cheol Jung, Scott Davidson, Paul

Gao, Chun Zhao, Zahra Azad, Sadullah Canakci, Bandhav Veluri, Tavio Guarino,
Ajay Joshi, Mark Oskin, and Michael Bedford Taylor. 2020. BlackParrot: An Agile
Open-Source RISC-V Multicore for Accelerator SoCs. IEEE Micro 40, 4 (2020),
93–102. https://doi.org/10.1109/MM.2020.2996145

[36] Pulp Platform. 2022. https://github.com/pulp-platform/axi_riscv_atomics.
[37] Xilinx. 2018. Adaptable Intelligence: The Next Computing Era. Keynote, Hot

Chips Symposium.
[38] Florian Zaruba and Luca Benini. 2019. The Cost of Application-Class Processing:

Energy and Performance Analysis of a Linux-Ready 1.7-GHz 64-Bit RISC-V Core
in 22-nm FDSOI Technology. IEEE Transactions on Very Large Scale Integration
Systems 27, 11 (2019), 2629–2640.

[39] Jialiang Zhang, Yue Zha, Nicholas Beckwith, Bangya Liu, and Jing Li. 2020. MEG:
A RISCV-Based System Emulation Infrastructure for Near-Data Processing Using
FPGAs and High-Bandwidth Memory. 13, 4, Article 19 (sep 2020), 24 pages.
https://doi.org/10.1145/3409114

[40] Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Car-
loni. 2021. Cohmeleon: Learning-Based Orchestration of Accelerator Coherence
in Heterogeneous SoCs. In Proceedings of the IEEE/ACM Symposium on Microar-
chitecture (MICRO).

7

https://doi.org/10.1109/JPROC.2015.2480849
https://doi.org/10.1109/JPROC.2015.2480849
https://doi.org/10.1145/2897937.2905018
https://doi.org/10.1145/2897937.2905018
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10.1109/ISCA45697.2020.00016
www.esp.cs.columbia.edu
https://doi.org/10.1145/2593069.2596667
https://doi.org/10.1145/2744769.2744794
https://doi.org/10.1145/2744769.2744794
www.gaisler.com/index.php/products/processors/leon3
www.gaisler.com/index.php/products/processors/leon3
https://doi.org/10.1109/MM.2021.3073893
https://doi.org/10.1109/MM.2021.3073893
https://doi.org/10.1109/MC.2017.162
https://doi.org/10.1109/ICCAD45719.2019.8942048
https://doi.org/10.1109/ICCAD45719.2019.8942048
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1109/ISCA.2018.00014
https://doi.org/10.1145/3195970.3199846
https://doi.org/10.1145/3195970.3199846
https://doi.org/10.1145/3295816.3295821
https://arxiv.org/abs/2201.03861
https://arxiv.org/abs/2201.03861
www.nvdla.org
https://doi.org/10.1109/MM.2020.2996145
https://github.com/pulp-platform/axi_riscv_atomics
https://doi.org/10.1145/3409114

	Abstract
	1 Introduction
	2 The ESP Architecture
	2.1 The ESP Coherence Protocol

	3 Enabling Multicore RISC-V
	3.1 L1 Invalidation of CVA6
	3.2 Handling RISC-V Atomics and LR/SC

	4 Experimental Results
	5 Related Work
	6 Conclusion
	Acknowledgments
	References

